Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(5): 2183-2190, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38247304

RESUMEN

In miniature ion trap mass spectrometry, achieving a balance between isolation resolution and efficiency is a formidable challenge. The presence of absorption curves causes target ions to inadvertently absorb energy from AC signal components near their resonant frequencies. To mitigate this issue, SAM-SFM waveforms introduce a parameter known as the decreasing factor. Unlike SWIFT waveforms, SAM-SFM's spectral profile intentionally departs from a rectangular window, adopting an arch-shaped excitation window to minimize the impact on target ions and improve ion isolation efficiency. SAM-SFM waveforms have the advantage of low computational complexity, enabling real-time computation using an embedded FPGA technology. Regardless of any parameter changes, the FPGA can consistently guarantee waveform output within 1 µs. This not only enhances throughput but also eliminates the need for a PC in miniature mass spectrometry devices. The performance of SAM-SFM has been validated on an improved "Brick" miniature ion trap mass spectrometer. Comparative experiments with SWIFT waveforms confirm the lossless unit-mass isolation capabilities of SAM-SFM. This waveform has the capability to simultaneously isolate multiple target ions, even allowing for the lossless isolation of ions with lower abundance within isotopic clusters, albeit at the cost of requiring extended isolation durations.

2.
Opt Express ; 32(11): 20339-20349, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859147

RESUMEN

This paper studies the dynamic response characteristics of the scanning angle in a liquid crystal cladding waveguide beam scanner. Based on liquid crystal dynamic theory, finite element analysis and vectorial refraction law, a dynamic response calculation model of scanning angle is constructed. The simulation results show that the dynamic responses of the scanning angle during the electric field-on and field-off processes are asymmetric, and exhibit "S"-shape and "L"-shape changing trends, respectively. In addition, by comparing with the bulk phase modulation response process of traditional liquid crystal devices, the intrinsic physical reason for the rapid light regulation of the liquid crystal cladding waveguide beam scanner is clarified to be that the liquid crystal close to the core layer has a faster rotation speed during the electric field-off process. Moreover, the liquid crystal cladding waveguide beam scanner is experimentally tested, and the experiment results are in good agreement with theoretical simulations.

3.
Mol Biol Rep ; 51(1): 128, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236311

RESUMEN

BACKGROUND: Muscle occupies most of the fish body, promoting the proliferation of fish muscle fibers can facilitate rapid growth and increase the body weight of fish. Some studiesSeveral previous suggest that Myogenic regulatory factors (MRFs) play an important role in the growth of fish. OBJECTIVE: To investigate the association between the polymorphism of MRFs gene family and growth traits in Nile tilapia (Oreochromis niloticus), get more molecular markers for growth. METHODS: Amplified the Nile tilapia MRFs family gene, including Myogenic determination 1 (Myod1), Myogenic determination 2 (Myod2), Myogenin (Myog), Myogenic factor 5 (Myf5), and Myogenic factor 6 (Myf6), single nucleotide polymorphism (SNP) were screened by Sanger sequencing. RESULTS: A total of 16 SNP loci were screened, including six for Myf5, six for Myf6, one for Myog, one for Myod1 and two for Myod2. The growth traits were analyzed in relation to these 16 SNP loci, and the results indicated significant associations between all 16 SNP loci and the growth traits (P < 0.05). The linkage disequilibrium analysis revealed that D1 and D2 diplotypes of Myf5 gene, E1, E2, E3 and E4 of Myf6 gene, and F1 diplotype of Myod2 gene were significantly associated with superior growth traits. CONCLUSION: There were 6, 6, 1, 1 and 2 growth-related molecular markers in Myf5, Myf6, Myog, Myod1 and Myod2 genes, respectively, which could be applied to the breeding of Nile tilapia.


Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Polimorfismo de Nucleótido Simple/genética , Factores Reguladores Miogénicos , Factor 5 Regulador Miogénico , Peso Corporal
4.
Opt Express ; 31(15): 24678-24690, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475288

RESUMEN

This paper proposes an extended prism coupling analysis method to accurately analyze the coupling structure of liquid crystal (LC) cladding waveguide beam steerer. We analyze the effects of LC anisotropy on the coupling of transverse electric (TE) and transverse magnetic (TM) modes and derive the expression of the optical field distribution that perfectly matches the given coupling structure. Based on this method, we present the optimal coupling structure for Gaussian beam. Taking into account the practical manufacturing process, we propose a simplified coupling structure and perform a detailed analysis of its performance based on numerical simulations. Experimental results show a coupling efficiency of 91% and a coupling angle full width at half maximum (FWHM) of about ±0.02°, demonstrating the effectiveness of the proposed method in predicting the coupling performance of anisotropic cladding waveguides.

5.
Langmuir ; 39(7): 2589-2597, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36774656

RESUMEN

Biomimetic structures based on the magnetic response have attracted ever-increasing attention in droplet manipulation. Till now, most methods for droplet manipulation by a magnetic response are only applicable to a single droplet. It is still a challenge to achieve on-demand and precise control of multiple droplets (≥2). In this paper, a strategy for on-demand manipulation of multiple droplets based on magnetism-responsive slanted micropillar arrays (MSMAs) is proposed. The Glaco-modified superhydrophobic surface is the basis of multiple-droplet manipulation. The droplet's motion mode (pinned, unidirectional, and bidirectional) can be readily fine-tuned by changing the volume of droplets and the speed of the magnetic field. The rapid movement of droplets (10-80 mm/s) in the horizontal direction is realized by the unidirectional waves of the micropillar array driven by a specific magnetic field. The bending angle of micropillars can be rapidly and reversibly adjusted from 0 to 90° under the action of a magnetic field. Meanwhile, the liquid-involved light, electric switch, and biomedical detection can be designed by manipulating the droplets on demand. The superiority of MSMAs in multiple-droplet programmable manipulation opens up an avenue for applications in microfluidic and biomedical engineering.

6.
Fish Shellfish Immunol ; 142: 109121, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37802264

RESUMEN

Tilapia is one of the most economically important freshwater fish farmed in China. Streptococcosis outbreaks have been extensively documented in farmed tilapia species. Hybrid tilapia (Oreochromis niloticus ♀ × O. aureus ♂) exhibit greater disease resistance than Nile tilapia (O. niloticus) and blue tilapia (O. aureus). However, the molecular mechanism underlying the enhanced tolerance of hybrid tilapia is still poorly understood. In this study, comparative transcriptome analysis was performed to reveal the different tolerance mechanisms to Streptococcus agalactiae in the three tilapia lines. In total, 1982, 2355, and 2076 differentially expressed genes were identified at 48 h post-infection in hybrid tilapia, Nile tilapia, and blue tilapia, respectively. Functional enrichment analysis indicated that numerous metabolic and immune-related pathways were activated in all three tilapia lines. The differential expression of specific genes associated with phagosome, focal adhesion, cytokine-cytokine receptor interaction, and toll-like receptor signaling pathways contributed to the resistance of hybrid tilapia. Notably, immune response genes in hybrid tilapia, such as P38, TLR5, CXCR3, CXCL12, PSTPIP1, and TFR, were generally suppressed under normal conditions but selectively induced following pathogen challenge. These results expand our knowledge of the molecular mechanisms underlying S. agalactiae tolerance in hybrid tilapia and provide valuable insights for tilapia breeding programs.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones Estreptocócicas , Tilapia , Animales , Tilapia/genética , Cíclidos/genética , Transcriptoma , Streptococcus agalactiae/fisiología , Perfilación de la Expresión Génica/veterinaria
7.
Adv Physiol Educ ; 47(2): 259-264, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36861765

RESUMEN

Collaborative testing has been demonstrated the ability to improve students' performance, enhance students' learning, and aid in knowledge retention in many different courses. However, this examination mode lacks the process of teacher feedback. Herein, a short teacher feedback from was added immediately after the collaborative testing to improve the students' performance. A parasitology class of 121 undergraduates was randomized into two groups: group A and group B. Collaborative testing was carried out at the end of theoretical teaching. During the test, students would first answer questions as individuals for 20 minutes. Then, students from group A answered the same questions in groups (5 students in each group) for 20 minutes, while the group-testing duration was only 15 minutes in group B. Immediately after the group testing, teachers conducted a 5-minute feedback about the morphology identification according to the analysis of the answers by group B. Four weeks later, a final test was conducted in an individual test. The total scores and scores for each examination content were analyzed. The results showed that there was no significant difference in the final exam scores between both groups (t = -1.278, P = 0.204). However, the morphological and diagnostic test results of the final examination in group B were significantly higher than those of the midterm examination, while there was no significant change in group A (t = 4.333, P = 0.051). The results confirmed that the teacher feedback after the collaborative testing can effectively make up for the students' knowledge gaps.NEW & NOTEWORTHY This study found that collaborative group testing is helpful for teachers to grasp students' knowledge gaps more easily and the teacher feedback after the collaborative group testing can effectively make up for the knowledge gaps of students.


Asunto(s)
Estudiantes , Humanos , Retroalimentación
8.
Sensors (Basel) ; 23(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37836917

RESUMEN

In space gravitational wave detection missions, a drag-free system is used to keep the test mass (TM) free-falling in an ultralow-noise environment. Ground verification experiments should be carried out to clarify the shielding and compensating capabilities of the system for multiple stray force noises. A hybrid apparatus was designed and analyzed based on the traditional torsion pendulum, and a technique for enhancing the sensitivity of the torsion pendulum system by employing the differential wavefront sensing (DWS) optical readout was proposed. The readout resolution experiment was then carried out on an optical bench that was designed and established. The results indicate that the angular resolution of the DWS signal in optical readout mode can reach the level of 10 nrad/Hz1/2 over the full measurement band. Compared with the autocollimator, the sensitivity of the torsional pendulum is noticeably improved, and the background noise is expected to reach 4.5 × 10-15 Nm/Hz1/2@10 mHz. This method could also be applied to future upgrades of similar systems.

9.
Sensors (Basel) ; 21(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802076

RESUMEN

With the rapid development of the virtual reality industry, one of the bottlenecks is the scarcity of video resources. How to capture high-definition panoramic video with depth information and real-time stereo display has become a key technical problem to be solved. In this paper, the optical optimization design scheme of panoramic imaging based on binocular stereo vision is proposed. Combined with the real-time processing algorithm of multi detector mosaic panoramic stereo imaging image, a panoramic stereo real-time imaging system is developed. Firstly, the optical optimization design scheme of panoramic imaging based on binocular stereo vision is proposed, and the space coordinate calibration platform of ultra-high precision panoramic camera based on theodolite angle compensation function is constructed. The projection matrix of adjacent cameras is obtained by solving the imaging principle of binocular stereo vision. Then, a real-time registration algorithm of multi-detector mosaic image and Lucas-Kanade optical flow method based on image segmentation are proposed to realize stereo matching and depth information estimation of panoramic imaging, and the estimation results are analyzed effectively. Experimental results show that the stereo matching time of panoramic imaging is 30 ms, the registration accuracy is 0.1 pixel, the edge information of depth map is clearer, and it can meet the imaging requirements of different lighting conditions.

10.
FASEB J ; 33(7): 8468-8478, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31013438

RESUMEN

Under physiologic conditions, conjunctival goblet cells (CGCs) secrete mucins into the tear film to preserve ocular surface homeostasis. Specialized proresolving mediators (SPMs), like resolvins (Rvs), regulate secretion from CGCs and actively terminate inflammation. The purpose of this study was to determine if RvD2 stimulated mucin secretion and to investigate the cellular signaling components. Goblet cells were cultured from rat conjunctiva. Secretion was measured by an enzyme-linked lectin assay, change in intracellular [Ca2+] ([Ca2+]i) using Fura-2, and cellular cAMP levels by ELISA. RvD2 (10-11-10-8 M) stimulated secretion, increased cellular cAMP levels and the [Ca2+]i. RvD2-stimulated increase in [Ca2+]i and secretion was blocked by Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis and the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride but not by the cAMP exchange protein inhibitor α-[2-(3-chlorophenyl)hydrazinylidene]-5-(1,1-dimethylethyl)-b-oxo-3-isoxazolepropanenitrile. Forskolin, 3-isobutyl-1-methylxanthine, and 8-bromo-cAMP (8-Br-cAMP) increased [Ca2+]i. Increasing cAMP with 8-Br-cAMP inhibited the increase in [Ca2+]i stimulated by the cAMP-independent agonist cholinergic agonist carbachol. In conclusion, RvD2 uses both cellular cAMP and [Ca2+]i to stimulate glycoconjugate secretion from CGCs, but the interaction of cAMP and [Ca2+]i is context dependent. Thus RvD2 likely assists in the maintenance of the mucous layer of the tear film to sustain ocular surface homeostasis and has potential as a novel treatment for dry eye disease.-Botten, N., Hodges, R. R., Li, D., Bair, J. A., Shatos, M. A., Utheim, T. P., Serhan, C. N., Dartt, D. A. Resolvin D2 elevates cAMP to increase intracellular [Ca2+] and stimulate secretion from conjunctival goblet cells.


Asunto(s)
Calcio/metabolismo , Conjuntiva/efectos de los fármacos , Conjuntiva/metabolismo , AMP Cíclico/metabolismo , Ácidos Docosahexaenoicos/fisiología , Células Caliciformes/efectos de los fármacos , Células Caliciformes/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Animales , Células Cultivadas , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Fura-2/metabolismo , Masculino , Mucinas/metabolismo , Ratas , Ratas Sprague-Dawley , Lágrimas/efectos de los fármacos , Lágrimas/metabolismo
11.
Analyst ; 145(12): 4372, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32396150

RESUMEN

Correction for 'A mini mass spectrometer with a low noise Faraday detector' by Yang Tang et al., Analyst, 2020, DOI: 10.1039/d0an00420k.

12.
Analyst ; 145(11): 3892-3898, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32297893

RESUMEN

An ion trap mass spectrometer is conventionally featured with an electron multiplier as its detector. However, an electron multiplier can typically work at pressures below 20 mTorr with a high voltage applied, which limits the further miniaturization of ion trap mass spectrometers. In this work, a low noise Faraday detector was developed and integrated in our miniature mass spectrometer instrument, and a post data processing method was applied to improve its performance. A limit of detection of 1 ng mL-1 was achieved, and quantitation performance and mass resolution were characterized. This technology could be useful in the further development of miniature mass spectrometers by increasing background pressures.

13.
Nanotechnology ; 31(32): 324001, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32315989

RESUMEN

In high-voltage direct current (HVDC) transmission systems, electric charge accumulates on insulator surfaces, causing surface electric field distortion and flashover voltage reduction. Therefore, studying a material that can improve the insulator surface insulation strength is of great engineering value. In this work, several types of metal nanoparticles with different particle sizes and concentrations are doped into epoxy resin. The experimental phenomena enables some interesting conclusions: when no agglomeration of doped nanoparticles occurs, a higher doping concentration provides a better insulation performance. The larger the doping particle size is, the lower the insulation performance. Additionally, under the same conditions, different types of metal nanoparticles lead to slightly different results after doping. Especially after doping with low concentration (approximately 120 parts per million (ppm)) and small particle size (approximately 10 nm) nanocopper particles, the insulator surface charge accumulation was effectively suppressed, and the flashover voltage was significantly improved. Our analysis suggests that it may be related to the single-electron tunneling phenomenon. Relevant results provide a new way to improve the surface insulation strength of insulators in the future.

14.
Nanotechnology ; 31(47): 475707, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-32885793

RESUMEN

In high-voltage direct current transmission systems, charges accumulate at the gas-solid interface, distorting the local field strength, causing a reduction in the flashover voltage, and threatening the safe and reliable operation of the power system. The latest research has found that doping metal nanoparticles into an epoxy resin effectively suppresses the surface charge accumulation on insulators and improves their flashover voltage. This paper further analyzes the microscopic mechanism of this phenomenon, establishes a single-electron tunneling mode, and draws two conclusions: when there is no agglomeration of the doped nanoparticles, a higher doping concentration can be achieved, which provides a better insulative performance. The optimal metal nanoparticle radius is several to tens of nanometers. This work provides theoretical guidance for the future improvement of insulating materials through metal nanoparticle doping and has good prospects in engineering applications.

15.
Anal Chem ; 91(21): 13838-13846, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31560203

RESUMEN

Besides portability and increasingly improved performances, the ability of screening target analyte from complex compounds is a crucial function of miniature mass spectrometers, especially for in situ analysis. Selected reaction monitoring (SRM) and multiple reaction monitoring (MRM) operation modes are the most widely used mass spectrometry operation methods for target analyte quantitation. As a continuous effort to improve the analytical performances of the "brick" mass spectrometer, built in-house, pseudo-SRM and pseudo-MRM modes were realized on the linear ion trap mass analyzer in the device. A broadband excitation waveform in both time and frequency domains, namely, the Grid-SWIFT waveform, was constructed and compared with the conventional SWIFT waveform. By isolating target ions during the ion introduction period using the Grid-SWIFT waveform, target ions could be efficiently accumulated inside the ion trap without experiencing space charge effects and interferences from nontarget ions in the samples. As a result, not only the detection sensitivity of the target analyte could be increased, but also the quantitation accuracy over a relatively wide concentration range could be improved.

16.
Anal Chem ; 91(12): 7911-7919, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31137927

RESUMEN

Besides high portability, high analytical performances are also crucial concerns for a miniature mass spectrometer to meet the demands in in situ analysis. As a continuous effort in improving analytical performances of the miniature mass spectrometer with continuous atmospheric pressure interface, a hybrid ion funnel was developed and coupled into the system in this study. The hybrid ion funnel consisted of a rectangular ion funnel region and a planar quadrupole field region, which were fabricated by the printed circuit board technology. After systematic optimization, a limit of detection of 1 ng/mL was obtained, which was improved by 10 folds relative to that of 10 ng/mL previously reported for the miniature mass spectrometer. Besides improved ion transmission efficiency, this hybrid ion funnel was also capable of filtering ions according to their mobilities, thus improving the system selectivity. This capability was demonstrated by separation and selective transmission of protein ions at different charge states, reserpine in PEG background and isobaric peptide ions. Resolution of this system was also tested by analyzing isotopic peaks of reserpine. The ppb-level detection sensitivity and isotope resolving capability achieved in this work would greatly expand the application range of miniature mass spectrometers.

17.
Opt Express ; 27(17): 24161-24174, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31510310

RESUMEN

Fourier ptychographic microscopy (FPM) is a recently developed imaging approach aiming at circumventing the limitation of the space-bandwidth product (SBP) and acquiring a complex image with both wide field and high resolution. So far, in many algorithms that have been proposed to solve the FPM reconstruction problem, the pupil function is set to be a fixed value such as the coherent transfer function (CTF) of the system. However, the pupil aberration of the optical components in an FPM imaging system can significantly degrade the quality of the reconstruction results. In this paper, we build a trainable network (FINN-P) which combines the pupil recovery with the forward imaging process of FPM based on TensorFlow. Both the spectrum of the sample and pupil function are treated as the two-dimensional (2D) learnable weights of layers. Therefore, the complex object information and pupil function can be obtained simultaneously by minimizing the loss function in the training process. Simulated datasets are used to verify the effectiveness of pupil recovery, and experiments on the open source measured dataset demonstrate that our method can achieve better reconstruction results even in the presence of a large aberration. In addition, the recovered pupil function can be used as a good estimate before further analysis of the system optical transmission capability.

18.
Opt Express ; 27(10): 14099-14111, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31163863

RESUMEN

Fourier ptychographic microscopy (FPM) is a recently developed computational microscopy approach that produces both wide field-of-view (FOV) and high resolution (HR) intensity and a phase image of the sample. Inspired by the ideas of synthetic aperture and phase retrieval, FPM iteratively stitches multiple low-resolution (LR) images with variable illumination angles in Fourier space to reconstruct an HR complex image. Typically, FPM illuminating the sample with an LED array is approximated as a coherent imaging process, and the coherent transfer function (CTF) is imposed as a support constraint in Fourier space. However, a millimeter-scale LED is inapposite to be treated as a coherent light source. As a result, the quality of reconstructed image is degraded by the inappropriate approximation. In this paper, we analyze the coherence of an FPM system and propose a novel constraint approach termed Apodized CTF (AC) constraint in Fourier space. Results on both simulated data and actual captured data show that this new constraint is more stable and robust than CTF. This approach can also relax the coherence requirement of illumination. In addition, it is simple, does not require additional computations, and is easy to be embedded in almost all the reconstruction algorithms proposed so far.

19.
Exp Eye Res ; 180: 53-62, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30513286

RESUMEN

PURPOSE: To identify interactions of the epidermal growth factor receptor (EGFR) with the pro-resolving mediator receptors for RvD1 and RvE1 to stimulate an increase in intracellular [Ca2+] ([Ca2+]i) and mucin secretion from cultured human and rat conjunctival goblet cells. METHODS: Goblet cells from human and rat conjunctiva were grown in culture using RPMI media. Cultured goblet cells were pre-incubated with inhibitors, and then stimulated with RvD1, RvE1, EGF or the cholinergic agonist carbachol (Cch). Increase in [Ca2+]i was measured using fura-2/AM. Goblet cell secretion was measured using an enzyme-linked lectin assay with UEA-1. Western blot analysis was performed with antibodies against AKT and ERK 1/2. RESULTS: In cultured human conjunctival goblet cells RvE1 -stimulated an increase in [Ca2+]i. RvD1-, but not the RvE1-, stimulated increase in [Ca2+]i and mucin secretion was blocked by the EGFR inhibitor AG1478 and siRNA for the EGFR. RvD1-, but not RvE1-stimulated an increase in [Ca2+]i that was also inhibited by TAPI-1, an inhibitor of the matrix metalloprotease ADAM 17. Inhibition of the EGFR also blocked RvD1-stimulated increase in AKT activity and both RvD1-and RvE1-stimulated increase in ERK 1/2 activity. Pretreatment with either RvD1 or RvE1 did not block the EGFR-stimulated increase in [Ca2+]i. CONCLUSIONS: We conclude that in cultured rat and human conjunctival goblet cells, RvD1 activates the EGFR, increases [Ca2+]i, activates AKT and ERK1/2 to stimulate mucin secretion. RvE1 does not transactivate the EGFR to increase [Ca2+]I and stimulate mucin secretion, but does interact with the receptor to increase ERK 1/2 activity.


Asunto(s)
Calcio/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/análogos & derivados , Receptores ErbB/metabolismo , Glicoconjugados/metabolismo , Células Caliciformes/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Animales , Western Blotting , Carbacol/farmacología , Células Cultivadas , Agonistas Colinérgicos/farmacología , Conjuntiva/citología , Ácido Eicosapentaenoico/farmacología , Ensayo de Inmunoadsorción Enzimática , Femenino , Colorantes Fluorescentes/metabolismo , Fura-2/análogos & derivados , Fura-2/metabolismo , Células Caliciformes/metabolismo , Humanos , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mucinas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley
20.
Anal Chem ; 90(19): 11671-11679, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30165016

RESUMEN

Previously, a miniature mass spectrometer driven by a sinusoidal frequency scanning technique, named as Brick mass spectrometer, was developed in our lab ( Jiang et al. Anal. Chem. 2017 , 89 , 5578 ). The frequency scanning technique enabled miniaturized electronics and broader mass range, but it was also limited in reduced mass resolution and sensitivity due to a relatively low operating radio frequency (rf) voltage in comparison with the conventional voltage scanning technique. To improve performances of the Brick mass spectrometer, a quadrupole enhanced dipolar resonance ejection (QE-dipolar resonance ejection) method was proposed in this work. After optimization, mass resolution and sensitivity of the Brick mass spectrometer could be improved by no less than 2 times, and space charge effects within the ion trap could also be reduced. Furthermore, this QE-dipolar resonance ejection method is effective at elevated pressures, which would potentially allow us to further miniaturize the Brick mass spectrometer by operating it at higher pressures. This method is also applicable to any ion trap operated in either frequency scanning mode or voltage scanning mode and operated in either miniaturized instruments or benchtop instruments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA