Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409056

RESUMEN

Osteoclasts (OCs), which are responsible for bone resorption, play a critical role in cholesterol-induced bone loss and recent studies have suggested that various micro-RNAs (miRs) contribute to modulating OCs. We hypothesized that 7-ketocholesterol (7-KC), a metabolite responsible for cholesterol-induced bone loss, induces miR-107-5p, which affects OCs. Overexpression and knock-down of miR-107-5p were performed using miR-107-5p mimic and anti-miR-107-5p, respectively. The effects of miR-107-5p on OCs were analyzed by tartrate-resistant alkaline phosphatase staining, qPCR, and Western blot. MiR-107-5p was upregulated after 7-KC exposure in receptor activator of nuclear factor kappa-Β ligand-stimulated OCs. Furthermore, miR-107-5p upregulation was also observed in tibiae from an atherogenic diet-fed mice compared with mice fed with a normal diet. MiR-107-5p overexpression enhanced the area and number of OCs, whereas inhibiting the endogenous expression of miR-107-5p generated by 7-KC had the opposite effect. Among the possible candidates, mitogen-activated protein kinase phosphatase-1, a stress-responsive dual-specificity phosphatase that inactivates mitogen-activated protein kinase (MKP1), has been proven to be a target gene of miR-107-5p, as demonstrated by the direct interaction between miR-107-5p and the 3'-untranslated region of MKP1. Collectively, our findings demonstrate that 7-KC-induced miR-107-5p promotes differentiation and function of OCs by downregulating MKP1.


Asunto(s)
Resorción Ósea , MicroARNs , Regiones no Traducidas 3' , Animales , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular/genética , Cetocolesteroles/farmacología , Ratones , MicroARNs/metabolismo , Osteoclastos/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-35491824

RESUMEN

Oil sludge is a typical hazardous waste in the petrochemical and electric power industry. It has complex components and special properties, and has serious hazards to humans, plants, water, and soil. Therefore, how to realize the effective disposal of oil sludge has become an urgent issue to be solved worldwide. Among the existing oil sludge treatment approaches, combustion has been considered to be a promising technology to realize the large-scale industrial application. In the present work, the characteristics of oil sludge were described in detail. The application and development of oil sludge combustion technology were critically summarized and discussed, including factors affecting combustion, drying process, combustion characteristics, synergistic treatment technology, and formation and control of secondary pollution. Besides, the development of combustion equipment, and integrated thermal treatment technology for oil sludge were prospected. This work can be used for guiding the industrial disposal of oil sludge.


Asunto(s)
Desecación , Aguas del Alcantarillado , Humanos , Aguas del Alcantarillado/química , Suelo , Tecnología , Agua
3.
Artículo en Inglés | MEDLINE | ID: mdl-34347579

RESUMEN

Combustion of High-sulfur oil sludge (OS) blended with CaO can significantly reduce the emission of sulfur gas pollutants, but its combustion and kinetic characteristics need to be further studied. TGA experiments showed the combustion characteristics of OS were significantly changed after adding CaO. As reflected by comprehensive combustion index (S), the combustion performance of OS decreased after adding CaO, and significantly improved with the increase of heating rate. The kinetic parameters of the main combustion process of OS with CaO were calculated by the iso-conversion methods of Friedman, FWO, and Starink, respectively. Kinetic analysis results indicated the energy required for OS combustion with CaO first increased and then decreased with deepening of reaction degree. The thermodynamic parameters of ΔH, ΔG and ΔS were determined on the basis of kinetics. The negative ΔH, positive ΔG, and negative ΔS validated the combustion of OS with CaO was an exothermic and nonspontaneous process.


Asunto(s)
Calefacción , Aguas del Alcantarillado , Cinética , Termodinámica , Termogravimetría
4.
Sheng Li Xue Bao ; 67(1): 74-82, 2015 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-25672629

RESUMEN

The study is aimed to explore the molecular mechanism of the treatment of apocynin in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. 5% DSS was used to mimic the UC model, and 2% apocynin was applied to treat the UC mice. HE staining was used for histopathological evaluation. Chemiluminescence technique was used to measure reactive oxygen species (ROS) production, and the rate of consumption of NADPH inhibited by DPI was detected to determine the NADPH oxidases (NOXs) activity. Western blot was applied to identify the level of p38MAPK phosphorylation, Griess reaction assay to analyze NO production, immunoenzymatic method to determine prostaglandin E2 (PGE2) production, real time RT-PCR and Western blot to identify the expression of iNOS and COX2, and enzyme linked immunosorbent assay to detect inflammatory cytokines TNF-α, IL-6, IFN-γ, IL-1ß. Rat neutrophils were separated, and then ROS production, NOXs activity, NO and PGE2 production, NOX1 and p-p38MAPK expression were detected. Compared with the UC group, apocynin decreased ROS over-production and NOXs activity (P < 0.01), reduced p38MAPK phosphorylation, inhibited NO, PGE2 and cytokines production (P < 0.01). Apocynin also decreased NOXs activity and ROS over-production (P < 0.01), inhibited p38MAPK phosphorylation and NOX1 expression, and reduced NO and PGE2 production (P < 0.01) in separated neutrophils from UC mice. Therefore, apocynin could relieve inflammation in DSS-induced UC mice through inhibiting NOXs-ROS-p38MAPK signal pathway, and neutrophils play an important role.


Asunto(s)
Acetofenonas/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas , Animales , Colitis Ulcerosa/inducido químicamente , Citocinas/metabolismo , Sulfato de Dextran , Ratones , NADH NADPH Oxidorreductasas/metabolismo , Neutrófilos/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Sheng Li Xue Bao ; 66(3): 332-40, 2014 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-24964851

RESUMEN

The aim of the present study was to explore the role of orphan G protein-coupled receptor 55 (GPR55) in diabetic gastroparesis (DG). Streptozotocin (STZ) was used to mimic the DG model, and the body weight and blood glucose concentration were tested 4 weeks after STZ injection (i.p.). Electrogastrogram and phenolsulfonphthalein test were used for detecting gastric emptying. Motilin (MTL), gastrin (GAS), vasoactive intestinal peptide (VIP), and somatostatin (SS) levels in plasma were determined using radioimmunology. Real-time PCR and Western blot were applied to identify the expression of GPR55 in gastric tissue, and immunohistochemistry was used to detect the distribution. The effect of lysophosphatidylinositol (LPI), an agonist of GPR55, was observed. STZ mice showed increased blood glucose concentration, lower body weight, decreased amplitude of slow wave, and delayed gastric emptying. LPI antagonized these effects of STZ. Compared to the control group, STZ caused significant decreases of MTL and GAS levels (P < 0.01), as well as increases of SS and VIP levels (P < 0.01). The changes of these hormones induced by STZ were counteracted when using LPI. GPR55 located in mice stomach, and it was up-regulated in DG. Although LPI showed no effects on the distribution and expression of GPR55 in normal mice, it could inhibit STZ-induced GPR55 up-regulation. These results suggest GPR55 is involved in the regulation of gastric movement of DG, and may serve as a new target of DG treatment. LPI, an agonist of GPR55, can protect against STZ-induced DG, and the mechanism may involve the change of GPR55 expression and modification of gastrointestinal movement regulating hormones.


Asunto(s)
Diabetes Mellitus Experimental/patología , Gastroparesia/metabolismo , Receptores de Cannabinoides/metabolismo , Animales , Diabetes Mellitus Experimental/metabolismo , Gastroparesia/patología , Lisofosfolípidos/farmacología , Ratones
6.
J Nutr Biochem ; 125: 109552, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38134972

RESUMEN

This study sought to explore the role of 7-ketocholesterol (7-KC) in liver damage caused by high cholesterol intake and its potential pathological mechanism in mice. Our in vivo findings indicated that mice fed a high-cholesterol diet had elevated serum levels of 7-KC, accompanied by liver injury and inflammation, similar to human nonalcoholic steatohepatitis. Furthermore, the high-cholesterol diet induced neutrophil infiltration, which played a critical role in liver damage through myeloperoxidase (MPO) activity. Upon stimulation with 7-KC, macrophages exhibited increased expression of C-X-C motif chemokine ligand 1 (CXCL1) and CXCL2, as well as ATP-binding cassette transporter A1 (ABCA1) and ABCG1. Hepatocytes, on the other hand, exhibited increased expression of CXCL2 and ABCG1. The infiltration of neutrophils in the liver was primarily caused by CXCL1 and CXCL2, resulting in hepatocyte cell death due to elevated MPO activity. Our data also revealed that the activation of macrophages by 7-KC via ABCA1 or ABCG1 was not associated with lipid accumulation. Collectively, these findings suggest that high cholesterol-induced hepatitis in mice involves, at least partially, the recruitment of neutrophils to the liver by 7-KC-activated macrophages. This is mediated by increased expression of CXCL1 and CXCL2 through ABCA1 or ABCG1, which act as 7-KC efflux transporters. Additionally, hepatocytes contribute to this process by increased expression of CXCL2 through ABCG1. Therefore, our findings suggest that 7-KC may play a role in high cholesterol-induced hepatitis in mice by activating macrophages and hepatocytes, ultimately leading to neutrophil infiltration.


Asunto(s)
Hepatitis , Macrófagos , Ratones , Humanos , Animales , Infiltración Neutrófila , Macrófagos/metabolismo , Cetocolesteroles/metabolismo , Hepatitis/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo
7.
Nutrients ; 14(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36364745

RESUMEN

High cholesterol-induced bone loss is highly associated with oxidative stress, which leads to the generation of oxysterols, such as 7-ketocholesterol (7-KC). Here, we conducted in vivo and in vitro experiments to determine whether arctiin prevents high cholesterol diet-induced bone loss by decreasing oxidative stress. First, arctiin was orally administered to atherogenic diet (AD)-fed C57BL/6J male mice at a dose of 10 mg/kg for 6 weeks. Micro-computerized tomography (µCT) analysis showed that arctiin attenuated AD-induced boss loss. For our in vitro experiments, the anti-oxidant effects of arctiin were evaluated in 7-KC-stimulated osteoclasts (OCs). Arctiin decreased the number and activity of OCs and inhibited autophagy by disrupting the nuclear localization of transcription factor EB (TFEB) and downregulating the oxidized TFEB signaling pathway in OCs upon 7-KC stimulation. Furthermore, arctiin decreased the levels of reactive oxygen species (ROS) by enhancing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), catalase, and heme oxygenase 1 (HO-1), all of which affected OC differentiation. Conversely, silencing of Nrf2 or HO-1/catalase attenuated the effects of arctiin on OCs. Collectively, our findings suggested that arctiin attenuates 7-KC-induced osteoclastogenesis by increasing the expression of ROS scavenging genes in the Nrf2/HO-1/catalase signaling pathway, thereby decreasing OC autophagy. Moreover, arctiin inhibits the oxidation and nuclear localization of TFEB, thus protecting mice from AD-induced bone loss. Our findings thus demonstrate the therapeutic potential of arctiin for the prevention of cholesterol-induced bone loss.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Osteoclastos , Masculino , Ratones , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Catalasa/metabolismo , Ratones Endogámicos C57BL , Hemo-Oxigenasa 1/metabolismo , Estrés Oxidativo
8.
J Nutr Biochem ; 96: 108783, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34023424

RESUMEN

Oxysterols play a critical role in human health and diseases associated with high cholesterol and oxidative stress. Given that a positive correlation was observed between cholesterol and collagen type 1 fragment (CTX-1) or serum reactive oxygen species (ROS) in humans, we hypothesized that oxidized cholesterol metabolites may participate in cholesterol-induced bone loss. Therefore, this study aimed to identify the metabolite responsible for cholesterol-associated bone loss and evaluate its effect on osteoclasts (OCs) leading to bone loss. An atherogenic diet in mice increased the levels of the oxysterol, 7-ketocholesterol (7-KC) in bone, as well as serum ROS. 7-KC increased the number and activity of OCs by enhancing autophagy via the ROS-transcription factor EB signaling pathway. These findings suggest that 7-KC acts as a cholesterol metabolite and is at least partially responsible for cholesterol-induced bone loss by inducing autophagy in OCs.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Cetocolesteroles/metabolismo , Osteoclastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Resorción Ósea/metabolismo , Masculino , Ratones Endogámicos C57BL , Osteoclastos/citología , Estrés Oxidativo
9.
Environ Technol ; : 1-11, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34236009

RESUMEN

In the process of exploitation, transportation and refining of high-sulfur crude oil, a large number of oil sludge (OS) with high sulfur content is produced. Pyrolysis has been proved to be an effective method for OS disposal, but for solid waste with high sulfur content, lots of sulfur-containing gases will be released during thermal disposal. The addition of calcium oxide in pyrolysis process is an economical and effective way to capture sulfur-containing gases. In order to understand the pyrolysis process of OS with CaO, a thermogravimetric analyser was used to conduct pyrolysis experiments of OS with different Ca/S molar ratios (0, 1, 2 and 3) at different heating rates (10°C/min, 20°C/min, 30°C/min and 40°C/min). The results showed that with the increase of CaO addition the derivative thermogravimetric curves showed a gentle trend. In addition, new weight loss peaks were occurred at 700-900°C and after 1100°C, which were the decomposition of calcium carbonate and calcium sulfate, respectively. The kinetic parameters were solved by Friedman, FWO, and Starink methods, and the results were similar, with an average activation energies (E) value of 214 kJ/mol. The change trend of the activation energy was followed by an increase and then a decrease corresponding to the change of energy demand for the reaction. The calculated average values of ΔH, ΔG and ΔS were about 207, 447 and -0.3250 kJ/mol, respectively. When the conversion rate was 0.5, the thermodynamic parameters reached their maximum values.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA