Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(23): 4376-4393.e18, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36318920

RESUMEN

The function of biomolecular condensates is often restricted by condensate dissolution. Whether condensates can be suppressed without condensate dissolution is unclear. Here, we show that upstream regulators of the Hippo signaling pathway form functionally antagonizing condensates, and their coalescence into a common phase provides a mode of counteracting the function of biomolecular condensates without condensate dissolution. Specifically, the negative regulator SLMAP forms Hippo-inactivating condensates to facilitate pathway inhibition by the STRIPAK complex. In response to cell-cell contact or osmotic stress, the positive regulators AMOT and KIBRA form Hippo-activating condensates to facilitate pathway activation. The functionally antagonizing SLMAP and AMOT/KIBRA condensates further coalesce into a common phase to inhibit STRIPAK function. These findings provide a paradigm for restricting the activity of biomolecular condensates without condensate dissolution, shed light on the molecular principles of multiphase organization, and offer a conceptual framework for understanding upstream regulation of the Hippo signaling pathway.


Asunto(s)
Vía de Señalización Hippo , Proteínas Serina-Treonina Quinasas , Transducción de Señal
2.
Genes Dev ; 36(21-24): 1119-1128, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36522128

RESUMEN

The Hippo-YAP signaling pathway plays a critical role in development, homeostasis, regeneration, and tumorigenesis by converging on YAP, a coactivator for the TEAD family DNA-binding transcription factors, to regulate downstream transcription programs. Given its pivotal role as the nuclear effector of the Hippo pathway, YAP is indispensable in multiple developmental and tissue contexts. Here we report that the essentiality of YAP in liver and lung development can be genetically bypassed by simultaneous inactivation of the TEAD corepressor VGLL4. This striking antagonistic epistasis suggests that the major physiological function of YAP is to antagonize VGLL4. We further show that the YAP-VGLL4 antagonism plays a widespread role in regulating Hippo pathway output beyond normal development, as inactivation of Vgll4 dramatically enhanced intrahepatic cholangiocarcinoma formation in Nf2-deficient livers and ameliorated CCl4-induced damage in normal livers. Interestingly, Vgll4 expression is temporally regulated in development and regeneration and, in certain contexts, provides a better indication of overall Hippo pathway output than YAP phosphorylation. Together, these findings highlight the central importance of VGLL4-mediated transcriptional repression in Hippo pathway regulation and inform potential strategies to modulate Hippo signaling in cancer and regenerative medicine.


Asunto(s)
Vía de Señalización Hippo , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Señalizadoras YAP , Factores de Transcripción de Dominio TEA
3.
Pestic Biochem Physiol ; 202: 105955, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879308

RESUMEN

Bacterial diseases pose a significant threat to the sustainable production of crops. Given the unsatisfactory performance and poor eco-compatibility of conventional bactericides, here we present a series of newly structured bactericides that are inspiringly designed by aurone found in plants of the Asteraceae family. These aurone-derived compounds contain piperazine sulfonamide motifs and have shown promising in vitro performance against Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola and Xanthomonas axonopodis pv. citri, in particular, compound II23 achieved minimum half-maximal effective concentrations of 1.06, 0.89, and 1.78 µg/mL, respectively. In vivo experiments conducted in a greenhouse environment further revealed that II23 offers substantial protective and curative effects ranging between 68.93 and 70.29% for rice bacterial leaf streak and 53.17-64.43% for citrus bacterial canker, which stands in activity compared with lead compound aurone and commercial thiodiazole copper. Additional physiological and biochemical analyses, coupled with transcriptomics, have verified that II23 enhances defense enzyme activities and chlorophyll levels in rice. Significantly, it also stimulates the accumulation of abscisic acid (ABA) and upregulates the expression of key genes OsPYL/RCAR5, OsBIPP2C1, and OsABF1, thereby activating the ABA signaling pathway in rice plants under biological stress from bacterial infections.


Asunto(s)
Piperazinas , Enfermedades de las Plantas , Sulfonamidas , Xanthomonas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Xanthomonas/efectos de los fármacos , Piperazinas/farmacología , Piperazinas/química , Sulfonamidas/farmacología , Oryza/microbiología , Antibacterianos/farmacología , Xanthomonas axonopodis/efectos de los fármacos , Benzofuranos
4.
Appl Opt ; 62(17): 4505-4511, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37707143

RESUMEN

A high-energy and high-average-power pulsed fiber laser has been investigated in a master oscillator power amplifier (MOPA) configuration seeding with a diode laser at a programmed pulse duration of ∼250ns. The fiber amplifier successfully demonstrates the pulse with 21.4 mJ at the repetition rate of 50 kHz and a maximum average output power of 1535 W with a slope efficiency of 81.6% at 250 kHz. To overcome fiber nonlinearities such as stimulated Raman scattering (SRS) and self-phase modulation (SPM), extra-large mode area ytterbium (Yb)-doped step-index dual cladding fiber has been utilized as gain fiber in the MOPA laser system. The gain saturation effect in the power amplifier was greatly mitigated by the programmed seed signal. This pulse-shaped MOPA system can provide practical applications in many fields such as laser cleaning, paint stripping, and other applications requiring special pulse shapes.

5.
Biochem Genet ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37812283

RESUMEN

Breast cancer (BC) is the most abundant and aggressive cancer that impacts millions of women with poorly understood mechanisms. Here, we aimed to investigate the function of LINC01806 in BC development. Human BC tissues and nearby normal specimens were taken from diagnosed BC patients. The expression levels of LINC01806, miR-1286, ZEB1, and EMT-related markers were evaluated by qRT-PCR and western blotting. FISH was used to visualize the subcellular localization of LINC01806. The viability, proliferation, migration and invasion capacities of BC cells were assessed by MTT, colony formation, and transwell assays. Interactions among LINC01806, miR-1286 and ZEB1 were validated by dual luciferase assay. The unpaired Student t-test (for two groups) or one-way ANOVA following with Tukey post-hoc test (for more than three groups) was employed for statistical analysis. LINC01806 level was elevated in BC tissues. Knockdown of LINC01806 suppressed EMT process and BC cell proliferation, migration, and invasion. LINC01806 co-localized and directly bound with miR-1286 in the cytoplasm. MiR-1286 inhibitor blocked the effects of LINC01806 knockdown on BC cell EMT, proliferation and migration. MiR-1286 targeted ZEB1 and overexpression of ZEB1 blocked the regulatory functions of miR-1286 mimics in BC. LINC01806 facilitates EMT and accelerates BC cell proliferation, migration, and invasion via acting as miR-1286 sponge to disinhibit ZEB1 expression.

6.
Development ; 146(17)2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31399469

RESUMEN

The dramatic growth that occurs during Drosophila larval development requires rapid conversion of nutrients into biomass. Many larval tissues respond to these biosynthetic demands by increasing carbohydrate metabolism and lactate dehydrogenase (LDH) activity. The resulting metabolic program is ideally suited for synthesis of macromolecules and mimics the manner by which cancer cells rely on aerobic glycolysis. To explore the potential role of Drosophila LDH in promoting biosynthesis, we examined how Ldh mutations influence larval development. Our studies unexpectedly found that Ldh mutants grow at a normal rate, indicating that LDH is dispensable for larval biomass production. However, subsequent metabolomic analyses suggested that Ldh mutants compensate for the inability to produce lactate by generating excess glycerol-3-phosphate (G3P), the production of which also influences larval redox balance. Consistent with this possibility, larvae lacking both LDH and G3P dehydrogenase (GPDH1) exhibit growth defects, synthetic lethality and decreased glycolytic flux. Considering that human cells also generate G3P upon inhibition of lactate dehydrogenase A (LDHA), our findings hint at a conserved mechanism in which the coordinate regulation of lactate and G3P synthesis imparts metabolic robustness to growing animal tissues.


Asunto(s)
Drosophila melanogaster/fisiología , Glicerolfosfato Deshidrogenasa/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Azúcares/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Modificados Genéticamente , Femenino , Glicerolfosfato Deshidrogenasa/genética , Glucólisis/genética , Homeostasis/genética , L-Lactato Deshidrogenasa/genética , Ácido Láctico/biosíntesis , Masculino , Mutación , NAD/metabolismo , Oxidación-Reducción
7.
J Biol Chem ; 295(7): 1889-1897, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31862735

RESUMEN

Sphingolipids (SLs) are structurally diverse lipids that are defined by the presence of a long-chain base (LCB) backbone. Typically, LCBs contain a single Δ4E double bond (DB) (mostly d18:1), whereas the dienic LCB sphingadienine (d18:2) contains a second DB at the Δ14Z position. The enzyme introducing the Δ14Z DB is unknown. We analyzed the LCB plasma profile in a gender-, age-, and BMI-matched subgroup of the CoLaus cohort (n = 658). Sphingadienine levels showed a significant association with gender, being on average ∼30% higher in females. A genome-wide association study (GWAS) revealed variants in the fatty acid desaturase 3 (FADS3) gene to be significantly associated with the plasma d18:2/d18:1 ratio (p = -log 7.9). Metabolic labeling assays, FADS3 overexpression and knockdown approaches, and plasma LCB profiling in FADS3-deficient mice confirmed that FADS3 is a bona fide LCB desaturase and required for the introduction of the Δ14Z double bond. Moreover, we showed that FADS3 is required for the conversion of the atypical cytotoxic 1-deoxysphinganine (1-deoxySA, m18:0) to 1-deoxysphingosine (1-deoxySO, m18:1). HEK293 cells overexpressing FADS3 were more resistant to m18:0 toxicity than WT cells. In summary, using a combination of metabolic profiling and GWAS, we identified FADS3 to be essential for forming Δ14Z DB containing LCBs, such as d18:2 and m18:1. Our results unravel FADS3 as a Δ14Z LCB desaturase, thereby disclosing the last missing enzyme of the SL de novo synthesis pathway.


Asunto(s)
Ácido Graso Desaturasas/genética , Estudio de Asociación del Genoma Completo , Esfingolípidos/genética , Animales , Ácido Graso Desaturasas/sangre , Células HEK293 , Humanos , Lípidos/genética , Ratones , Esfingolípidos/sangre , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Columna Vertebral/metabolismo
8.
Xenotransplantation ; 27(1): e12556, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31578787

RESUMEN

BACKGROUND: The dysfunction of islet grafts is generally attributed to hypoxia-induced damage. Mesenchymal stem cells (MSCs) are currently thought to effectively protect cells from various risk factors via regulating autophagy. In our study, we investigated if human umbilical cord-derived MSCs could ameliorate hypoxia-induced apoptosis in porcine islets by modulating autophagy, and we explored the underlying mechanisms. METHODS: Neonatal porcine islet cell clusters (NICCs) were cultured with human umbilical cord-derived MSC conditioned medium (huc-MSC-CM) and RPMI-1640 medium (control) under hypoxic conditions (1% O2 ) in vitro. NICCs were treated with 3-methyladenine (3-MA) and chloroquine (CQ) to examine the role of huc-MSC-CM in regulating autophagy. Finally, the levels of several cytokines secreted by huc-MSCs were detected by ELISAs, and the corresponding inhibitors were applied to investigate which cytokine mediates the protective effects of huc-MSC-CM. The effects of huc-MSC-CM on NICCs viability and autophagy were examined using AO/PI staining, flow cytometry analysis, transmission electron microscopy (TEM) and confocal fluorescence microscopy analysis. The insulin secretion of NICCs was tested with an insulin immunoradiometric assay kit. RESULTS: Compared to the control, the huc-MSC-CM treatment improved the viability of NICCs, inhibited apoptosis, increased autophagic activity and the levels of PI3K class III and phosphorylated Akt, while the ratio of phosphorylated mTOR/mTOR was reduced. These changes were reversed by CQ and 3-MA treatments. High concentrations of IL-6 were detected in hu-MSC-CM. Furthermore, recombinant IL-6 pre-treatment exerted similar effects as huc-MSC-CM, and these effects were reversed by a specific inhibitor of IL-6 (Sarilumab). CONCLUSIONS: Our results demonstrated that huc-MSC-CM improved islet viability and function by increasing autophagy through the PI3K/Akt/mTOR pathway under hypoxic conditions. Additionally, IL-6 plays an important role in the function of huc-MSC-CM.


Asunto(s)
Hipoxia/metabolismo , Islotes Pancreáticos/fisiología , Células Madre Mesenquimatosas/fisiología , Animales , Animales Recién Nacidos , Autofagia , Muerte Celular , Células Cultivadas , Medios de Cultivo Condicionados , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Porcinos , Serina-Treonina Quinasas TOR/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(6): 1353-1358, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115720

RESUMEN

L-2-hydroxyglutarate (L-2HG) has emerged as a putative oncometabolite that is capable of inhibiting enzymes involved in metabolism, chromatin modification, and cell differentiation. However, despite the ability of L-2HG to interfere with a broad range of cellular processes, this molecule is often characterized as a metabolic waste product. Here, we demonstrate that Drosophila larvae use the metabolic conditions established by aerobic glycolysis to both synthesize and accumulate high concentrations of L-2HG during normal developmental growth. A majority of the larval L-2HG pool is derived from glucose and dependent on the Drosophila estrogen-related receptor (dERR), which promotes L-2HG synthesis by up-regulating expression of the Drosophila homolog of lactate dehydrogenase (dLdh). We also show that dLDH is both necessary and sufficient for directly synthesizing L-2HG and the Drosophila homolog of L-2-hydroxyglutarate dehydrogenase (dL2HGDH), which encodes the enzyme that breaks down L-2HG, is required for stage-specific degradation of the L-2HG pool. In addition, dLDH also indirectly promotes L-2HG accumulation via synthesis of lactate, which activates a metabolic feed-forward mechanism that inhibits dL2HGDH activity and stabilizes L-2HG levels. Finally, we use a genetic approach to demonstrate that dLDH and L-2HG influence position effect variegation and DNA methylation, suggesting that this compound serves to coordinate glycolytic flux with epigenetic modifications. Overall, our studies demonstrate that growing animal tissues synthesize L-2HG in a controlled manner, reveal a mechanism that coordinates glucose catabolism with L-2HG synthesis, and establish the fly as a unique model system for studying the endogenous functions of L-2HG during cell growth and proliferation.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Glutaratos/metabolismo , Glucólisis , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Línea Celular , Metilación de ADN , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Glutaratos/química , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Estereoisomerismo
10.
Cancer Sci ; 109(7): 2101-2108, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29751367

RESUMEN

In recent years, Epstein-Barr virus (EBV) lytic infection has been shown to significantly contribute to carcinogenesis. Thus, therapies aimed at targeting the EBV lytic cycle have been developed as novel strategies for treatment of EBV-associated malignancies. In this review, focusing on the viral lytic proteins, we describe recent advances regarding the involvement of the EBV lytic cycle in carcinogenesis. Moreover, we further discuss 2 distinct EBV lytic cycle-targeted therapeutic strategies against EBV-induced malignancies. One of the strategies involves inhibition of the EBV lytic cycle by natural compounds known to have anti-EBV properties; another is to intentionally induce EBV lytic replication in combination with nucleotide analogues. Recent advances in EBV lytic-based strategies are beginning to show promise in the treatment and/or prevention of EBV-related tumors.


Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Neoplasias/virología , Replicación Viral , Herpesvirus Humano 4 , Humanos
11.
Biochem Biophys Res Commun ; 495(4): 2512-2518, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29278702

RESUMEN

Hypoxia and islet inflammation are involved in ß-cell failure in type 2 diabetes (T2D). Elevated plasma LPS levels have been verified in patients with T2D, and hypoxia occurs in islets of diabetic mice. Activation of inflammasomes in ischemic or hypoxic conditions was identified in various tissues. Here, we investigated whether hypoxia activates the inflammasome in ß cells and the possible mechanisms involved. In mouse insulinoma cell line 6 (MIN6), hypoxia (1% O2) primes the NLRP3 inflammasome along with NF-κB signaling activation. Our results demonstrate that hypoxia can activate the NLRP3 inflammasome in LPS-primed MIN6 to result in initiating the ß cell inflammatory response and cell death in vitro. Reactive oxygen species (ROS) and the thioredoxin-interacting protein (TXNIP) are up-regulated in response to hypoxia. Finally, the role of the ROS-TXNIP axis in mediating the activation of the NLRP3 inflammasome and cell death was characterized by pretreating with the ROS scavenger N-acetylcysteine (NAC) and performing TXNIP knockdown experiments in MIN6. Our data indicate for the first time that the inflammasome is involved in the inflammatory response and cell death in hypoxia-induced ß cells through the ROS-TXNIP-NLRP3 axis in vitro. This provides new insight into the relationship between hypoxia and inflammation in T2D.


Asunto(s)
Apoptosis/inmunología , Proteínas Portadoras/inmunología , Hipoxia de la Célula/inmunología , Inflamasomas/inmunología , Células Secretoras de Insulina/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Especies Reactivas de Oxígeno/inmunología , Tiorredoxinas/inmunología , Animales , Apoptosis/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Línea Celular , Inflamasomas/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Lipopolisacáridos , Ratones , FN-kappa B/inmunología
12.
Food Microbiol ; 70: 76-84, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29173643

RESUMEN

In the beverage fermentation industry, especially at the craft or micro level, there is a movement to incorporate as many local ingredients as possible to both capture terroir and stimulate local economies. In the case of craft beer, this has traditionally only encompassed locally sourced barley, hops, and other agricultural adjuncts. The identification and use of novel yeasts in brewing lags behind. We sought to bridge this gap by bio-prospecting for wild yeasts, with a focus on the American Midwest. We isolated 284 different strains from 54 species of yeast and have begun to determine their fermentation characteristics. During this work, we found several isolates of five species that produce lactic acid and ethanol during wort fermentation: Hanseniaspora vineae, Lachancea fermentati, Lachancea thermotolerans, Schizosaccharomyces japonicus, and Wickerhamomyces anomalus. Tested representatives of these species yielded excellent attenuation, lactic acid production, and sensory characteristics, positioning them as viable alternatives to lactic acid bacteria (LAB) for the production of sour beers. Indeed, we suggest a new LAB-free paradigm for sour beer production that we term "primary souring" because the lactic acid production and resultant pH decrease occurs during primary fermentation, as opposed to kettle souring or souring via mixed culture fermentation.


Asunto(s)
Cerveza/análisis , Microbiología de Alimentos/métodos , Ácido Láctico/metabolismo , Levaduras/metabolismo , Cerveza/microbiología , Etanol/análisis , Etanol/metabolismo , Fermentación , Humanos , Ácido Láctico/análisis , Gusto , Levaduras/clasificación , Levaduras/genética
13.
Int J Cancer ; 141(9): 1722-1729, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28571118

RESUMEN

Epstein-Barr virus (EBV) is an important cancer causing virus. Cancer associated with EBV account for approximately 1.5% of all cancers, and represent 1.8% of all cancer deaths worldwide. EBV reactivation plays an important role in the development of EBV-related diseases and is closely related with patients' survival and clinical stages of EBV-related cancers. The therapy regarding to EBV-related cancers is very urgent, especially in endemic areas. Generating oxidative stress is a critical mechanism by which host cells defend against infection by virus. In addition, ROS-mediated oxidative stress plays a significant but paradoxical role acting as a "double-edged sword" to regulate cellular response to radiation, which is the main therapy strategy for EBV-related cancers, especially nasopharyngeal carcinoma. Therefore, in this review we primarily discuss the possible interplay among the oxidative stress, EBV lytic reactivation and radioresistance. Understanding the role of oxidative stress in EBV lytic reactivation and radioresistance will assist in the development of effective strategies for prevention and treatment of EBV-related cancers.


Asunto(s)
Carcinoma/genética , Infecciones por Virus de Epstein-Barr/genética , Neoplasias Nasofaríngeas/genética , Estrés Oxidativo/genética , Tolerancia a Radiación/genética , Carcinoma/patología , Carcinoma/radioterapia , Carcinoma/virología , Infecciones por Virus de Epstein-Barr/patología , Infecciones por Virus de Epstein-Barr/radioterapia , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidad , Herpesvirus Humano 4/efectos de la radiación , Interacciones Huésped-Patógeno , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/virología , Estrés Oxidativo/efectos de la radiación , Activación Viral/genética , Activación Viral/efectos de la radiación
14.
Analyst ; 139(7): 1769-78, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24519438

RESUMEN

Plant metabolomic analysis has become an essential part of functional genomics and systems biology and requires effective extraction of both primary and secondary metabolites from plant cells. To establish an optimized extraction method for the NMR-based analysis, we used the seeds of mungbean (Vigna radiata cv. Elü no. 1) as a model and systematically investigated the dependence of the metabolite composition in plant extracts on various extraction parameters including cell-breaking methods, extraction solvents, number of extraction repeats, tissue-to-solvent ratio, and extract-to-buffer ratio (for final NMR analysis). We also compared two NMR approaches for quantitative metabolomic analysis from completely relaxed spectra directly and from partially relaxed spectra calculated with T1. By maximizing the extraction efficiency and signal-to-noise ratio but minimizing inter-sample chemical-shift variations and metabolite degradations, we established a parameter-optimized protocol for NMR-based plant seed metabolomic analysis. We concluded that aqueous methanol was the best extraction solvent with an optimal tissue-to-solvent ratio of about 1 : 10-1 : 15 (mg per µL). The combination of tissuelyser homogenization with ultrasonication was the choice of cell-breaking method with three repeated extractions being necessary. For NMR analysis, the optimal extract-to-solvent was around 5-8 mg mL(-1) and completely relaxed spectra were ideal for intrinsically quantitative metabolomic analysis although partially relaxed spectra were employable for comparative metabolomics. This optimized method will offer ensured data quality for high-throughput and reliable plant metabolomics studies.


Asunto(s)
Fabaceae/metabolismo , Metaboloma , Metabolómica/métodos , Resonancia Magnética Nuclear Biomolecular/métodos , Semillas/metabolismo , Extracción en Fase Sólida/métodos , Tampones (Química) , Ensayos Analíticos de Alto Rendimiento/métodos , Solventes/química , Sonicación
15.
bioRxiv ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38895259

RESUMEN

Drosophila larval growth requires efficient conversion of dietary nutrients into biomass. Lactate Dehydrogenase (Ldh) and Glycerol-3-phosphate dehydrogenase (Gpdh1) support larval biosynthetic metabolism by maintaining NAD+/NADH redox balance and promoting glycolytic flux. Consistent with the cooperative functions of Ldh and Gpdh1, the loss of both enzymes, but neither single enzyme, induces a developmental arrest. However, Ldh and Gpdh1 exhibit complex and often mutually exclusive expression patterns, suggesting that the Gpdh1; Ldh double mutant lethal phenotype could be mediated nonautonomously. Here we find that the developmental arrest displayed by the double mutants extends beyond simple metabolic disruption and instead stems, in part, from changes in systemic growth factor signaling. Specifically, we demonstrate that this synthetic lethality is linked to the upregulation of Upd3, a cytokine involved in the Jak/Stat signaling pathway. Moreover, we demonstrate that either loss of the Upd3 or dietary administration of the steroid hormone 20-hydroxyecdysone (20E) rescue the synthetic lethal phenotype of Gpdh1; Ldh double mutants. Together, these findings demonstrate that metabolic disruptions within a single tissue can nonautonomously modulate interorgan signaling to ensure synchronous developmental growth.

16.
J Agric Food Chem ; 72(18): 10195-10205, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38662962

RESUMEN

The unsatisfactory effects of conventional bactericides and antimicrobial resistance have increased the challenges in managing plant diseases caused by bacterial pests. Here, we report the successful design and synthesis of benzofuran derivatives using benzofuran as the core skeleton and splicing the disulfide moieties commonly seen in natural substances with antibacterial properties. Most of our developed benzofurans displayed remarkable antibacterial activities to frequently encountered pathogens, including Xanthomonas oryzae pv oryzae (Xoo), Xanthomonas oryzae pv oryzicola (Xoc), and Xanthomonas axonopodis pv citri (Xac). With the assistance of the three-dimensional quantitative constitutive relationship (3D-QSAR) model, the optimal compound V40 was obtained, which has better in vitro antibacterial activity with EC50 values of 0.28, 0.56, and 10.43 µg/mL against Xoo, Xoc, and Xac, respectively, than those of positive control, TC (66.41, 78.49, and 120.36 µg/mL) and allicin (8.40, 28.22, and 88.04 µg/mL). Combining the results of proteomic analysis and enzyme activity assay allows the antibacterial mechanism of V40 to be preliminarily revealed, suggesting its potential as a versatile bactericide in combating bacterial pests in the future.


Asunto(s)
Antibacterianos , Benzofuranos , Disulfuros , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Xanthomonas , Benzofuranos/farmacología , Benzofuranos/química , Benzofuranos/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Xanthomonas/efectos de los fármacos , Disulfuros/química , Disulfuros/farmacología , Enfermedades de las Plantas/microbiología , Relación Estructura-Actividad Cuantitativa , Estructura Molecular , Xanthomonas axonopodis/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Oryza/microbiología , Oryza/química
17.
J Proteome Res ; 12(8): 3801-8, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23827011

RESUMEN

Enhanced green fluorescent protein (EGFP) is a widely used biological reporter. However, the effects of EGFP expression in vivo are still unclear. To investigate the effects of EGFP transgenic expression in vivo, we employed an NMR-based metabonomics method to analyze the metabonome of EGFP transgenic mice. The results show that the metabonomes of urine, liver, and kidney of the EGFP transgenic mice are different from their wild-type counterparts. The EGFP mice expressed high levels of urinary 3-ureidopropionate, which is due to the down-regulated transcriptional level of ß-ureidopropionase. The expression of EGFP in vivo also affects other metabolic pathways, including nucleic acid metabolism, energy utilization, and amino acids catabolism. These findings indicate that EGFP transgenic expression is not as inert as has been considered. Our investigation provides a holistic view on the effect of EGFP expression in vivo, which is useful when EGFP is employed as a functional biological indicator. Our work also highlights the potential of a metabonomics strategy in studying the association between molecular phenotypes and gene function.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Riñón/metabolismo , Hígado/metabolismo , Ratones Transgénicos/orina , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Ciclo del Ácido Cítrico/genética , Femenino , Genes Reporteros , Estudio de Asociación del Genoma Completo , Glucogenólisis/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos/genética , Ácidos Nucleicos/genética , Ácidos Nucleicos/metabolismo , beta-Alanina/análogos & derivados , beta-Alanina/orina
18.
Carcinogenesis ; 34(3): 627-37, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23180656

RESUMEN

Epstein-Barr virus (EBV) reactivation into the lytic cycle plays certain roles in the development of EBV-associated diseases, including nasopharyngeal carcinoma and lymphoma. In this study, we investigated the effects of the tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) on EBV spontaneous lytic infection and the mechanism(s) involved in EBV-positive cells. We found that EGCG could effectively inhibit the constitutive lytic infection of EBV at the DNA, gene transcription and protein levels by decreasing the phosphorylation and activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt. By using cellular signaling pathway-specific inhibitors, we also explored the signaling mechanisms underlying the inhibitory effects of EGCG on EBV spontaneous lytic infection in cell models. Results show that specific inhibitors of Mitogen-Activated Protein Kinase Kinase (MEK) (PD98059) and phosphatidylinositol 3-kinase [PI3-K (LY294002)] markedly downregulated gene transcription and expression of BZLF1 and BMRF1 indicating that the MEK/ERK1/2 and PI3-K/Akt pathways are involved in the EBV spontaneous lytic cycle cascade. Therefore, one of the mechanisms by which EGCG inhibits EBV spontaneous lytic infection appears to involve the suppression of the activation of MEK/ERK1/2 and PI3-K/Akt signaling.


Asunto(s)
Antivirales/farmacología , Catequina/análogos & derivados , Herpesvirus Humano 4/efectos de los fármacos , Sistema de Señalización de MAP Quinasas , Fosfatidilinositol 3-Quinasas/metabolismo , Activación Viral/efectos de los fármacos , Catequina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromonas/farmacología , ADN Viral/metabolismo , Activación Enzimática , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Flavonoides/farmacología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/fisiología , Humanos , Linfoma/metabolismo , Linfoma/virología , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Morfolinas/farmacología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/virología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Virales/metabolismo
19.
Int J Mol Sci ; 14(2): 2355-69, 2013 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-23348929

RESUMEN

Cells are constantly damaged by factors that can induce DNA damage. Eukaryotic cells must rapidly load DNA repair proteins onto damaged chromatin during the DNA damage response (DDR). Chromatin-remodeling complexes use the energy from ATP hydrolysis to remodel nucleosomes and have well-established functions in transcription. Emerging lines of evidence indicate that chromatin-remodeling complexes are important and may remodel nucleosomes during DNA damage repair. New studies also reveal that ATP-dependent chromatin remodeling is involved in cell cycle progression, signal transduction pathways, and interaction and modification of DDR-related proteins that are specifically and intimately connected with the process of DNA damage. This article summarizes the recent advances in our understanding of the interplay between chromatin remodeling and DNA damage response.

20.
J Agric Food Chem ; 71(3): 1405-1416, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36644843

RESUMEN

Infestation of rice with the bacterium Xanthomonas oryzae pv. oryzicola (Xoc) causes the serious disease bacterial leaf streak (BLS). We studied the effect of ethylicin, a broad-spectrum bactericide, on Xoc both in vivo and in vitro. Ethylicin increases the defensive enzyme activities and defensive genes expression of rice. Ethylicin also significantly inhibited Xoc activity in vitro compared with other commercial bactericides. The half-maximal effective concentration (EC50) of ethylicin was 2.12 µg/mL. It has been shown that ethylicin can inhibit Xoc quorum sensing through the production of extracellular polysaccharides and enzymes, which disrupt the Xoc cell membrane. We used proteomic analysis to identify two oxidative phosphorylation pathway proteins (ACU12_RS13405 and ACU12_RS13355) which affected the virulence of Xoc and validated them using quantitative real-time polymerase chain reaction (qRT-PCR). The results indicate that ethylicin can increase the defense responses of rice and control Xoc proliferation.


Asunto(s)
Oryza , Xanthomonas , Proteínas Bacterianas/metabolismo , Proteómica , Virulencia , Xanthomonas/genética , Oryza/metabolismo , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA