Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.365
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 182(3): 734-743.e5, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32643603

RESUMEN

COVID-19, caused by SARS-CoV-2, is a virulent pneumonia, with >4,000,000 confirmed cases worldwide and >290,000 deaths as of May 15, 2020. It is critical that vaccines and therapeutics be developed very rapidly. Mice, the ideal animal for assessing such interventions, are resistant to SARS-CoV-2. Here, we overcome this difficulty by exogenous delivery of human ACE2 with a replication-deficient adenovirus (Ad5-hACE2). Ad5-hACE2-sensitized mice developed pneumonia characterized by weight loss, severe pulmonary pathology, and high-titer virus replication in lungs. Type I interferon, T cells, and, most importantly, signal transducer and activator of transcription 1 (STAT1) are critical for virus clearance and disease resolution in these mice. Ad5-hACE2-transduced mice enabled rapid assessments of a vaccine candidate, of human convalescent plasma, and of two antiviral therapies (poly I:C and remdesivir). In summary, we describe a murine model of broad and immediate utility to investigate COVID-19 pathogenesis and to evaluate new therapies and vaccines.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/prevención & control , Modelos Animales de Enfermedad , Pandemias/prevención & control , Neumonía Viral/patología , Neumonía Viral/prevención & control , Vacunación , Enzima Convertidora de Angiotensina 2 , Animales , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , SARS-CoV-2 , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Organismos Libres de Patógenos Específicos , Transducción Genética , Células Vero , Carga Viral , Replicación Viral
2.
EMBO J ; 42(16): e110757, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37427448

RESUMEN

The tumor microenvironment (TME) directly determines patients' outcomes and therapeutic efficiencies. An in-depth understanding of the TME is required to improve the prognosis of patients with cervical cancer (CC). This study conducted single-cell RNA and TCR sequencing of six-paired tumors and adjacent normal tissues to map the CC immune landscape. T and NK cells were highly enriched in the tumor area and transitioned from cytotoxic to exhaustion phenotypes. Our analyses suggest that cytotoxic large-clone T cells are critical effectors in the antitumor response. This study also revealed tumor-specific germinal center B cells associated with tertiary lymphoid structures. A high-germinal center B cell proportion in patients with CC is predictive of improved clinical outcomes and is associated with elevated hormonal immune responses. We depicted an immune-excluded stromal landscape and established a joint model of tumor and stromal cells to predict CC patients' prognosis. The study revealed tumor ecosystem subsets linked to antitumor response or prognosis in the TME and provides information for future combinational immunotherapy.


Asunto(s)
Neoplasias del Cuello Uterino , Humanos , Femenino , Microambiente Tumoral , Ecosistema , Células Asesinas Naturales , Inmunoterapia
3.
Mol Cell ; 73(1): 7-21.e7, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30472188

RESUMEN

The transcriptional regulators YAP and TAZ play important roles in development, physiology, and tumorigenesis and are negatively controlled by the Hippo pathway. It is yet unknown why the YAP/ TAZ proteins are frequently activated in human malignancies in which the Hippo pathway is still active. Here, by a gain-of-function cancer metastasis screen, we discovered OTUB2 as a cancer stemness and metastasis-promoting factor that deubiquitinates and activates YAP/TAZ. We found OTUB2 to be poly-SUMOylated on lysine 233, and this SUMOylation enables it to bind YAP/TAZ. We also identified a yet-unknown SUMO-interacting motif (SIM) in YAP and TAZ required for their association with SUMOylated OTUB2. Importantly, EGF and oncogenic KRAS induce OTUB2 poly-SUMOylation and thereby activate YAP/TAZ. Our results establish OTUB2 as an essential modulator of YAP/TAZ and also reveal a novel mechanism via which YAP/TAZ activity is induced by oncogenic KRAS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/enzimología , Movimiento Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Madre Neoplásicas/enzimología , Fosfoproteínas/metabolismo , Tioléster Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Lisina , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Metástasis de la Neoplasia , Células Madre Neoplásicas/patología , Fenotipo , Fosfoproteínas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Sumoilación , Tioléster Hidrolasas/genética , Factores de Tiempo , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
4.
Proc Natl Acad Sci U S A ; 121(32): e2322600121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39083418

RESUMEN

The animal origin of SARS-CoV-2 remains elusive, lacking a plausible evolutionary narrative that may account for its emergence. Its spike protein resembles certain segments of BANAL-236 and RaTG13, two bat coronaviruses considered possible progenitors of SARS-CoV-2. Additionally, its spike contains a furin motif, a common feature of rodent coronaviruses. To explore the possible involvement of rodents in the emergence of SARS-CoV-2 spike, we examined the crystal structures of the spike receptor-binding domains (RBDs) of BANAL-236 and RaTG13 each complexed with mouse receptor ACE2. Both RBDs have residues at positions 493 and 498 that align well with two virus-binding hotspots on mouse ACE2. Our biochemical evidence supports that both BANAL-236 and RaTG13 spikes can use mouse ACE2 as their entry receptor. These findings point to a scenario in which these bat coronaviruses may have coinfected rodents, leading to a recombination of their spike genes and a subsequent acquisition of a furin motif in rodents, culminating in the emergence of SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Quirópteros , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Quirópteros/virología , Ratones , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Humanos , Receptores Virales/metabolismo , Receptores Virales/química , COVID-19/virología , COVID-19/metabolismo , Cristalografía por Rayos X , Unión Proteica , Coronavirus/metabolismo , Coronavirus/genética , Modelos Moleculares
5.
PLoS Pathog ; 20(5): e1012204, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709834

RESUMEN

Since the COVID-19 outbreak, raccoon dogs have been suggested as a potential intermediary in transmitting SARS-CoV-2 to humans. To understand their role in the COVID-19 pandemic and the species barrier for SARS-CoV-2 transmission to humans, we analyzed how their ACE2 protein interacts with SARS-CoV-2 spike protein. Biochemical data showed that raccoon dog ACE2 is an effective receptor for SARS-CoV-2 spike protein, though not as effective as human ACE2. Structural comparisons highlighted differences in the virus-binding residues of raccoon dog ACE2 compared to human ACE2 (L24Q, Y34H, E38D, T82M, R353K), explaining their varied effectiveness as receptors for SARS-CoV-2. These variations contribute to the species barrier that exists between raccoon dogs and humans regarding SARS-CoV-2 transmission. Identifying these barriers can help assess the susceptibility of other mammals to SARS-CoV-2. Our research underscores the potential of raccoon dogs as SARS-CoV-2 carriers and identifies molecular barriers that affect the virus's ability to jump between species.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Perros Mapache , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/química , COVID-19/virología , COVID-19/transmisión , COVID-19/metabolismo , Unión Proteica , Perros Mapache/virología , Receptores Virales/metabolismo , Receptores Virales/química , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
PLoS Pathog ; 20(9): e1012493, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39236072

RESUMEN

Grasping the roles of epitopes in viral glycoproteins is essential for unraveling the structure and function of these proteins. Up to now, all identified epitopes have been found to either neutralize, have no effect on, or enhance viral entry into cells. Here, we used nanobodies (single-domain antibodies) as probes to investigate a unique epitope on the SARS-CoV-2 spike protein, located outside the protein's receptor-binding domain. Nanobody binding to this epitope enhances the cell entry of prototypic SARS-CoV-2, while neutralizing the cell entry of SARS-CoV-2 Omicron variant. Moreover, nanobody binding to this epitope promotes both receptor binding activity and post-attachment activity of prototypic spike, explaining the enhanced viral entry. The opposite occurs with Omicron spike, explaining the neutralized viral entry. This study reveals a unique epitope that can both enhance and neutralize viral entry across distinct viral variants, suggesting that epitopes may vary their roles depending on the viral context. Consequently, antibody therapies should be assessed across different viral variants to confirm their efficacy and safety.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Epítopos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Humanos , Epítopos/inmunología , COVID-19/inmunología , COVID-19/virología , Anticuerpos Neutralizantes/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos Antivirales/inmunología , Animales
7.
PLoS Pathog ; 20(9): e1012600, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39325826

RESUMEN

A major challenge in antiviral antibody therapy is keeping up with the rapid evolution of viruses. Our research shows that nanobodies - single-domain antibodies derived from camelids - can be rapidly re-engineered to combat new viral strains through structure-guided in vitro evolution. Specifically, for viral mutations occurring at nanobody-binding sites, we introduce randomized amino acid sequences into nanobody residues near these mutations. We then select nanobody variants that effectively bind to the mutated viral target from a phage display library. As a proof of concept, we used this approach to adapt Nanosota-3, a nanobody originally identified to target the receptor-binding domain (RBD) of early Omicron subvariants, making it highly effective against recent Omicron subvariants. Remarkably, this adaptation process can be completed in less than two weeks, allowing drug development to keep pace with viral evolution and provide timely protection to humans.


Asunto(s)
SARS-CoV-2 , Anticuerpos de Dominio Único , Anticuerpos de Dominio Único/inmunología , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Anticuerpos Antivirales/inmunología , Animales , Mutación , COVID-19/inmunología , COVID-19/virología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
8.
PLoS Pathog ; 20(7): e1012256, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39024394

RESUMEN

African swine fever (ASF) is a highly contagious, fatal disease of pigs caused by African swine fever virus (ASFV). The complexity of ASFV and our limited understanding of its interactions with the host have constrained the development of ASFV vaccines and antiviral strategies. To identify host factors required for ASFV replication, we developed a genome-wide CRISPR knockout (GeCKO) screen that contains 186,510 specific single guide RNAs (sgRNAs) targeting 20,580 pig genes and used genotype II ASFV to perform the GeCKO screen in wild boar lung (WSL) cells. We found that knockout of transmembrane protein 239 (TMEM239) significantly reduced ASFV replication. Further studies showed that TMEM239 interacted with the early endosomal marker Rab5A, and that TMEM239 deletion affected the co-localization of viral capsid p72 and Rab5A shortly after viral infection. An ex vivo study showed that ASFV replication was significantly reduced in TMEM239-/- peripheral blood mononuclear cells from TMEM239 knockout piglets. Our study identifies a novel host factor required for ASFV replication by facilitating ASFV entry into early endosomes and provides insights for the development of ASF-resistant breeding.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Sistemas CRISPR-Cas , Endosomas , Proteínas de la Membrana , Internalización del Virus , Replicación Viral , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/fisiología , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Fiebre Porcina Africana/genética , Endosomas/metabolismo , Endosomas/virología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Técnicas de Inactivación de Genes
9.
Nature ; 581(7807): 221-224, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32225175

RESUMEN

A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) recently emerged and is rapidly spreading in humans, causing COVID-191,2. A key to tackling this pandemic is to understand the receptor recognition mechanism of the virus, which regulates its infectivity, pathogenesis and host range. SARS-CoV-2 and SARS-CoV recognize the same receptor-angiotensin-converting enzyme 2 (ACE2)-in humans3,4. Here we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 (engineered to facilitate crystallization) in complex with ACE2. In comparison with the SARS-CoV RBD, an ACE2-binding ridge in SARS-CoV-2 RBD has a more compact conformation; moreover, several residue changes in the SARS-CoV-2 RBD stabilize two virus-binding hotspots at the RBD-ACE2 interface. These structural features of SARS-CoV-2 RBD increase its ACE2-binding affinity. Additionally, we show that RaTG13, a bat coronavirus that is closely related to SARS-CoV-2, also uses human ACE2 as its receptor. The differences among SARS-CoV-2, SARS-CoV and RaTG13 in ACE2 recognition shed light on the potential animal-to-human transmission of SARS-CoV-2. This study provides guidance for intervention strategies that target receptor recognition by SARS-CoV-2.


Asunto(s)
Betacoronavirus/química , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales/química , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Zoonosis/virología , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/efectos de los fármacos , Betacoronavirus/metabolismo , Sitios de Unión , COVID-19 , China/epidemiología , Quirópteros/virología , Coronavirus/química , Coronavirus/aislamiento & purificación , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Cristalización , Cristalografía por Rayos X , Reservorios de Enfermedades/virología , Euterios/virología , Humanos , Modelos Moleculares , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Neumonía Viral/virología , Unión Proteica , Dominios Proteicos , Estabilidad Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Zoonosis/epidemiología , Zoonosis/transmisión
10.
Nature ; 588(7839): 693-698, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177715

RESUMEN

Despite its success in achieving the long-term survival of 10-30% of treated individuals, immune therapy is still ineffective for most patients with cancer1,2. Many efforts are therefore underway to identify new approaches that enhance such immune 'checkpoint' therapy3-5 (so called because its aim is to block proteins that inhibit checkpoint signalling pathways in T cells, thereby freeing those immune cells to target cancer cells). Here we show that inhibiting PCSK9-a key protein in the regulation of cholesterol metabolism6-8-can boost the response of tumours to immune checkpoint therapy, through a mechanism that is independent of PCSK9's cholesterol-regulating functions. Deleting the PCSK9 gene in mouse cancer cells substantially attenuates or prevents their growth in mice in a manner that depends on cytotoxic T cells. It also enhances the efficacy of immune therapy that is targeted at the checkpoint protein PD1. Furthermore, clinically approved PCSK9-neutralizing antibodies synergize with anti-PD1 therapy in suppressing tumour growth in mouse models of cancer. Inhibiting PCSK9-either through genetic deletion or using PCSK9 antibodies-increases the expression of major histocompatibility protein class I (MHC I) proteins on the tumour cell surface, promoting robust intratumoral infiltration of cytotoxic T cells. Mechanistically, we find that PCSK9 can disrupt the recycling of MHC I to the cell surface by associating with it physically and promoting its relocation and degradation in the lysosome. Together, these results suggest that inhibiting PCSK9 is a promising way to enhance immune checkpoint therapy for cancer.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Inhibidores de PCSK9 , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Lisosomas/metabolismo , Ratones , Neoplasias/metabolismo , Neoplasias/patología , Proproteína Convertasa 9/deficiencia , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/inmunología , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Proc Natl Acad Sci U S A ; 120(4): e2217145120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649415

RESUMEN

Entomopathogenic fungi infect insects by penetrating through the cuticle into the host body. To breach the host cuticle, some fungal pathogens produce specialized infection cells called appressoria, which develop enormous turgor pressure to allow cuticle penetration. However, regulatory mechanisms underlying appressorium turgor generation are poorly understood. Here, we show that the histone lysine methyltransferase ASH1 in the insecticidal fungus Metarhizium robertsii, which is strongly induced during infection of the mosquito cuticle, regulates appressorium turgor generation and cuticle penetration by activating the peroxin gene Mrpex16 via H3K36 dimethylation. MrPEX16 is required for the biogenesis of peroxisomes that participate in lipid catabolism and further promotes the hydrolysis of triacylglycerols stored in lipid droplets to produce glycerol for turgor generation, facilitating appressorium-mediated insect infection. Together, the ASH1-PEX16 pathway plays a pivotal role in regulating peroxisome biogenesis to promote lipolysis for appressorium turgor generation, providing insights into the molecular mechanisms underlying fungal pathogenesis.


Asunto(s)
Proteínas Fúngicas , Peroxisomas , Animales , Peroxisomas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Insectos/metabolismo , Enfermedades de las Plantas/microbiología
12.
Proc Natl Acad Sci U S A ; 120(4): e2202820120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652473

RESUMEN

Human coronavirus 229E (HCoV-229E) and NL63 (HCoV-NL63) are endemic causes of upper respiratory infections such as the "common cold" but may occasionally cause severe lower respiratory tract disease in the elderly and immunocompromised patients. There are no approved antiviral drugs or vaccines for these common cold coronaviruses (CCCoV). The recent emergence of COVID-19 and the possible cross-reactive antibody and T cell responses between these CCCoV and SARS-CoV-2 emphasize the need to develop experimental animal models for CCCoV. Mice are an ideal experimental animal model for such studies, but are resistant to HCoV-229E and HCoV-NL63 infections. Here, we generated 229E and NL63 mouse models by exogenous delivery of their receptors, human hAPN and hACE2 using replication-deficient adenoviruses (Ad5-hAPN and Ad5-hACE2), respectively. Ad5-hAPN- and Ad5-hACE2-sensitized IFNAR-/- and STAT1-/- mice developed pneumonia characterized by inflammatory cell infiltration with virus clearance occurring 7 d post infection. Ad5-hAPN- and Ad5-hACE2-sensitized mice generated virus-specific T cells and neutralizing antibodies after 229E or NL63 infection, respectively. Remdesivir and a vaccine candidate targeting spike protein of 229E and NL63 accelerated viral clearance of virus in these mice. 229E- and NL63-infected mice were partially protected from SARS-CoV-2 infection, likely mediated by cross-reactive T cell responses. Ad5-hAPN- and Ad5-hACE2-transduced mice are useful for studying pathogenesis and immune responses induced by HCoV-229E and HCoV-NL63 infections and for validation of broadly protective vaccines, antibodies, and therapeutics against human respiratory coronaviruses including SARS-CoV-2.


Asunto(s)
COVID-19 , Resfriado Común , Coronavirus Humano 229E , Coronavirus Humano NL63 , Humanos , Animales , Ratones , Anciano , SARS-CoV-2 , Protección Cruzada
13.
Circulation ; 149(24): 1885-1898, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38686559

RESUMEN

BACKGROUND: Atherosclerosis, a leading cause of cardiovascular disease, involves the pathological activation of various cell types, including immunocytes (eg, macrophages and T cells), smooth muscle cells (SMCs), and endothelial cells. Accumulating evidence suggests that transition of SMCs to other cell types, known as phenotypic switching, plays a central role in atherosclerosis development and complications. However, the characteristics of SMC-derived cells and the underlying mechanisms of SMC transition in disease pathogenesis remain poorly understood. Our objective is to characterize tumor cell-like behaviors of SMC-derived cells in atherosclerosis, with the ultimate goal of developing interventions targeting SMC transition for the prevention and treatment of atherosclerosis. METHODS: We used SMC lineage tracing mice and human tissues and applied a range of methods, including molecular, cellular, histological, computational, human genetics, and pharmacological approaches, to investigate the features of SMC-derived cells in atherosclerosis. RESULTS: SMC-derived cells in mouse and human atherosclerosis exhibit multiple tumor cell-like characteristics, including genomic instability, evasion of senescence, hyperproliferation, resistance to cell death, invasiveness, and activation of comprehensive cancer-associated gene regulatory networks. Specific expression of the oncogenic mutant KrasG12D in SMCs accelerates phenotypic switching and exacerbates atherosclerosis. Furthermore, we provide proof of concept that niraparib, an anticancer drug targeting DNA damage repair, attenuates atherosclerosis progression and induces regression of lesions in advanced disease in mouse models. CONCLUSIONS: Our findings demonstrate that atherosclerosis is an SMC-driven tumor-like disease, advancing our understanding of its pathogenesis and opening prospects for innovative precision molecular strategies aimed at preventing and treating atherosclerotic cardiovascular disease.


Asunto(s)
Aterosclerosis , Miocitos del Músculo Liso , Animales , Aterosclerosis/patología , Aterosclerosis/metabolismo , Humanos , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Ratones , Músculo Liso Vascular/patología , Músculo Liso Vascular/metabolismo
14.
Mol Biol Evol ; 41(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376487

RESUMEN

The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.


Asunto(s)
Balaenoptera , Neoplasias , Animales , Balaenoptera/genética , Duplicaciones Segmentarias en el Genoma , Genoma , Demografía , Neoplasias/genética
15.
Genome Res ; 32(2): 228-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35064006

RESUMEN

The pathogenesis of COVID-19 is still elusive, which impedes disease progression prediction, differential diagnosis, and targeted therapy. Plasma cell-free RNAs (cfRNAs) carry unique information from human tissue and thus could point to resourceful solutions for pathogenesis and host-pathogen interactions. Here, we performed a comparative analysis of cfRNA profiles between COVID-19 patients and healthy donors using serial plasma. Analyses of the cfRNA landscape, potential gene regulatory mechanisms, dynamic changes in tRNA pools upon infection, and microbial communities were performed. A total of 380 cfRNA molecules were up-regulated in all COVID-19 patients, of which seven could serve as potential biomarkers (AUC > 0.85) with great sensitivity and specificity. Antiviral (NFKB1A, IFITM3, and IFI27) and neutrophil activation (S100A8, CD68, and CD63)-related genes exhibited decreased expression levels during treatment in COVID-19 patients, which is in accordance with the dynamically enhanced inflammatory response in COVID-19 patients. Noncoding RNAs, including some microRNAs (let 7 family) and long noncoding RNAs (GJA9-MYCBP) targeting interleukin (IL6/IL6R), were differentially expressed between COVID-19 patients and healthy donors, which accounts for the potential core mechanism of cytokine storm syndromes; the tRNA pools change significantly between the COVID-19 and healthy group, leading to the accumulation of SARS-CoV-2 biased codons, which facilitate SARS-CoV-2 replication. Finally, several pneumonia-related microorganisms were detected in the plasma of COVID-19 patients, raising the possibility of simultaneously monitoring immune response regulation and microbial communities using cfRNA analysis. This study fills the knowledge gap in the plasma cfRNA landscape of COVID-19 patients and offers insight into the potential mechanisms of cfRNAs to explain COVID-19 pathogenesis.


Asunto(s)
COVID-19 , Ácidos Nucleicos Libres de Células , ARN/sangre , COVID-19/sangre , COVID-19/genética , Ácidos Nucleicos Libres de Células/sangre , Síndrome de Liberación de Citoquinas , Humanos , SARS-CoV-2
16.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35333325

RESUMEN

Eosinophils, best known for their role in anti-parasitic responses, have recently been shown to actively participate in tissue homeostasis and repair. Their regulation must be tightly controlled, as their absence or hyperplasia is associated with chronic disease (e.g. asthma or inflammatory bowel disease). In the context of skeletal muscle, eosinophils play a supportive role after acute damage. Indeed, their depletion leads to strong defects in skeletal muscle regeneration and, in the absence of eosinophil-secreted interleukin (IL) 4 and IL13, fibro-adipogenic progenitors fail to support muscle stem cell proliferation. However, the role of eosinophils in muscular dystrophy remains elusive. Although it has been shown that eosinophils are present in higher numbers in muscles from mdx mice (a mouse model for Duchenne muscular dystrophy), their depletion does not affect muscle histopathology at an early age. Here, we evaluated the impact of hyper-eosinophilia on the development of fibrofatty infiltration in aged mdx mice and found that muscle eosinophilia leads to defects in muscle homeostasis, regeneration and repair, and eventually hastens death.


Asunto(s)
Distrofia Muscular de Duchenne , Animales , Modelos Animales de Enfermedad , Eosinófilos/metabolismo , Eosinófilos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología
17.
J Virol ; 98(9): e0037624, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39189731

RESUMEN

Three highly pathogenic coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, belonging to the genus beta-CoV, have caused outbreaks or pandemics. SARS-CoV-2 has evolved into many variants with increased resistance to the current vaccines. Spike (S) protein and its receptor-binding domain (RBD) fragment of these CoVs are important vaccine targets; however, the RBD of the SARS-CoV-2 Omicron variant is highly mutated, rending neutralizing antibodies elicited by ancestral-based vaccines targeting this region ineffective, emphasizing the need for effective vaccines with broad-spectrum efficacy against SARS-CoV-2 variants and other CoVs with pandemic potential. This study describes a pan-beta-CoV subunit vaccine, Om-S-MERS-RBD, by fusing the conserved and highly potent RBD of MERS-CoV into an RBD-truncated SARS-CoV-2 Omicron S protein, and evaluates its neutralizing immunogenicity and protective efficacy in mouse models. Om-S-MERS-RBD formed a conformational structure, maintained effective functionality and antigenicity, and bind efficiently to MERS-CoV receptor, human dipeptidyl peptidase 4, and MERS-CoV RBD or SARS-CoV-2 S-specific antibodies. Immunization of mice with Om-S-MERS-RBD and adjuvants (Alum plus monophosphoryl lipid A) induced broadly neutralizing antibodies against pseudotyped MERS-CoV, SARS-CoV, and SARS-CoV-2 original strain, as well as T-cell responses specific to RBD-truncated Omicron S protein. Moreover, the neutralizing activity against SARS-CoV-2 Omicron subvariants was effectively improved after priming with an Omicron-S-RBD protein. Adjuvanted Om-S-MERS-RBD protein protected mice against challenge with SARS-CoV-2 Omicron variant, MERS-CoV, and SARS-CoV, significantly reducing viral titers in the lungs. Overall, these findings indicated that Om-S-MERS-RBD protein could develop as an effective universal subunit vaccine to prevent infections with MERS-CoV, SARS-CoV, SARS-CoV-2, and its variants. IMPORTANCE: Coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, the respective causative agents of coronavirus disease 2019, SARS, and MERS, continually threaten human health. The spike (S) protein and its receptor-binding domain (RBD) fragment of these CoVs are critical vaccine targets. Nevertheless, the highly mutated RBD of SARS-CoV-2 variants, especially Omicron, significantly reduces the efficacy of current vaccines against SARS-CoV-2 variants. Here a protein-based pan-beta-CoV subunit vaccine is designed by fusing the potent and conserved RBD of MERS-CoV into an RBD-truncated Omicron S protein. The resulting vaccine maintained effective functionality and antigenicity, induced broadly neutralizing antibodies against all of these highly pathogenic human CoVs, and elicited Omicron S-specific cellular immune responses, protecting immunized mice from SARS-CoV-2 Omicron, SARS-CoV, and MERS-CoV infections. Taken together, this study rationally designed a pan-beta-CoV subunit vaccine with broad-spectrum efficacy, which has the potential for development as an effective universal vaccine against SARS-CoV-2 variants and other CoVs with pandemic potential.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Coronavirus del Síndrome Respiratorio de Oriente Medio , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de Subunidad , Animales , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Anticuerpos Neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , Vacunas de Subunidad/inmunología , Anticuerpos Antivirales/inmunología , Humanos , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Ratones Endogámicos BALB C , Vacunas Virales/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Femenino
18.
PLoS Pathog ; 19(4): e1011316, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37058447

RESUMEN

The presence of human cytomegalovirus (HCMV) in glioblastoma (GBM) and improved outcomes of GBM patients receiving therapies targeting the virus have implicated HCMV in GBM progression. However, a unifying mechanism that accounts for the contribution of HCMV to the malignant phenotype of GBM remains incompletely defined. Here we have identified SOX2, a marker of glioma stem cells (GSCs), as a key determinant of HCMV gene expression in gliomas. Our studies demonstrated that SOX2 downregulated promyelocytic leukemia (PML) and Sp100 and consequently facilitated viral gene expression by decreasing the amount of PML nuclear bodies in HCMV-infected glioma cells. Conversely, the expression of PML antagonized the effects of SOX2 on HCMV gene expression. Furthermore, this regulation of SOX2 on HCMV infection was demonstrated in a neurosphere assay of GSCs and in a murine xenograft model utilizing xenografts from patient-derived glioma tissue. In both cases, SOX2 overexpression facilitated the growth of neurospheres and xenografts implanted in immunodeficient mice. Lastly, the expression of SOX2 and HCMV immediate early 1 (IE1) protein could be correlated in tissues from glioma patients, and interestingly, elevated levels of SOX2 and IE1 were predictive of a worse clinical outcome. These studies argue that HCMV gene expression in gliomas is regulated by SOX2 through its regulation of PML expression and that targeting molecules in this SOX2-PML pathway could identify therapies for glioma treatment.


Asunto(s)
Glioma , Proteínas Inmediatas-Precoces , Animales , Humanos , Ratones , Citomegalovirus/fisiología , Regulación hacia Abajo , Expresión Génica , Glioma/genética , Glioma/patología , Proteínas Inmediatas-Precoces/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
FASEB J ; 38(2): e23165, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38197195

RESUMEN

Recently, extracellular vesicles (EVs) have been emphasized in regulating the hypoxic tumor microenvironment of breast cancer (BC), where tumor-associated fibroblasts (TAFs) play a significant role. In this study, we describe possible molecular mechanisms behind the pro-tumoral effects of EVs, secreted by hypoxia (HP)-induced TAFs, on BC cell growth, metastasis, and chemoresistance. These mechanisms are based on long noncoding RNA H19 (H19) identified by microarray analysis. We employed an in silico approach to identify differentially expressed lncRNAs that were associated with BC. Subsequently, we explored possible downstream regulatory mechanisms. We isolated EVs from TAFs that were exposed to HP, and these EVs were denoted as HP-TAF-EVs henceforth. MTT, transwell, flow cytometry, and TUNEL assays were performed to assess the malignant phenotypes of BC cells. A paclitaxel (TAX)-resistant BC cell line was constructed, and xenograft tumor and lung metastasis models were established in nude mice for in vivo verification. Our observation revealed that lncRNA H19 was significantly overexpressed, whereas miR-497 was notably downregulated in BC. HP induced activation of TAFs and stimulated the secretion of EVs. Coculture of HP-TAF-EVs and BC cells led to an increase in TAX resistance of the latter. HP-TAF-EVs upregulated methylation of miR-497 by delivering lncRNA H19, which recruited DNMT1, thus lowering the expression of miR-497. In addition, lncRNA H19-containing HP-TAF-EVs hindered miR-497 expression, enhancing tumorigenesis and TAX resistance of BC cells in vivo. Our study presents evidence for the contribution of lncRNA H19-containing HP-TAF-EVs in the reduction of miR-497 expression through the recruitment of DNMT1, which in turn promotes the growth, metastasis, and chemoresistance of BC cells.


Asunto(s)
Neoplasias de la Mama , Fibroblastos Asociados al Cáncer , Vesículas Extracelulares , MicroARNs , ARN Largo no Codificante , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Transformación Celular Neoplásica , Resistencia a Antineoplásicos/genética , Vesículas Extracelulares/genética , Hipoxia , Ratones Desnudos , MicroARNs/genética , ARN Largo no Codificante/genética , Microambiente Tumoral/genética
20.
FASEB J ; 38(8): e23613, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38661048

RESUMEN

The unpredictable survival rate of autologous fat grafting (AFG) seriously affects its clinical application. Improving the survival rate of AFG has become an unresolved issue in plastic surgery. Peroxisome proliferator-activated receptor-γ (PPAR-γ) regulates the adipogenic differentiation of adipocytes, but the functional mechanism in AFG remains unclear. In this study, we established an animal model of AFG and demonstrated the superior therapeutic effect of PPAR-γ regulation in the process of AFG. From day 3 after fat grafting, the PPAR-γ agonist rosiglitazone group consistently showed better adipose integrity, fewer oil cysts, and fibrosis. Massive macrophage infiltration was observed after 7 days. At the same time, M2 macrophages begin to appear. At day 14, M2 macrophages gradually became the dominant cell population, which suppressed inflammation and promoted revascularization and fat regeneration. In addition, transcriptome sequencing showed that the differentially expressed genes in the Rosiglitazone group were associated with the pathways of adipose regeneration, differentiation, and angiogenesis; these results provide new ideas for clinical treatment.


Asunto(s)
Tejido Adiposo , Macrófagos , PPAR gamma , Rosiglitazona , Trasplante Autólogo , Animales , PPAR gamma/metabolismo , PPAR gamma/genética , Macrófagos/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/citología , Rosiglitazona/farmacología , Masculino , Diferenciación Celular , Adipogénesis , Adipocitos/metabolismo , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA