Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(8): 1499-1518, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38528181

RESUMEN

The intestinal pathogen Salmonella enterica rapidly enters the bloodstream after the invasion of intestinal epithelial cells, but how Salmonella breaks through the gut-vascular barrier is largely unknown. Here, we report that Salmonella enters the bloodstream through intestinal CX3CR1+ macrophages during early infection. Mechanistically, Salmonella induces the migration/invasion properties of macrophages in a manner dependent on host cell actin and on the pathogen effector SteC. SteC recruits host myosin light chain protein Myl12a and phosphorylates its Ser19 and Thr20 residues. Myl12a phosphorylation results in actin rearrangement, and enhanced migration and invasion of macrophages. SteC is able to utilize a wide range of NTPs other than ATP to phosphorylate Myl12a. We further solved the crystal structure of SteC, which suggests an atypical dimerization-mediated catalytic mechanism. Finally, in vivo data show that SteC-mediated cytoskeleton manipulation is crucial for Salmonella breaching the gut vascular barrier and spreading to target organs.


Asunto(s)
Cadenas Ligeras de Miosina , Salmonella enterica , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Actinas/metabolismo , Células Epiteliales/metabolismo , Macrófagos/metabolismo
2.
PLoS Genet ; 18(3): e1010125, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35290367

RESUMEN

[This corrects the article DOI: 10.1371/journal.pgen.1008044.].

3.
J Am Chem Soc ; 146(15): 10599-10607, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567740

RESUMEN

The success of electrochemical CO2 reduction at high current densities hinges on precise interfacial transportation and the local concentration of gaseous CO2. However, the creation of efficient CO2 transportation channels remains an unexplored frontier. In this study, we design and synthesize hydrophobic porous Cu2O spheres with varying pore sizes to unveil the nanoporous channel's impact on gas transfer and triple-phase interfaces. The hydrophobic channels not only facilitate rapid CO2 transportation but also trap compressed CO2 bubbles to form abundant and stable triple-phase interfaces, which are crucial for high-current-density electrocatalysis. In CO2 electrolysis, in situ spectroscopy and density functional theory results reveal that atomic edges of concave surfaces promote C-C coupling via an energetically favorable OC-COH pathway, leading to overwhelming CO2-to-C2+ conversion. Leveraging optimal gas transportation and active site exposure, the hydrophobic porous Cu2O with a 240 nm pore size (P-Cu2O-240) stands out among all the samples and exhibits the best CO2-to-C2+ productivity with remarkable Faradaic efficiency and formation rate up to 75.3 ± 3.1% and 2518.2 ± 8.1 µmol h-1 cm-2, respectively. This study introduces a novel paradigm for efficient electrocatalysts that concurrently addresses active site design and gas-transfer challenges.

4.
EMBO J ; 39(1): e101515, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31617603

RESUMEN

The phytohormone auxin controls plant growth and development via TIR1-dependent protein degradation of canonical AUX/IAA proteins, which normally repress the activity of auxin response transcription factors (ARFs). IAA33 is a non-canonical AUX/IAA protein lacking a TIR1-binding domain, and its role in auxin signaling and plant development is not well understood. Here, we show that IAA33 maintains root distal stem cell identity and negatively regulates auxin signaling by interacting with ARF10 and ARF16. IAA33 competes with the canonical AUX/IAA repressor IAA5 for binding to ARF10/16 to protect them from IAA5-mediated inhibition. In contrast to auxin-dependent degradation of canonical AUX/IAA proteins, auxin stabilizes IAA33 protein via MITOGEN-ACTIVATED PROTEIN KINASE 14 (MPK14) and does not affect IAA33 gene expression. Taken together, this study provides insight into the molecular functions of non-canonical AUX/IAA proteins in auxin signaling transduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Fosforilación , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteolisis , Transducción de Señal
5.
J Lipid Res ; 64(12): 100463, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37871851

RESUMEN

GM1 gangliosidosis is a neurodegenerative disorder caused by mutations in the GLB1 gene, which encodes lysosomal ß-galactosidase. The enzyme deficiency blocks GM1 ganglioside catabolism, leading to accumulation of GM1 ganglioside and asialo-GM1 ganglioside (GA1 glycolipid) in brain. This disease can present in varying degrees of severity, with the level of residual ß-galactosidase activity primarily determining the clinical course. Glb1 null mouse models, which completely lack ß-galactosidase expression, exhibit a less severe form of the disease than expected from the comparable deficiency in humans, suggesting a potential species difference in the GM1 ganglioside degradation pathway. We hypothesized this difference may involve the sialidase NEU3, which acts on GM1 ganglioside to produce GA1 glycolipid. To test this hypothesis, we generated Glb1/Neu3 double KO (DKO) mice. These mice had a significantly shorter lifespan, increased neurodegeneration, and more severe ataxia than Glb1 KO mice. Glb1/Neu3 DKO mouse brains exhibited an increased GM1 ganglioside to GA1 glycolipid ratio compared with Glb1 KO mice, indicating that NEU3 mediated GM1 ganglioside to GA1 glycolipid conversion in Glb1 KO mice. The expression of genes associated with neuroinflammation and glial responses were enhanced in Glb1/Neu3 DKO mice compared with Glb1 KO mice. Mouse NEU3 more efficiently converted GM1 ganglioside to GA1 glycolipid than human NEU3 did. Our findings highlight NEU3's role in ameliorating the consequences of Glb1 deletion in mice, provide insights into NEU3's differential effects between mice and humans in GM1 gangliosidosis, and offer a potential therapeutic approach for reducing toxic GM1 ganglioside accumulation in GM1 gangliosidosis patients.


Asunto(s)
Gangliosidosis GM1 , Animales , Humanos , Ratones , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , beta-Galactosidasa/uso terapéutico , Gangliósido G(M1)/metabolismo , Gangliósido G(M1)/uso terapéutico , Gangliosidosis GM1/genética , Glucolípidos , Neuraminidasa/genética , Neuraminidasa/uso terapéutico
6.
EMBO Rep ; 22(10): e52457, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34402578

RESUMEN

Cytokinins are phytohormones that regulate plant development, growth, and responses to stress. In particular, cytokinin has been reported to negatively regulate plant adaptation to high salinity; however, the molecular mechanisms that counteract cytokinin signaling and enable salt tolerance are not fully understood. Here, we provide evidence that salt stress induces the degradation of the cytokinin signaling components Arabidopsis (Arabidopisis thaliana) response regulator 1 (ARR1), ARR10 and ARR12. Furthermore, the stress-activated mitogen-activated protein kinase 3 (MPK3) and MPK6 interact with and phosphorylate ARR1/10/12 to promote their degradation in response to salt stress. As expected, salt tolerance is decreased in the mpk3/6 double mutant, but enhanced upon ectopic MPK3/MPK6 activation in an MKK5DD line. Importantly, salt hypersensitivity phenotypes of the mpk3/6 line were significantly alleviated by mutation of ARR1/12. The above results indicate that MPK3/6 enhance salt tolerance in part via their negative regulation of ARR1/10/12 protein stability. Thus, our work reveals a new molecular mechanism underlying salt-induced stress adaptation and the inhibition of plant growth, via enhanced degradation of cytokinin signaling components.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteína Quinasa 3 Activada por Mitógenos , Tolerancia a la Sal/genética
7.
PLoS Genet ; 16(2): e1008044, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32032352

RESUMEN

The development of lateral roots in Arabidopsis thaliana is strongly dependent on signaling directed by the AUXIN RESPONSE FACTOR7 (ARF7), which in turn activates LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors (LBD16, LBD18 and LBD29). Here, the product of PRH1, a PR-1 homolog annotated previously as encoding a pathogen-responsive protein, was identified as a target of ARF7-mediated auxin signaling and also as participating in the development of lateral roots. PRH1 was shown to be strongly induced by auxin treatment, and plants lacking a functional copy of PRH1 formed fewer lateral roots. The transcription of PRH1 was controlled by the binding of both ARF7 and LBDs to its promoter region.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Raíces de Plantas/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
8.
J Xray Sci Technol ; 31(4): 745-756, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37092211

RESUMEN

OBJECTIVE: The aim of this study is to investigate the radiation dose and image quality of head CT using SPS and OBTCM techniques. METHODS: Three anthropomorphic head phantoms (1-yr-old, 5-yr-old, and adult) were used. Images were acquired using four modes (Default protocol, OBTCM, SPS, and SPS+OBTCM). Absorbed dose to the lens, anterior brain (brain_A), and posterior brain (brain_P) was measured and compared. Image noise and CNR were assessed in the selected regions of interest (ROIs). RESULTS: Compared with that in the Default protocol, the absorbed dose to the lens reduced by up to 28.33%,71.38%, and 71.12% in OBTCM, SPS, and SPS+OBTCM, respectively. The noise level in OBTCM slightly (≤1.45HU) increased than that in Default protocol, and the SPS or SPS+OBTCM mode resulted in a quantitatively small increase (≤2.58HU) in three phantoms. There was no significant difference in CNR of different phantoms under varies scanning modes (p > 0.05). CONCLUSIONS: During head CT examinations, the SPS mode can reduce the radiation dose while maintaining image quality. SPS+OBTCM couldn't further effectively reduce the absorbed dose to the lens for 1-yr and 5-yr-old phantoms. Thus, SPS mode in pediatric and SPS+OBTCM mode in adult are better than other modes, and should be used in clinical practice.


Asunto(s)
Reducción Gradual de Medicamentos , Protección Radiológica , Adulto , Humanos , Niño , Dosis de Radiación , Protección Radiológica/métodos , Cabeza/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen
9.
Zhonghua Nan Ke Xue ; 29(10): 949-952, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-38639668

RESUMEN

The diagnosis and treatment of azoospermia rely heavily on auxiliary ex-amination technology. Compared with CT and MRI, ultrasound has more practical value in the diagnosis of azoospermia.Currently, the main ultrasonic technologies are contrast-enhanced ultrasound, real-time ultrasound elastography and ultrasound tar-geted puncture. This article aims to summarize and prospect the application of new ultrasound technology in azoospermia.Real-time ultrasound elastography is widely used in breast diseases and is expected to play a greater role in azoospermia. Ultra-sound targeted puncture can greatly reduce the damage of testicular spermatogenic function, but its application is still not widely used.The combined application of new technologies can make up for their respective shortcomings and improve the accuracy of azoospermia diagnosis.Therefore, further research on new ultrasound technology in the diagnosis of azoospermia will play a greater role.


Asunto(s)
Azoospermia , Diagnóstico por Imagen de Elasticidad , Masculino , Humanos , Azoospermia/diagnóstico por imagen , Ultrasonografía/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Espermatogénesis
10.
Plant J ; 106(1): 214-227, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33450100

RESUMEN

Ribosome assembly factors guide the complex process by which ribosomal proteins and the ribosomal RNAs form a functional ribosome. However, the assembly of plant plastid ribosomes is poorly understood. In the present study, we discovered a maize (Zea mays) plastid ribosome assembly factor based on our characterization of the embryo defective 15 (emb15) mutant. Loss of function of Emb15 retards embryo development at an early stage, but does not substantially affect the endosperm, and causes an albino phenotype in other genetic backgrounds. EMB15 localizes to plastids and possesses a ribosome maturation factor M (RimM) domain in the N-terminus and a predicted UDP-GlcNAc pyrophosphorylase domain in the C-terminus. The EMB15 RimM domain originated in bacteria and the UDP-GlcNAc pyrophosphorylase domain originated in fungi; these two domains came together in the ancestor of land plants during evolution. The N-terminus of EMB15 complemented the growth defect of an Escherichia coli strain with a RimM deletion and rescued the albino phenotype of emb15 homozygous mutants. The RimM domain mediates the interaction between EMB15 and the plastid ribosomal protein PRPS19. Plastid 16S rRNA maturation is also significantly impaired in emb15. These observations suggest that EMB15 functions in maize seed development as a plastid ribosome assembly factor, and the C-terminal domain is not important under normal conditions.


Asunto(s)
Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Ribosomas/metabolismo , Semillas/metabolismo , Zea mays/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Plastidios/genética , Ribosomas/genética , Semillas/genética , Zea mays/genética
11.
Plant J ; 108(1): 55-66, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273207

RESUMEN

Aluminium (Al) stress is a major limiting factor for worldwide crop production in acid soils. In Arabidopsis thaliana, the TAA1-dependent local auxin biosynthesis in the root-apex transition zone (TZ), the major perception site for Al toxicity, is crucial for the Al-induced root-growth inhibition, while the mechanism underlying Al-regulated auxin accumulation in the TZ is not fully understood. In the present study, the role of auxin transport in Al-induced local auxin accumulation in the TZ and root-growth inhibition was investigated. Our results showed that PIN-FORMED (PIN) proteins such as PIN1, PIN3, PIN4 and PIN7 and AUX1/LAX proteins such as AUX1, LAX1 and LAX2 were all ectopically up-regulated in the root-apex TZ in response to Al stress and coordinately regulated local auxin accumulation in the TZ and root-growth inhibition. The ectopic up-regulation of PIN1 in the TZ under Al stress was regulated by both ethylene and auxin, with auxin signalling acting downstream of ethylene. Al-induced PIN1 up-regulation and auxin accumulation in the root-apex TZ was also regulated by the calossin-like protein BIG. Together, our results provide insight into how Al stress induces local auxin accumulation in the TZ and root-growth inhibition through the local regulation of auxin transport.


Asunto(s)
Aluminio/toxicidad , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Estrés Fisiológico , Regulación hacia Arriba
12.
Plant Biotechnol J ; 20(3): 526-537, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687251

RESUMEN

Maize height is determined by the number of nodes and the length of internodes. Node number is driven by intercalary meristem formation and internode length by intercalary cell elongation, respectively. However, mechanisms regulating establishment of nodes and internode growth are unclear. We screened EMS-induced maize mutants and identified a dwarf mutant zm66, linked to a single base change in TERMINAL EAR 1 (ZmTE1). Detailed phenotypic analysis revealed that zm66 (zmte1-2) has shorter internodes and increased node numbers, caused by decreased cell elongation and disordered intercalary meristem formation, respectively. Transcriptome analysis showed that auxin signalling genes are also dysregulated in zmte1-2, as are cell elongation and cell cycle-related genes. This argues that ZmTE1 regulates auxin signalling, cell division, and cell elongation. We found that the ZmWEE1 kinase phosphorylates ZmTE1, thus confining it to the nucleus and probably reducing cell division. In contrast, the ZmPP2Ac-2 phosphatase promotes dephosphorylation and cytoplasmic localization of ZmTE1, as well as cell division. Taken together, ZmTE1, a key regulator of plant height, is responsible for maintaining organized formation of internode meristems and rapid cell elongation. ZmWEE1 and ZmPP2Ac-2 might balance ZmTE1 activity, controlling cell division and elongation to maintain normal maize growth.


Asunto(s)
Meristema , Zea mays , Ciclo Celular , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos , Meristema/genética , Zea mays/genética
13.
J Integr Plant Biol ; 64(7): 1339-1351, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35475598

RESUMEN

Gravitropism is an essential adaptive response of land plants. Asymmetric auxin gradients across plant organs, interpreted by multiple auxin signaling components including AUXIN RESPONSE FACTOR7 (ARF7), trigger differential growth and bending response. However, how this fundamental process is strictly maintained in nature remains unclear. Here, we report that gravity stimulates the transcription of METHYL ESTERASE17 (MES17) along the lower side of the hypocotyl via ARF7-dependent auxin signaling. The asymmetric distribution of MES17, a methyltransferase that converts auxin from its inactive form methyl indole-3-acetic acid ester (MeIAA) to its biologically active form free-IAA, enhanced the gradient of active auxin across the hypocotyl, which in turn reversely amplified the asymmetric auxin responses and differential growth that shape gravitropic bending. Taken together, our findings reveal the novel role of MES17-mediated auxin homeostasis in gravitropic responses and identify an ARF7-triggered feedback mechanism that reinforces the asymmetric distribution of active auxin and strictly controls gravitropism in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Retroalimentación , Gravitropismo/fisiología , Homeostasis , Ácidos Indolacéticos , Raíces de Plantas , Factores de Transcripción
14.
J Biol Chem ; 295(13): 4341-4349, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32029474

RESUMEN

Sphingolipid biosynthesis generates lipids for membranes and signaling that are crucial for many developmental and physiological processes. In some cases, large amounts of specific sphingolipids must be synthesized for specialized physiological functions, such as during axon myelination. How sphingolipid synthesis is regulated to fulfill these physiological requirements is not known. To identify genes that positively regulate membrane sphingolipid levels, here we employed a genome-wide CRISPR/Cas9 loss-of-function screen in HeLa cells using selection for resistance to Shiga toxin, which uses a plasma membrane-associated glycosphingolipid, globotriaosylceramide (Gb3), for its uptake. The screen identified several genes in the sphingolipid biosynthetic pathway that are required for Gb3 synthesis, and it also identified the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor widely involved in development and physiology, as being required for Gb3 biosynthesis. AHR bound and activated the gene promoter of serine palmitoyltransferase small subunit A (SPTSSA), which encodes a subunit of the serine palmitoyltransferase that catalyzes the first and rate-limiting step in de novo sphingolipid biosynthesis. AHR knockout HeLa cells exhibited significantly reduced levels of cell-surface Gb3, and both AHR knockout HeLa cells and tissues from Ahr knockout mice displayed decreased sphingolipid content as well as significantly reduced expression of several key genes in the sphingolipid biosynthetic pathway. The sciatic nerve of Ahr knockout mice exhibited both reduced ceramide content and reduced myelin thickness. These results indicate that AHR up-regulates sphingolipid levels and is important for full axon myelination, which requires elevated levels of membrane sphingolipids.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Resistencia a la Enfermedad/genética , Globósidos/genética , Receptores de Hidrocarburo de Aril/genética , Serina C-Palmitoiltransferasa/genética , Esfingolípidos/biosíntesis , Trihexosilceramidas/genética , Animales , Sistemas CRISPR-Cas/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Genoma Humano/genética , Células HeLa , Humanos , Metabolismo de los Lípidos/genética , Lípidos/biosíntesis , Lípidos/genética , Ratones , Ratones Noqueados , Toxina Shiga/farmacología , Transducción de Señal/genética , Esfingolípidos/genética
15.
Nano Lett ; 20(4): 2892-2898, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32208665

RESUMEN

With the ever-increasing growth in next-generation flexible and wearable electronics, fiber-shaped zinc-air batteries have attracted considerable attention due to their advantages of high energy density and low cost, though their development, however, has been seriously hampered by the unavailability of efficient electrocatalysts. In this work, we designed a trimetallic nitride electrocatalyst in an unusual molecular sheet form, which was stabilized by metallic titanium carbide sheets. Besides the expected elevation in catalytic activity toward the oxygen evolution reaction, the material simultaneously unlocked excellent catalytic activity for oxygen reduction reaction with the half-wave potential as small as 0.84 V. A flexible fiber-shaped zinc-air battery, employing the designed electrocatalyst as the air cathode and a gel as the electrolyte, demonstrated an enhanced and durable electrochemical performance, outputting a competitive energy density of 627 Wh kgzn-1. This work opens new avenues for utilizing two-dimensional sheets in future wearable and portable device applications.

16.
New Phytol ; 228(2): 609-621, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32521046

RESUMEN

Shade avoidance syndrome (SAS) arises in densely growing plants that compete for light. In Arabidopsis thaliana, phytochrome interacting factor (PIF) proteins link the perception of shade to stem elongation via auxin production. Here, we report that PIFs inhibit the shade-induced expression of AUXIN RESPONSE FACTOR 18 (ARF18), and ARF18 represses auxin signaling. Therefore, PIF-mediated inhibition of ARF18 enhances auxin-dependent hypocotyl elongation in simulated shade. Furthermore, we show that both PIFs and ARF18 directly repress qua-quine starch (QQS), which controls the allocation of carbon and nitrogen. Shade-repressed QQS attenuates the conversion of starch to protein and thus reduced leaf area. Our results suggest that PIF-dependent gene regulation coordinates multiple SAS responses, including altered stem growth via ARF18, as well as altered leaf growth and metabolism via QQS.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Ácidos Indolacéticos , Luz , Fitocromo/metabolismo
17.
Pediatr Diabetes ; 21(3): 431-440, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31957151

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the molecular basis of maturity-onset diabetes of the young (MODY) by whole-exome sequencing (WES) and estimate the frequency and describe the clinical characteristics of MODY in southern China. METHODS: Genetic analysis was performed in 42 patients with MODY aged 1 month to 18 years among a cohort of 759 patients with diabetes, identified with the following four clinical criteria: age of diagnosis ≤18 years; negative pancreatic autoantibodies; family history of diabetes; or persistently detectable C-peptide; or diabetes associated with extrapancreatic features. GCK gene mutations were first screened by Sanger sequencing. GCK mutation-negative patients were further analyzed by WES. RESULTS: Mutations were identified in 24 patients: 20 mutations in GCK, 1 in HNF4A, 1 in INS, 1 in ABCC8, and a 17q12 microdeletion. Four previously unpublished novel GCK mutations: c.1108G>C in exon 9, and c.1339C>T, c.1288_1290delCTG, and c.1340_1343delGGGGinsCTGGTCT in exon 10 were detected. WES identified a novel missense mutation c.311A>G in exon 3 in the INS gene, and copy number variation analysis detected a 1.4 Mb microdeletion in the long arm of the chromosome 17q12 region. Compared with mutation-negative subjects, the mutation-positive subjects had lower hemoglobin A1c and initial blood glucose levels. CONCLUSIONS: Most MODY cases in this study were due to GCK mutations, which is in contrast to previous reports in Chinese patients. Diabetes associated with extrapancreatic features should be a clinical criterion for MODY genetic analysis. Mutational analysis by WES provided a precise diagnosis of MODY subtypes. Moreover, WES can be useful for detecting large deletions in coding regions in addition to point mutations.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Adolescente , Péptido C/sangre , Niño , Preescolar , China/epidemiología , Estudios de Cohortes , Análisis Mutacional de ADN , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Pruebas Genéticas , Glucoquinasa/genética , Hemoglobina Glucada/análisis , Hemoglobina Glucada/metabolismo , Humanos , Lactante , Recién Nacido , Insulina/sangre , Insulina/genética , Masculino , Técnicas de Diagnóstico Molecular , Mutación
18.
Chem Rev ; 118(13): 6409-6455, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29927583

RESUMEN

As one unique group of two-dimensional (2D) nanomaterials, 2D metal nanomaterials have drawn increasing attention owing to their intriguing physiochemical properties and broad range of promising applications. In this Review, we briefly introduce the general synthetic strategies applied to 2D metal nanomaterials, followed by describing in detail the various synthetic methods classified in two categories, i.e. bottom-up methods and top-down methods. After introducing the unique physical and chemical properties of 2D metal nanomaterials, the potential applications of 2D metal nanomaterials in catalysis, surface enhanced Raman scattering, sensing, bioimaging, solar cells, and photothermal therapy are discussed in detail. Finally, the challenges and opportunities in this promising research area are proposed.

19.
J Immunol ; 200(8): 2835-2846, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29549176

RESUMEN

Turmeric is traditionally used as a spice and coloring in foods. Curcumin is the primary active ingredient in the turmeric, and compelling evidence has shown that it has the ability to inhibit inflammation. However, the mechanism mediating its anti-inflammatory effects are not fully understood. We report that curcumin inhibited caspase-1 activation and IL-1ß secretion through suppressing LPS priming and the inflammasome activation pathway in mouse bone marrow-derived macrophages. The inhibitory effect of curcumin on inflammasome activation was specific to the NLRP3, not to the NLRC4 or the AIM2 inflammasomes. Curcumin inhibited the NLRP3 inflammasome by preventing K+ efflux and disturbing the downstream events, including the efficient spatial arrangement of mitochondria, ASC oligomerization, and speckle formation. Reactive oxygen species, autophagy, sirtuin-2, or acetylated α-tubulin was ruled out as the mechanism by which curcumin inhibits the inflammasome. Importantly, in vivo data show that curcumin attenuated IL-1ß secretion and prevented high-fat diet-induced insulin resistance in wide-type C57BL/6 mice but not in Nlrp3-deficient mice. Curcumin also repressed monosodium urate crystal-induced peritoneal inflammation in vivo. Taken together, we identified curcumin as a common NLRP3 inflammasome activation inhibitor. Our findings reveal a mechanism through which curcumin represses inflammation and suggest the potential clinical use of curcumin in NLRP3-driven diseases.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Curcumina/farmacología , Inflamasomas/efectos de los fármacos , Interleucina-1beta/biosíntesis , Proteína con Dominio Pirina 3 de la Familia NLR/efectos de los fármacos , Animales , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Kidney Blood Press Res ; 45(5): 671-685, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32998138

RESUMEN

AIM: Protein-energy malnutrition and cardiovascular (CV) disease predisposes patients with end-stage renal disease (ESRD) on dialysis to a high risk of early death, but the prognostic value of prealbumin (PAB) and echocardiographic indices in ESRD patients treated with maintenance peritoneal dialysis (PD) remains unclear. METHODS: A total of 211 PD patients (mean age 49.2 ± 15.4 years, 51.7% male) were prospectively studied. PAB and echocardiography parameters were recorded at baseline. Follow-up (mean ± SD: 33.7 ± 17.3 months) was conducted based on hospital records, clinic visits, and telephone reviews, to record death events and their causes. RESULTS: In the Cox proportional hazards model, PAB and the echocardiographic parameters listed below were found to be optimal predictors of all-cause mortality: PAB (p = 0.003), aortic root diameter (ARD) (p = 0.004), interventricular septum end-diastolic thickness (IVSd) (p = 0.046), and left ventricular end-diastolic diameter index (LVEDDI) (p = 0.029). Of the above-mentioned factors, PAB (p = 0.018), ARD (p = 0.031), and IVSd (p = 0.037) were independent predictors of CV mortality in PD patients. Of note, malnutrition, degradation of the aorta, and myocardial hypertrophy are also known death risk factors in the general population. The all-cause mortality and CV death rate significantly increased as the number of risk factors increased, reaching values as high as 40 and 22% in patients who had all of the risk factors, i.e., abnormal PAB, ARD, and IVSd (p < 0.001 and p = 0.011). CONCLUSION: In PD patients, low serum PAB and abnormal echocardiographic parameters together were significantly associated with all-cause mortality and CV death, independently of other risk factors. These risk factors for death in PD are similar to those in the general population. Noticeably, the combination of echocardiographic parameters and PAB could provide additional predictive value for mortality in PD patients. In light of these findings, more studies in an optimal model containing PAB and echocardiographic parameters for the prediction of outcomes in ESRD are required.


Asunto(s)
Fallo Renal Crónico/mortalidad , Diálisis Peritoneal/mortalidad , Prealbúmina/análisis , Adulto , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/mortalidad , Ecocardiografía , Femenino , Humanos , Fallo Renal Crónico/sangre , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana Edad , Diálisis Peritoneal/efectos adversos , Pronóstico , Modelos de Riesgos Proporcionales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA