Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.582
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D724-D731, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37823598

RESUMEN

Microorganisms encode most of the functions of life on Earth. However, conventional research has primarily focused on specific environments such as humans, soil and oceans, leaving the distribution of functional families throughout the global biosphere poorly comprehended. Here, we present the database of the global distribution of prokaryotic protein families (GDPF, http://bioinfo.qd.sdu.edu.cn/GDPF/), a data resource on the distribution of functional families across the global biosphere. GDPF provides global distribution information for 36 334 protein families, 19 734 superfamilies and 12 089 KEGG (Kyoto Encyclopedia of Genes and Genomes) orthologs from multiple source databases, covering typical environments such as soil, oceans, animals, plants and sediments. Users can browse, search and download the distribution data of each entry in 10 000 global microbial communities, as well as conduct comparative analysis of distribution disparities among multiple entries across various environments. The GDPF data resource contributes to uncovering the geographical distribution patterns, key influencing factors and macroecological principles of microbial functions at a global level, thereby promoting research in Earth ecology and human health.


Asunto(s)
Ecología , Células Procariotas , Proteínas , Animales , Humanos , Suelo , Familia de Multigenes , Proteínas/genética
2.
Circulation ; 149(14): 1121-1138, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38152931

RESUMEN

BACKGROUND: Progressive remodeling of cardiac gene expression underlies decline in cardiac function, eventually leading to heart failure. However, the major determinants of transcriptional network switching from normal to failed hearts remain to be determined. METHODS: In this study, we integrated human samples, genetic mouse models, and genomic approaches, including bulk RNA sequencing, single-cell RNA sequencing, chromatin immunoprecipitation followed by high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, to identify the role of chromatin remodeling complex INO80 in heart homeostasis and dysfunction. RESULTS: The INO80 chromatin remodeling complex was abundantly expressed in mature cardiomyocytes, and its expression further increased in mouse and human heart failure. Cardiomyocyte-specific overexpression of Ino80, its core catalytic subunit, induced heart failure within 4 days. Combining RNA sequencing, chromatin immunoprecipitation followed by high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, we revealed INO80 overexpression-dependent reshaping of the nucleosomal landscape that remodeled a core set of transcription factors, most notably the MEF2 (Myocyte Enhancer Factor 2) family, whose target genes were closely associated with cardiac function. Conditional cardiomyocyte-specific deletion of Ino80 in an established mouse model of heart failure demonstrated remarkable preservation of cardiac function. CONCLUSIONS: In summary, our findings shed light on the INO80-dependent remodeling of the chromatin landscape and transcriptional networks as a major mechanism underlying cardiac dysfunction in heart failure, and suggest INO80 as a potential preventative or interventional target.


Asunto(s)
Redes Reguladoras de Genes , Insuficiencia Cardíaca , Humanos , Animales , Ratones , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , ARN/metabolismo , Transposasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/metabolismo
3.
Circ Res ; 133(1): 86-103, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37249015

RESUMEN

BACKGROUND: Reperfusion therapy is critical to myocardial salvage in the event of a myocardial infarction but is complicated by ischemia-reperfusion injury (IRI). Limited understanding of the spatial organization of cardiac cells, which governs cellular interaction and function, has hindered the search for targeted interventions minimizing the deleterious effects of IRI. METHODS: We used imaging mass cytometry to characterize the spatial distribution and dynamics of cell phenotypes and communities in the mouse left ventricle following IRI. Heart sections were collected from 12 cardiac segments (basal, mid-cavity, apical, and apex of the anterior, lateral, and inferior wall) and 8 time points (before ischemia [I-0H], and postreperfusion [R-0H, R-2H, R-6H, R-12H, R-1D, R-3D, R-7D]), and stained with 29 metal-isotope-tagged antibodies. Cell community analysis was performed on reconstructed images, and the most disease-relevant cell type and target protein were selected for intervention of IRI. RESULTS: We obtained a total of 251 multiplexed images, and identified 197 063 single cells, which were grouped into 23 distinct cell communities based on the structure of cellular neighborhoods. The cellular architecture was heterogeneous throughout the ventricular wall and exhibited swift changes following IRI. Analysis of proteins with posttranslational modifications in single cells unveiled 13 posttranslational modification intensity clusters and highlighted increased H3K9me3 (tri-methylated lysine 9 of histone H3) as a key regulatory response in endothelial cells during the middle stage of IRI. Erasing H3K9 methylation, by silencing its methyltransferase Suv39h1 or overexpressing its demethylase Kdm4d in isolated endothelial cells, attenuated cardiac dysfunction and pathological remodeling following IRI. in vitro, H3K9me3 binding significantly increased at endothelial cell function-related genes upon hypoxia, suppressing tube formation, which was rescued by inhibiting H3K9me3. CONCLUSIONS: We mapped the spatiotemporal heterogeneity of cellular phenotypes in the adult heart upon IRI, and uncovered H3K9me3 in endothelial cells as a potential therapeutic target for alleviating pathological remodeling of the heart following myocardial IRI.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Ratones , Animales , Miocitos Cardíacos/metabolismo , Células Endoteliales/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Infarto del Miocardio/metabolismo
4.
Chem Rev ; 123(22): 12371-12430, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37615679

RESUMEN

Nowadays, the increasing emergence of antibiotic-resistant pathogenic microorganisms requires the search for alternative methods that do not cause drug resistance. Phototherapy strategies (PTs) based on the photoresponsive materials have become a new trend in the inactivation of pathogenic microorganisms due to their spatiotemporal controllability and negligible side effects. Among those phototherapy strategies, photocatalytic antimicrobial therapy (PCAT) has emerged as an effective and promising antimicrobial strategy in recent years. In the process of photocatalytic treatment, photocatalytic materials are excited by different wavelengths of lights to produce reactive oxygen species (ROS) or other toxic species for the killing of various pathogenic microbes, such as bacteria, viruses, fungi, parasites, and algae. Therefore, this review timely summarizes the latest progress in the PCAT field, with emphasis on the development of various photocatalytic antimicrobials (PCAMs), the underlying antimicrobial mechanisms, the design strategies, and the multiple practical antimicrobial applications in local infections therapy, personal protective equipment, water purification, antimicrobial coatings, wound dressings, food safety, antibacterial textiles, and air purification. Meanwhile, we also present the challenges and perspectives of widespread practical implementation of PCAT as antimicrobial therapeutics. We hope that as a result of this review, PCAT will flourish and become an effective weapon against pathogenic microorganisms and antibiotic resistance.


Asunto(s)
Antiinfecciosos , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Fototerapia , Bacterias , Hongos
5.
Nucleic Acids Res ; 51(D1): D452-D459, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36243963

RESUMEN

Antimicrobial toxins help prokaryotes win competitive advantages in intraspecific or interspecific conflicts and are also a critical factor affecting the pathogenicity of many pathogens that threaten human health. Although many studies have revealed that antagonism based on antimicrobial toxins plays a central role in prokaryotic life, a database on antimicrobial toxins remains lacking. Here, we present the prokaryotic antimicrobial toxin database (PAT, http://bioinfo.qd.sdu.edu.cn/PAT/), a comprehensive data resource collection on experimentally validated antimicrobial toxins. PAT has organized information, derived from the reported literature, on antimicrobial toxins, as well as the corresponding immunity proteins, delivery mechanisms, toxin activities, structural characteristics, sequences, etc. Moreover, we also predict potential antimicrobial toxins in prokaryotic reference genomes and show the taxonomic information and environmental distribution of typical antimicrobial toxins. These details have been fully incorporated into the PAT database, where users can browse, search, download, analyse and view informative statistics and detailed information. PAT resources have already been used in our prediction and identification of prokaryotic antimicrobial toxins and may contribute to promoting the efficient investigation of antimicrobial toxin functions, the discovery of novel antimicrobial toxins, and an improved understanding of the biological roles and significance of these toxins.


Asunto(s)
Toxinas Biológicas , Humanos , Bases de Datos Factuales , Genoma , Células Procariotas/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(11): e2119980119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35263224

RESUMEN

SignificanceA gene regulatory system is an important tool for the engineering of biosynthetic pathways of organisms. Here, we report the development of an inducible-ON/OFF regulatory system using a malO operator as a key element. We identified and modulated sequence, position, numbers, and spacing distance of malO operators, generating a series of activating or repressive promoters with tunable strength. The stringency and robustness are both guaranteed in this system, a maximal induction factor of 790-fold was achieved, and nine proteins from different organisms were expressed with high yields. This system can be utilized as a gene switch, promoter enhancer, or metabolic valve in synthetic biology applications. This operator-based engineering strategy can be employed for developing similar regulatory systems in different microorganisms.


Asunto(s)
Bacillus subtilis , Vías Biosintéticas , Regulación Bacteriana de la Expresión Génica , Maltosa , Ingeniería Metabólica , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Vías Biosintéticas/genética , Elementos de Facilitación Genéticos , Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Maltosa/metabolismo , Maltosa/farmacología , Ingeniería Metabólica/métodos , Regiones Operadoras Genéticas , Regiones Promotoras Genéticas/genética , Biología Sintética
7.
Lancet Oncol ; 25(7): 843-852, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852601

RESUMEN

BACKGROUND: PD-1 blockade is highly efficacious for mismatch repair-deficient colorectal cancer in both metastatic and neoadjuvant settings. We aimed to explore the activity and safety of neoadjuvant therapy with PD-1 blockade plus an angiogenesis inhibitor and the feasibility of organ preservation in patients with locally advanced mismatch repair-deficient colorectal cancer. METHODS: We initiated a single-arm, open-label, phase 2 trial (NEOCAP) at Sun Yat-sen University Cancer Center and the Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China. Patients aged 18-75 years with untreated mismatch repair-deficient or microsatellite instability-high or POLE/POLD1-mutated locally advanced colorectal cancer (cT3 or N+ for rectal cancer, and T3 with invasion ≥5mm or T4, with or without N+ for colon cancer) and an Eastern Cooperative Oncology Group performance score of 0-1 were enrolled and given 200 mg camrelizumab intravenously on day 1 and 250 mg apatinib orally from day 1-14, every 3 weeks for 3 months followed by surgery or 6 months if patients did not have surgery. Patients who had a clinical complete response did not undergo surgery and proceeded with a watch-and-wait approach. The primary endpoint was the proportion of patients with a pathological or clinical complete response. Eligible enrolled patients who received at least one cycle of neoadjuvant treatment and had at least one tumour response assessment following the baseline assessment were included in the activity analysis, and patients who received at least one dose of study drug were included in the safety analysis. The study is registered with ClinicalTrials.gov (NCT04715633) and is ongoing. FINDINGS: Between Sept 29, 2020, and Dec 15, 2022, 53 patients were enrolled; one patient was excluded from the activity analysis because they were found to be mismatch repair-proficient and microsatellite-stable. 23 (44%) patients were female and 29 (56%) were male. The median follow-up was 16·4 (IQR 10·5-23·5) months. 28 (54%; 95% CI 35-68) patients had a clinical complete response and 24 of these patients were managed with a watch-and-wait approach, including 20 patients with colon cancer and multiple primary colorectal cancer. 23 (44%) of 52 patients underwent surgery for the primary tumour, and 14 (61%; 95% CI 39-80) had a pathological complete response. 38 (73%; 95% CI 59-84) of 52 patients had a complete response. Grade 3-5 adverse events occurred in 20 (38%) of 53 patients; the most common were increased aminotransferase (six [11%]), bowel obstruction (four [8%]), and hypertension (four [8%]). Drug-related serious adverse events occurred in six (11%) of 53 patients. One patient died from treatment-related immune-related hepatitis. INTERPRETATION: Neoadjuvant camrelizumab plus apatinib show promising antitumour activity in patients with locally advanced mismatch repair-deficient or microsatellite instability-high colorectal cancer. Immune-related adverse events should be monitored with the utmost vigilance. Organ preservation seems promising not only in patients with rectal cancer, but also in those with colon cancer who have a clinical complete response. Longer follow-up is needed to assess the oncological outcomes of the watch-and-wait approach. FUNDING: The National Natural Science Foundation of China, Guangdong Basic and Applied Basic Research Foundation, and the Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Colorrectales , Reparación de la Incompatibilidad de ADN , Inestabilidad de Microsatélites , Terapia Neoadyuvante , Piridinas , Humanos , Persona de Mediana Edad , Femenino , Masculino , Terapia Neoadyuvante/efectos adversos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Piridinas/administración & dosificación , Piridinas/efectos adversos , Piridinas/uso terapéutico , Anciano , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Adulto Joven , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Adolescente
8.
J Biol Chem ; 299(1): 102742, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435198

RESUMEN

Engineering a highly tumor microenvironment-responsive nanoplatform toward effective chemotherapy has always been a challenge in targeted cancer treatment. Metal-organic frameworks are a promising delivery system to reformulate previously approved drugs for enhanced chemotherapy, such as disulfiram (DSF). Herein, a tumor microenvironment-activated metal-organic framework-based nanoplatform DSF@MOF-199@FA has been fabricated to realize amplified oxidative stress-induced enhanced chemotherapy. Our results unveil that the copper ions and DSF released by DSF@MOF-199@FA in an acidic environment can be converted into toxic bis(N, N-diethyl dithiocarbamate) copper and then induce cell apoptosis. Simultaneously, we determined that the apoptosis outcome is further promoted by amplified oxidative stress through effective generation of reactive oxygen species and GSH elimination. In conclusion, this work provides a promising platform for effective anticancer treatment.


Asunto(s)
Estructuras Metalorgánicas , Línea Celular Tumoral , Cobre/farmacología , Disulfiram/farmacología , Estructuras Metalorgánicas/farmacología , Estrés Oxidativo , Microambiente Tumoral , Ratones Endogámicos BALB C , Femenino , Animales , Ratones
9.
Plant J ; 113(2): 277-290, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36440495

RESUMEN

Phytochrome B (PhyB), a red-light receptor, plays important roles in diverse biological processes in plants; however, its function in NH4 + uptake and stress responses of plants is unclear. Here, we observed that mutation in indeterminate domain 10 (IDD10), which encodes a key transcription factor in NH4 + signaling, led to NH4 + -sensitive root growth in light but not in the dark. Genetic combinations of idd10 and phy mutants demonstrated that phyB, but not phyA or phyC, suppressed NH4 + -sensitive root growth of idd10. PhyB mutants and PhyB overexpressors (PhyB OXs) accumulated more and less NH4 + , respectively, compared with wild-type plants. Real time quantitative polymerase chain reaction (RT-qPCR) revealed that PhyB negatively regulated NH4 + -mediated induction of Ammonium transporter 1;2 (AMT1;2). AMT1 RNAi plants with suppressed AMT1;1, AMT1;2, and AMT1;3 expression exhibited shorter primary roots under NH4 + conditions. This suggested that NH4 + uptake might be positively associated with root growth. Further, PhyB interacted with and inhibited IDD10 and brassinazole-resistant 1 (BZR1). IDD10 interacted with BZR1 to activate AMT1;2. NH4 + uptake is known to promote resistance of rice (Oryza sativa) to sheath blight (ShB) and saline-alkaline stress. Inoculation of Rhizoctonia solani demonstrated that PhyB and IDD10 negatively regulated and AMT1 and BZR1 positively regulated resistance of rice to ShB. In addition, PhyB negatively regulated and IDD10 and AMT1 positively regulated resistance of rice to saline-alkaline stress. This suggested that PhyB-IDD10-AMT1;2 signaling regulates the saline-alkaline response, whereas the PhyB-BZR1-AMT1;2 pathway modulates ShB resistance. Collectively, these data prove that mutation in the PhyB gene enhances the resistance of rice to ShB and saline-alkaline stress by increasing NH4 + uptake.


Asunto(s)
Compuestos de Amonio , Oryza , Fitocromo , Fitocromo B/genética , Fitocromo B/metabolismo , Compuestos de Amonio/metabolismo , Oryza/metabolismo , Mutación , Transducción de Señal , Fitocromo/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
J Cogn Neurosci ; : 1-20, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38579269

RESUMEN

The brain is a hierarchical modular organization that varies across functional states. Network configuration can better reveal network organization patterns. However, the multi-hierarchy network configuration remains unknown. Here, we proposed an eigenmodal decomposition approach to detect modules at multi-hierarchy, which can identify higher-layer potential submodules, and is consistent with the brain hierarchical structure. We defined three metrics: node configuration matrix, combinability, and separability. Node configuration matrix represents network configuration changes between layers. Separability reflects network configuration from global to local, whereas combinability shows network configuration from local to global. First, we created a random network to verify the feasibility of the method. Results show that separability of real networks is larger than that of random networks, whereas combinability is smaller than random networks. Then, we analyzed a large data set incorporating fMRI data from resting and seven distinct tasking conditions. Experiment results demonstrates the high similarity in node configuration matrices for different task conditions, whereas the tasking states have less separability and greater combinability between modules compared with the resting state. Furthermore, the ability of brain network configuration can predict brain states and cognition performance. Crucially, derived from tasks are highlighted with greater power than resting, showing that task-induced attributes have a greater ability to reveal individual differences. Together, our study provides novel perspectives for analyzing the organization structure of complex brain networks at multi-hierarchy, gives new insights to further unravel the working mechanisms of the brain, and adds new evidence for tasking states to better characterize and predict behavioral traits.

11.
BMC Genomics ; 25(1): 325, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561670

RESUMEN

BACKGROUND: Non-coding RNA is a key epigenetic regulation factor during skeletal muscle development and postnatal growth, and miR-542-3p was reported to be conserved and highly expressed in the skeletal muscle among different species. However, its exact functions in the proliferation of muscle stem cells and myogenesis remain to be determined. METHODS: Transfection of proliferative and differentiated C2C12 cells used miR-542-3p mimic and inhibitor. RT-qPCR, EdU staining, immunofluorescence staining, cell counting kit 8 (CCK-8), and Western blot were used to evaluate the proliferation and myogenic differentiation caused by miR-542-3p. The dual luciferase reporter analysis and rescued experiment of the target gene were used to reveal the molecular mechanism. RESULTS: The data shows overexpression of miR-542-3p downregulation of mRNA and protein levels of proliferation marker genes, reduction of EdU+ cells, and cellular vitality. Additionally, knocking it down promoted the aforementioned phenotypes. For differentiation, the miR-542-3p gain-of-function reduced both mRNA and protein levels of myogenic genes, including MYOG, MYOD1, et al. Furthermore, immunofluorescence staining immunized by MYHC antibody showed that the myotube number, fluorescence intensity, differentiation index, and myotube fusion index all decreased in the miR-542-3p mimic group, compared with the control group. Conversely, these phenotypes exhibited an increased trend in the miR-542-3p inhibitor group. Mechanistically, phosphatase and tensin homolog (Pten) was identified as the bona fide target gene of miR-542-3p by dual luciferase reporter gene assay, si-Pten combined with miR-542-3p inhibitor treatments totally rescued the promotion of proliferation by loss-function of miR-542-3p. CONCLUSIONS: This study indicates that miR-542-3p inhibits the proliferation and differentiation of myoblast and Pten is a dependent target gene of miR-542-3p in myoblast proliferation, but not in differentiation.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Epigénesis Genética , Proliferación Celular/genética , Diferenciación Celular/genética , ARN Mensajero/metabolismo , Desarrollo de Músculos/genética , Mioblastos , Luciferasas/genética , Luciferasas/metabolismo
12.
Neuroimage ; 295: 120651, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788914

RESUMEN

The functional connectivity (FC) graph of the brain has been widely recognized as a ``fingerprint'' that can be used to identify individuals from a group of subjects. Research has indicated that individual identification accuracy can be improved by eliminating the impact of shared information among individuals. However, current research extracts not only shared information of inter-subject but also individual-specific information from FC graphs, resulting in incomplete separation of shared information and fingerprint information among individuals, leading to lower individual identification accuracy across all functional magnetic resonance imaging (fMRI) states session pairs and poor cognitive behavior prediction performance. In this paper, we propose a method to enhance inter-subject variability combining conditional variational autoencoder (CVAE) network and sparse dictionary learning (SDL) module. By embedding fMRI state information in the encoding and decoding processes, the CVAE network can better capture and represent the common features among individuals and enhance inter-subject variability by residual. Our experimental results on Human Connectome Project (HCP) data show that the refined connectomes obtained by using CVAE with SDL can accurately distinguish an individual from the remaining participants. The success accuracies reached 99.7 % and 99.6 % in the session pair rest1-rest2 and reverse rest2-rest1, respectively. In the identification experiment involving task-task combinations carried out on the same day, the identification accuracies ranged from 94.2 % to 98.8 %. Furthermore, we showed the Frontoparietal and Default networks make the most significant contributions to individual identification and the edges that significantly contribute to individual identification are found within and between the Frontoparietal and Default networks. Additionally, high-level cognitive behaviors can also be better predicted with the obtained refined connectomes, suggesting that higher fingerprinting can be useful for resulting in higher behavioral associations. In summary, our proposed framework provides a promising approach to use functional connectivity networks for studying cognition and behavior, promoting a deeper understanding of brain functions.


Asunto(s)
Encéfalo , Cognición , Conectoma , Imagen por Resonancia Magnética , Humanos , Conectoma/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Cognición/fisiología , Adulto , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Masculino , Femenino
13.
J Neurochem ; 168(6): 1060-1079, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38308496

RESUMEN

Neuronal hyperactivity induced by ß-amyloid (Aß) is an early pathological feature in Alzheimer's disease (AD) and contributes to cognitive decline in AD progression. However, the underlying mechanisms are still unclear. Here, we revealed that Aß increased the expression level of synaptic adhesion molecule protocadherin-γC5 (Pcdh-γC5) in a Ca2+-dependent manner, associated with aberrant elevation of synapses in both Aß-treated neurons in vitro and the cortex of APP/PS1 mice in vivo. By using Pcdhgc5 gene knockout mice, we demonstrated the critical function of Pcdh-γC5 in regulating neuronal synapse formation, synaptic transmission, and cognition. To further investigate the role of Pcdh-γC5 in AD pathogenesis, the aberrantly enhanced expression of Pcdh-γC5 in the brain of APP/PS1 mice was knocked down by shRNA. Downregulation of Pcdh-γC5 efficiently rescued neuronal hyperactivity and impaired cognition in APP/PS1 mice. Our findings revealed the pathophysiological role of Pcdh-γC5 in mediating Aß-induced neuronal hyperactivity and cognitive deficits in AD and identified a novel mechanism underlying AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Cadherinas , Ratones Noqueados , Neuronas , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Cadherinas/metabolismo , Cadherinas/genética , Ratones , Neuronas/metabolismo , Ratones Transgénicos , Sinapsis/metabolismo , Sinapsis/patología , Proteínas Relacionadas con las Cadherinas , Ratones Endogámicos C57BL , Masculino , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/genética , Células Cultivadas , Trastornos del Conocimiento/metabolismo
14.
Curr Issues Mol Biol ; 46(2): 1635-1650, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38392224

RESUMEN

Centipedegrass (Eremochloa ophiuroides) is an important warm-season grass plant used as a turfgrass as well as pasture grass in tropical and subtropical regions, with wide application in land surface greening and soil conservation in South China and southern United States. In this study, the complete cp genome of E. ophiuroides was assembled using high-throughput Illumina sequencing technology. The circle pseudomolecule for E. ophiuroides cp genome is 139,107 bp in length, with a quadripartite structure consisting of a large single copyregion of 82,081 bp and a small single copy region of 12,566 bp separated by a pair of inverted repeat regions of 22,230 bp each. The overall A + T content of the whole genome is 61.60%, showing an asymmetric nucleotide composition. The genome encodes a total of 131 gene species, composed of 20 duplicated genes within the IR regions and 111 unique genes comprising 77 protein-coding genes, 30 transfer RNA genes, and 4 ribosome RNA genes. The complete cp genome sequence contains 51 long repeats and 197 simple sequence repeats, and a high degree of collinearity among E. ophiuroide and other Gramineae plants was disclosed. Phylogenetic analysis showed E. ophiuroides, together with the other two Eremochloa species, is closely related to Mnesithea helferi within the subtribe Rottboelliinae. These findings will be beneficial for the classification and identification of the Eremochloa taxa, phylogenetic resolution, novel gene discovery, and functional genomic studies for the genus Eremochloa.

15.
Biochem Cell Biol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917487

RESUMEN

In atherosclerosis, DNA methylation plays a key regulatory role in the expression of related genes. However, the molecular mechaism of these processes in HUVECs are unclear. Here, using high-throughput sequencing from the Infinium HumanMethylation450 assay, we manifested that the cg19564375 methylation of miR-520e promoter region in the peripheral blood of acute coronary syndrome (ACS) patients was higher than that of healthy controls. As shown by RQ-MSP, the upstream DNA methylation level of the miR-520e promoter region was considerably increased in ACS patients. miR-520e was markedly down-regulated in ACS patients compared with healthy controls. In the ox-LDL-induced HUVECs injury model, DNA methylation of the upstream region of miR-520e was significantly increased. With increasing concentrations of the methylase inhibitor 5-Aza, miR-520e expression was upregulated. The silence of methyltransferase DNMT1, rather than DNMT3a or DNMT3b, abolished the influence of miR-520e expression by ox-LDL treatment in HUVECs. A dual luciferase reporter assay revealed that miR-520e regulated the TGFBR2 3'-UTR region. After silencing TGFBR2, the promoting effect of miR-520e inhibitor on cell proliferation and migration may be attenuated. In conclusion, the expression of miR-520e is modified by its promoter region DNA methylation, and miR520e and its promoter region DNA methylation may be potential biomarkers in atherosclerosis.

16.
Cancer Immunol Immunother ; 73(4): 68, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38430269

RESUMEN

OBJECTIVES: In this study, we aimed to examine parameters of cryoablation, tumor characteristics, and their correlations with distant tumor response and survival of liver metastatic melanoma patients receiving cryoablation and PD-1 blockade (cryo-PD-1) combination treatment. MATERIALS AND METHODS: A retrospective study was conducted among 45 melanoma patients who received combined PD-1 blockade therapy and cryoablation for liver metastasis from 2018 to 2022. Cox regression was utilized to determine the associations between factors and overall survival (OS). Changes in cytokines and immune cell compositions in peripheral blood samples following the combined treatment were investigated, along with their correlations with treatment response. RESULTS: The mean cycle of cryo-PD-1 combination treatment was 2.2 (range, 1-6), and the 3-month overall response rate (RECIST 1.1 criteria) was 26.7%. Of the 21 patients who failed previous PD-1 blockade therapy after diagnosis of liver metastasis, 4 (19.0%) achieved response within 3 months since combination treatment. The diameter of ablated lesion ≤ 30 mm, metastatic organs ≤ 2, and pre-treatment LDH level ≤ 300 U/L were independent prognostic factors for favorable OS. Further analysis showed patients with intrahepatic tumor size of 15-45 mm, and ablated lesion size of ≤ 30 mm had significantly higher 3-month response rate (42.9% vs 12.5%; P = 0.022) and survival time (30.5 vs 14.2 months; P = 0.045) than their counterparts. The average increase in NLR among patients with ablated tumor size of ≤ 3 cm and > 3 cm were 3.59 ± 5.01 and 7.21 ± 12.57, respectively. The average increase in serum IL-6 levels among patients with ablated tumor size of ≤ 3 cm and > 3 cm were 8.62 ± 7.95 pg/ml and 15.40 ± 11.43 pg/ml, respectively. CONCLUSION: Size selection of intrahepatic lesions for cryoablation is important in order to achieve abscopal effect and long-term survival among patients with liver metastatic melanoma receiving PD-1 blockade therapy.


Asunto(s)
Criocirugía , Neoplasias Hepáticas , Melanoma , Humanos , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/cirugía , Melanoma/patología , Receptor de Muerte Celular Programada 1 , Estudios Retrospectivos
17.
BMC Plant Biol ; 24(1): 224, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539093

RESUMEN

BACKGROUND: Drought severely limits sunflower production especially at the seedling stage. To investigate the response mechanism of sunflowers to drought stress, we utilized two genotypes of sunflower materials with different drought resistances as test materials. The physiological responses were investigated under well-watered (0 h) and drought-stressed conditions (24 h, 48 h, and 72 h). RESULTS: ANOVA revealed the greatest differences in physiological indices between 72 h of drought stress and 0 h of drought stress. Transcriptome analysis was performed after 72 h of drought stress. At 0 h, there were 7482 and 5627 differentially expressed genes (DEGs) in the leaves of K55 and K58, respectively, and 2150 and 2527 DEGs in the roots of K55 and K58, respectively. A total of 870 transcription factors (TFs) were identified among theDEGs, among which the high-abundance TF families included AP2/ERF, MYB, bHLH,and WRKY. Five modules were screened using weighted gene coexpressionnetwork analysis (WGCNA), three and two of which were positively and negatively, respectively, related to physiological traits. KEGG analysis revealedthat under drought stress, "photosynthesis", "carotenoid biosynthesis", "starch and sucrose metabolism", "ribosome", "carotenoid biosynthesis", "starch and sucrose metabolism", "protein phosphorylation" and "phytohormone signaling" are six important metabolic pathways involved in the response of sunflower to drought stress. Cytoscape software was used to visualize the three key modules, and the hub genes were screened. Finally, a total of 99 important candidate genes that may be associated with the drought response in sunflower plants were obtained, and the homology of these genes was compared with that in Arabidopsis thaliana. CONCLUSIONS: Taken together, our findings could lead to a better understanding of drought tolerance in sunflowers and facilitate the selection of drought-tolerant sunflower varieties.


Asunto(s)
Arabidopsis , Helianthus , Humanos , Transcriptoma , Helianthus/genética , Helianthus/metabolismo , Resistencia a la Sequía , Perfilación de la Expresión Génica , Sequías , Arabidopsis/genética , Almidón/metabolismo , Carotenoides/metabolismo , Sacarosa/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas
18.
Small ; 20(4): e2304968, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37715278

RESUMEN

The contrast agents and tumor treatments currently used in clinical practice are far from satisfactory, due to the specificity of the tumor microenvironment (TME). Identification of diagnostic and therapeutic reagents with strong contrast and therapeutic effect remains a great challenge. Herein, a novel carbon dot nanozyme (Mn-CD) is synthesized for the first time using toluidine blue (TB) and manganese as raw materials. As expected, the enhanced magnetic resonance (MR) imaging capability of Mn-CDs is realized in response to the TME (acidity and glutathione), and r1 and r2 relaxation rates are enhanced by 224% and 249%, respectively. In addition, the photostability of Mn-CDs is also improved, and show an efficient singlet oxygen (1 O2 ) yield of 1.68. Moreover, Mn-CDs can also perform high-efficiency peroxidase (POD)-like activity and catalyze hydrogen peroxide to hydroxyl radicals, which is greatly improved under the light condition. The results both in vitro and in vivo demonstrate that the Mn-CDs are able to achieve real-time MR imaging of TME responsiveness through aggregation of the enhanced permeability and retention effect at tumor sites and facilitate light-enhanced chemodynamic and photodynamic combination therapies. This work opens a new perspective in terms of the role of carbon nanomaterials in integrated diagnosis and treatment of diseases.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Cloruro de Tolonio , Manganeso , Especies Reactivas de Oxígeno , Carbono , Peróxido de Hidrógeno , Imagen por Resonancia Magnética , Microambiente Tumoral , Línea Celular Tumoral
19.
Small ; 20(22): e2307595, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38126648

RESUMEN

In the osteoporotic microenvironment, the acidic microenvironment generated by excessive osteoclasts not only causes irreversible bone mineral dissolution, but also promotes reactive oxygen species (ROS) production to induce osteoblast senescence and excessive receptor activator of nuclear factor kappa-B ligand (RANKL) production, which help to generate more osteoclasts. Hence, targeting the acidic microenvironment and RANKL production may break this vicious cycle to rescue osteoporosis. To achieve this, an acid-responsive and neutralizing system with high in vivo gene editing capacity is developed by loading sodium bicarbonate (NaHCO3) and RANKL-CRISPR/Cas9 (RC) plasmid in a metal-organic framework. This results showed ZIF8-NaHCO3@Cas9 (ZNC) effective neutralized acidic microenvironment and inhibited ROS production . Surprisingly, nanoparticles loaded with NaHCO3 and plasmids show higher transfection efficiency in the acidic environments as compared to the ones loaded with plasmid only. Finally, micro-CT proves complete reversal of bone volume in ovariectomized mice after ZNC injection into the bone remodeling site. Overall, the newly developed nanoparticles show strong effect in neutralizing the acidic microenvironment to achieve bone protection through promoting osteogenesis and inhibiting osteolysis in a bidirectional manner. This study provides new insights into the treatment of osteoporosis for biomedical and clinical therapies.


Asunto(s)
Edición Génica , Estructuras Metalorgánicas , Osteoclastos , Osteoporosis , Animales , Osteoporosis/metabolismo , Osteoclastos/metabolismo , Ratones , Estructuras Metalorgánicas/química , Ligando RANK/metabolismo , Femenino , Sistemas CRISPR-Cas , Especies Reactivas de Oxígeno/metabolismo , Bicarbonato de Sodio/química , Ácidos/química , Nanopartículas/química , Osteogénesis/efectos de los fármacos , Plásmidos/genética
20.
Chembiochem ; : e202400501, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923378

RESUMEN

Molecular engineering enables the creation of aptamers with novel functions, but the prerequisite is a deep understanding of their structure and recognition mechanism. The cellular-mesenchymal epithelial transition factor (c-MET) is garnering significant attention due to the critical role of the c-MET/HGF signaling pathway in tumor development and invasion. This study reports a strategy for constructing novel chimeric aptamers that bind to both c-MET and other specific proteins. c-MET was identified to be the molecular target of a DNA aptamer, HF3-58, selected through cell-SELEX. The binding structure and mechanism of HF3-58 with c-MET were systematically studied, revealing the scaffold, recognition, and redundancy regions. Through molecular engineering design, the redundancy region was replaced with other aptamers possessing stem-loop structures, yielding novel chimeric aptamers with bispecificity for binding to c-MET and specific proteins. A chimeric bispecific aptamer HF-3b showed the ability to mediate the adhesion of T-cells to tumor cells, suggesting the prospective utility in tumor immunotherapy. These findings suggest that aptamer HF3-58 can serve as a molecular engineering platform for the development of diverse multifunctional ligands targeting c-MET. Moreover, comprehensive understanding of the binding mechanisms of aptamers will provide guidance for the design of functional aptamers, significantly expanding their potential applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA