RESUMEN
KRAS mutant pancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic response that promotes hypovascularity, immunosuppression, and resistance to chemo- and immunotherapies. We show that a combination of MEK and CDK4/6 inhibitors that target KRAS-directed oncogenic signaling can suppress PDAC proliferation through induction of retinoblastoma (RB) protein-mediated senescence. In preclinical mouse models of PDAC, this senescence-inducing therapy produces a senescence-associated secretory phenotype (SASP) that includes pro-angiogenic factors that promote tumor vascularization, which in turn enhances drug delivery and efficacy of cytotoxic gemcitabine chemotherapy. In addition, SASP-mediated endothelial cell activation stimulates the accumulation of CD8+ T cells into otherwise immunologically "cold" tumors, sensitizing tumors to PD-1 checkpoint blockade. Therefore, in PDAC models, therapy-induced senescence can establish emergent susceptibilities to otherwise ineffective chemo- and immunotherapies through SASP-dependent effects on the tumor vasculature and immune system.
Asunto(s)
Envejecimiento/fisiología , Carcinoma Ductal Pancreático/patología , Remodelación Vascular/fisiología , Animales , Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/microbiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Genes ras/genética , Humanos , Inmunoterapia/métodos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Neoplasias Pancreáticas/patología , Proteína de Retinoblastoma/inmunología , Transducción de Señal/genética , Microambiente Tumoral , Remodelación Vascular/genéticaRESUMEN
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers worldwide and evolves often to lung metastasis. P53R175H (homologous to Trp53R172H in mice) is a common hot spot mutation. How metastasis is regulated by p53R175H in ESCC remains to be investigated. To investigate p53R175H-mediated molecular mechanisms, we used a carcinogen-induced approach in Trp53R172H/- mice to model ESCC. In the primary Trp53R172H/- tumor cell lines, we depleted Trp53R172H (shTrp53) and observed a marked reduction in cell invasion in vitro and lung metastasis burden in a tail-vein injection model in comparing isogenic cells (shCtrl). Furthermore, we performed bulk RNA-seq to compare gene expression profiles of metastatic and primary shCtrl and shTrp53 cells. We identified the YAP-BIRC5 axis as a potential mediator of Trp53R172H -mediated metastasis. We demonstrate that expression of Survivin, an antiapoptotic protein encoded by BIRC5, increases in the presence of Trp53R172H Furthermore, depletion of Survivin specifically decreases Trp53R172H-driven lung metastasis. Mechanistically, Trp53R172H but not wild-type Trp53, binds with YAP in ESCC cells, suggesting their cooperation to induce Survivin expression. Furthermore, Survivin high expression level is associated with increased metastasis in several GI cancers. Taken together, this study unravels new insights into how mutant p53 mediates metastasis.
Asunto(s)
Neoplasias Pulmonares/fisiopatología , Survivin/genética , Survivin/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pulmonares/genética , Ratones , Mutación , Metástasis de la Neoplasia , Transcriptoma , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
The biological and functional heterogeneity between tumors-both across and within cancer types-poses a challenge for immunotherapy. To understand the factors underlying tumor immune heterogeneity and immunotherapy sensitivity, we established a library of congenic tumor cell clones from an autochthonous mouse model of pancreatic adenocarcinoma. These clones generated tumors that recapitulated T cell-inflamed and non-T-cell-inflamed tumor microenvironments upon implantation in immunocompetent mice, with distinct patterns of infiltration by immune cell subsets. Co-injecting tumor cell clones revealed the non-T-cell-inflamed phenotype is dominant and that both quantitative and qualitative features of intratumoral CD8+ T cells determine response to therapy. Transcriptomic and epigenetic analyses revealed tumor-cell-intrinsic production of the chemokine CXCL1 as a determinant of the non-T-cell-inflamed microenvironment, and ablation of CXCL1 promoted T cell infiltration and sensitivity to a combination immunotherapy regimen. Thus, tumor cell-intrinsic factors shape the tumor immune microenvironment and influence the outcome of immunotherapy.
Asunto(s)
Adenocarcinoma/terapia , Factores Inmunológicos/inmunología , Inmunoterapia , Subgrupos Linfocitarios/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Pancreáticas/terapia , Microambiente Tumoral/inmunología , Adenocarcinoma/inmunología , Adenocarcinoma/patología , Anciano , Anciano de 80 o más Años , Animales , Linfocitos T CD8-positivos/inmunología , Epigenómica , Femenino , Perfilación de la Expresión Génica , Humanos , Factores Inmunológicos/genética , Masculino , Ratones , Persona de Mediana Edad , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Cultivo Primario de Células , Neoplasias PancreáticasRESUMEN
Secondary metabolites are important facilitators of plant-microbe interactions in the rhizosphere, contributing to communication, competition, and nutrient acquisition. However, at first glance, the rhizosphere seems full of metabolites with overlapping functions, and we have a limited understanding of basic principles governing metabolite use. Increasing access to the essential nutrient iron is one important, but seemingly redundant role performed by both plant and microbial Redox-Active Metabolites (RAMs). We used coumarins, RAMs made by the model plant Arabidopsis thaliana, and phenazines, RAMs made by soil-dwelling pseudomonads, to ask whether plant and microbial RAMs might each have distinct functions under different environmental conditions. We show that variations in oxygen and pH lead to predictable differences in the capacity of coumarins vs phenazines to increase the growth of iron-limited pseudomonads and that these effects depend on whether pseudomonads are grown on glucose, succinate, or pyruvate: carbon sources commonly found in root exudates. Our results are explained by the chemical reactivities of these metabolites and the redox state of phenazines as altered by microbial metabolism. This work shows that variations in the chemical microenvironment can profoundly affect secondary metabolite function and suggests plants may tune the utility of microbial secondary metabolites by altering the carbon released in root exudates. Together, these findings suggest that RAM diversity may be less overwhelming when viewed through a chemical ecological lens: Distinct molecules can be expected to be more or less important to certain ecosystem functions, such as iron acquisition, depending on the local chemical microenvironments in which they reside.
Asunto(s)
Arabidopsis , Cumarinas , Cumarinas/metabolismo , Fenazinas , Ecosistema , Arabidopsis/metabolismo , Plantas/metabolismo , Hierro/metabolismo , Rizosfera , Raíces de Plantas/metabolismoRESUMEN
Increasing the charging cutoff voltage of LiCoO2 to 4.6 V is significant for enhancing battery density. However, the practical application of LiâLiCoO2 batteries with a 4.6 V cutoff voltage faces significant impediments due to the detrimental changes under high voltage. This study presents a novel bifunctional electrolyte additive, 2-(trifluoromethyl)benzamide (2-TFMBA), which is employed to establish a stable and dense cathode-electrolyte interface (CEI). Characterization results reveal that an optimized CEI is achieved through the synergistic effects of the amide groups and trifluoromethyl groups within 2-TFMBA. The resulting CEI not only enhances the structural stability of LiCoO2 but also serves as a high-speed lithium-ion conduction channel, which expedites the insertion and extraction of lithium ions. The LiâLiCoO2 batteries with 0.5 wt% 2-TFMBA achieves an 84.7% capacity retention rate after enduring 300 cycles at a current rate of 1 C, under a cut-off voltage of 4.6 V. This study provides valuable strategic insights into the stabilization of cathode materials in high-voltage batteries.
RESUMEN
The increasing need for energy storage devices with high energy density has led to significant interest in Li-metal batteries (LMBs). However, the use of commercial electrolytes in LMBs is problematic due to their flammability, inadequate performance at low temperatures, and tendency to promote the growth of lithium dendrites and other flaws. This study introduces a localized high-concentration electrolyte (LHCE) that addresses these issues by employing non-flammable electrolyte components and incorporating carefully designed additives to enhance flame retardancy and low-temperature performance. By incorporating additives to optimize the electrolyte, it is possible to attain inorganic-dominated solid electrolyte interphases on both the cathode and anode. This achievement results in a uniform deposition of lithium, as well as the suppression of electrolyte decomposition and cathode deterioration. Consequently, this LHCE achieve over 300 stable cycles for both LiNi0.9Mn0.05Co0.05O2||Li cells and LiCoO2||Li cells, as well as 50 cycles for LiNi0.8Mn0.1Co0.1O2 (NCM811||Li) pouch cells. Furthermore, NCM811||Li cells maintain 84% discharge capacity at -20 °C, in comparison to the capacity at room temperature. The utilization of this electrolyte presents novel perspectives for the safe implementation of LMBs.
RESUMEN
The long-term high-fat diet (HFD) can cause myocardial lipotoxicity, which is characterized pathologically by myocardial hypertrophy, fibrosis, and remodeling and clinically by cardiac dysfunction and heart failure in patients with obesity and diabetes. Circular RNAs (circRNAs), a novel class of noncoding RNA characterized by a ring formation through covalent bonds, play a critical role in various cardiovascular diseases. However, few studies have been conducted to investigate the role and mechanism of circRNA in myocardial lipotoxicity. Here, we found that circ_005077, formed by exon 2-4 of Crmp1, was significantly upregulated in the myocardium of an HFD-fed rat. Furthermore, we identified circ_005077 as a novel ferroptosis-related regulator that plays a role in palmitic acid (PA) and HFD-induced myocardial lipotoxicity in vitro and in vivo. Mechanically, circ_005077 interacted with Cyclophilin A (CyPA) and inhibited its degradation via the ubiquitination proteasome system (UBS), thus promoting the interaction between CyPA and p47phox to enhance the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase responsible for ROS generation, subsequently inducing ferroptosis. Therefore, our results provide new insights into the mechanisms of myocardial lipotoxicity, potentially leading to the identification of a novel therapeutic target for the treatment of myocardial lipotoxicity in the future.
Asunto(s)
Ciclofilina A , Dieta Alta en Grasa , Ferroptosis , Animales , Ratas , Ciclofilina A/metabolismo , Miocardio/metabolismo , Obesidad/metabolismoRESUMEN
Human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) therapies are promising alternatives for the treatment of retinal degenerative diseases caused by RPE degeneration. The generation of autologous RPE cells from human adult donors, which has the advantage of avoiding immune rejection and teratoma formation, is an alternative cell resource to gain mechanistic insight into and test potential therapies for RPE degenerative diseases. Here, we found that limbal stem cells (LSCs) from hESCs and adult primary human limbus have the potential to produce RPE cells and corneal stromal stem cells (CSSCs). We showed that hESC-LSC-derived RPE cells (LSC-RPE) expressed RPE markers, had a phagocytic function, and synthesized tropical factors. Furthermore, during differentiation from LSCs to RPE cells, cells became pigmented, accompanied by a decrease in the level of LSC marker KRT15 and an increase in the level of RPE marker MITF. The Wnt signaling pathway plays a role in LSC-RPE fate transition, promotes MITF expression in the nucleus, and encourages RPE fate transition. In addition, we also showed that primary LSCs (pLSCs) from adult human limbus similar to hESC-LSC could generate RPE cells, which was supported by the co-expression of LSC and RPE cell markers (KRT15/OTX2, KRT15/MITF), suggesting the transition from pLSC to RPE cells, and typical polygonal morphology, melanization, RPE cell marker genes expression (TYR, RPE65), tight junction formation by ZO-1 expression, and the most crucial phagocytotic function. On the other hand, both hESC-LSCs and pLSCs also differentiated into CSSCs (LSC-CSSCs) that expressed stem cell markers (PAX6, NESTIN), presented MSC features, including surface marker expression and trilineage differentiation capability, like those in human CSSCs. Furthermore, the capability of pLSC-CSSC to differentiate into cells expressing keratocyte marker genes (ALDH3A1, PTGDS, PDK4) indicated the potential to induce keratocytes. These results suggest that the adult pLSC is an alternative cell resource, and its application provides a novel potential therapeutic avenue for preventing RPE dysfunction-related retinal degenerative diseases and corneal scarring.
Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Limbares , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Diferenciación Celular , Células Epiteliales/metabolismo , Pigmentos Retinianos/metabolismoRESUMEN
Chemodynamic therapy (CDT) is a novel antitumor strategy that employs Fenton or Fenton-like reactions to generate highly toxic hydroxyl radical (OHâ¢) from hydrogen peroxide (H2O2) for inducing tumor cell death. However, the antitumor efficacy of the CDT strategy is harshly limited by the redox homeostasis of tumor cells; especially the OH ⢠is easily scavenged by glutathione (GSH) and the intracellular H2O2 level is insufficient in the tumor cells. Herein, we propose the Mn2+-menadione (also known as vitamin K3, MK3) cascade biocatalysis strategy to disrupt the redox homeostasis of tumor cells and induce a OH⢠storm, resulting in enhanced CDT effect. A nanoliposome encapsulating Mn-MK3 (Mn-MK3@LP) was prepared for the treatment of hepatic tumors in this study. After Mn-MK3@LPs were taken up by tumor cells, menadione could facilitate the production of intracellular H2O2 via redox cycling, and further the cytotoxic OH ⢠burst was induced by Mn2+-mediated Fenton-like reaction. Moreover, high-valent manganese ions were reduced by GSH and the depletion of GSH further disrupted the redox homeostasis of tumor cells, thus achieving synergistically enhanced CDT. Overall, both cellular and animal experiments confirmed that the Mn-MK3@LP cascade biocatalysis nanoliposome exhibited excellent biosafety and tumor suppression efficacy. This study may provide deep insights for developing novel CDT-based strategies for tumor therapy.
Asunto(s)
Glutatión , Peróxido de Hidrógeno , Radical Hidroxilo , Vitamina K 3 , Animales , Radical Hidroxilo/química , Radical Hidroxilo/metabolismo , Humanos , Ratones , Glutatión/metabolismo , Glutatión/química , Vitamina K 3/química , Vitamina K 3/farmacología , Biocatálisis , Línea Celular Tumoral , Manganeso/química , Oxidación-Reducción/efectos de los fármacos , Ratones Endogámicos BALB C , Liposomas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Ratones Desnudos , Células Hep G2 , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas/química , HierroRESUMEN
Topological quasiparticles have garnered significant research attention in condensed matter physics. However, they are exceedingly rare in two-dimensional systems, particularly those hosting unconventional topological quasiparticles. In this work, employing first-principles calculations and symmetry analysis, we demonstrate that PtS, PtSe, and PtTe monolayers serve as high-quality two-dimensional topological semimetal materials. These materials exhibit multiple types of topological quasiparticles around the Fermi level in the absence of spin-orbit coupling, such as conventional linear Weyl points and unconventional quadratic Weyl points in the PtS monolayer, as well as nodal loops in PtSe and PtTe monolayers. When spin-orbit coupling (SOC) is introduced, a tiny gap opens, transforming the systems into quantum spin hall insulators. Simultaneously, three spin-orbit Dirac points, robust against SOC, appear at the X, Y, and M points. We illustrate the symmetry protection, low-energy effective model, and edge states of these topological states. Our work provides an excellent material platform for studying novel two-dimensional topological quasiparticles and topological insulators.
RESUMEN
AIMS: This study aimed to investigate the antibacterial and anti-inflammatory effects of the antimicrobial peptide Microcin C7 for Porphyromonas gingivalis-associated diseases. METHODS AND RESULTS: Reverse-phase high-performance liquid chromatography revealed that Microcin C7 could remain 25.5% at 12 h in saliva. At a concentration of <10 mg ml-1, Microcin C7 showed better cytocompatibility, as revealed by a hemolysis test and a subchronic systemic toxicity test. Moreover, the minimum inhibitory concentration and minimum bactericidal concentration of Microcin C7 were analyzed using a broth microdilution method, bacterial growth curve, scanning electron microscopy, and confocal laser microscopy and determined to be 0.16 and 5 mg ml-1, respectively. Finally, in a rat model, 5 mg ml-1 Microcin C7 showed better performance in decreasing the expression of inflammatory factors (IL-1ß, IL-6, IL-8, and TNF-α) and alveolar bone resorption than other concentrations. CONCLUSIONS: Microcin C7 demonstrated favorable biocompatibility, antibacterial activity, and anti-inflammatory effect, and could decrease the alveolar bone resorption in a rat model, indicating the promising potential for clinical translation and application on P. gingivalis-associated diseases.
Asunto(s)
Antibacterianos , Bacteriocinas , Pruebas de Sensibilidad Microbiana , Porphyromonas gingivalis , Animales , Porphyromonas gingivalis/efectos de los fármacos , Porphyromonas gingivalis/crecimiento & desarrollo , Ratas , Bacteriocinas/farmacología , Antibacterianos/farmacología , Infecciones por Bacteroidaceae/tratamiento farmacológico , Infecciones por Bacteroidaceae/microbiología , Péptidos Antimicrobianos/farmacología , Masculino , Ratas Sprague-Dawley , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Pérdida de Hueso Alveolar/prevención & control , Pérdida de Hueso Alveolar/tratamiento farmacológico , Pérdida de Hueso Alveolar/microbiologíaRESUMEN
BACKGROUND: Regulatory B cells (Bregs) is an indispensable element in inducing immune tolerance after liver transplantation. As one of the microRNAs (miRNAs), miR-29a-3p also inhibits translation by degrading the target mRNA, and yet the relationship between Bregs and miR-29a-3p has not yet been fully explored. This study aimed to investigate the impact of miR-29a-3p on the regulation of differentiation and immunosuppressive functions of memory Bregs (mBregs) and ultimately provide potentially effective therapies in inducing immune tolerance after liver transplantation. METHODS: Flow cytometry was employed to determine the levels of Bregs in peripheral blood mononuclear cells. TaqMan low-density array miRNA assays were used to identify the expression of different miRNAs, electroporation transfection was used to induce miR-29a-3p overexpression and knockdown, and dual luciferase reporter assay was used to verify the target gene of miR-29a-3p. RESULTS: In patients experiencing acute rejection after liver transplantation, the proportions and immunosuppressive function of mBregs in the circulating blood were significantly impaired. miR-29a-3p was found to be a regulator of mBregs differentiation. Inhibition of miR-29a-3p, which targeted nuclear factor of activated T cells 5 (NFAT5), resulted in a conspicuous boost in the differentiation and immunosuppressive function of mBregs. The inhibition of miR-29a-3p in CD19+ B cells was capable of raising the expression levels of NFAT5, thereby promoting B cells to differentiate into mBregs. In addition, the observed enhancement of differentiation and immunosuppressive function of mBregs upon miR-29a-3p inhibition was abolished by the knockdown of NFAT5 in B cells. CONCLUSIONS: miR-29a-3p was found to be a crucial regulator for mBregs differentiation and immunosuppressive function. Silencing miR-29a-3p could be a potentially effective therapeutic strategy for inducing immune tolerance after liver transplantation.
Asunto(s)
Antígenos CD19 , Linfocitos B Reguladores , Antígeno CD24 , Diferenciación Celular , Trasplante de Hígado , MicroARNs , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Antígenos CD19/metabolismo , Antígenos CD19/genética , Masculino , Antígeno CD24/metabolismo , Antígeno CD24/genética , Transducción de Señal , Rechazo de Injerto/inmunología , Rechazo de Injerto/genética , Femenino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Persona de Mediana Edad , Tolerancia Inmunológica , Células Cultivadas , Adulto , Fenotipo , Memoria InmunológicaRESUMEN
Electrocatalytic biomass upgrading has proven to be an effective technique for generating value-added products. Herein, the design and development of furfural upgrading using transition-metal borides (MBenes) with simultaneous production of hydrogen are presented. Using density functional theory, the stabilities, selectivities, and activities of 13 MBene candidates are systematically evaluated for furfural upgrading. This research suggests that Fe2 B2 can serve as a promising electrocatalyst for the formation of furoic acid (FAC), with a limiting potential of -0.15 V, and 5-hydroxy-2(5H)-furanone (HFO), with a limiting potential of -0.93 V. Furthermore, Fe2 B2 and Mn2 Fe2 are shown to exhibit favorable limiting potentials of -1.35 and -1.36 V, respectively, for producing 6-hydroxy-2.3-dihydro-6H-pyrano-3-one (HDPO), indicating that they may also serve as electrocatalysts. Based on Sabatier's principle, a descriptor (φ) of material properties is developed for screening catalysts with high catalytic activity considering the electronegativities and d-electron number of metals. Additionally, surface redox potential, electronic properties, and charge-density differences are determined for Fe2 B2 , which is estimated to exhibit high catalytic activity for the oxidation of furfural to FAC and HFO.
RESUMEN
Using cellulosic ethanol as fuel is one way to help achieve the world's decarbonization goals. However, the economics of the present technology are unfavorable, especially the cost of cellulose degradation. Here, we reprogram the thermophilic cellulosic fungus Myceliophthora thermophila to directly ferment cellulose into ethanol by mimicking the aerobic ethanol fermentation of yeast (the Crabtree effect), including optimizing the synthetic pathway, enhancing the glycolytic rate, inhibiting mitochondrial NADH shuttles, and knocking out ethanol consumption pathway. The final engineered strain produced 52.8 g/L ethanol directly from cellulose, and 39.8 g/L from corncob, without the need for any added cellulase, while the starting strain produced almost no ethanol. We also demonstrate that as the ethanol fermentation by engineered M. thermophila increases, the composition and expression of cellulases that facilitate the degradation of cellulose, especially cellobiohydrolases, changes. The simplified production process and significantly increased ethanol yield indicate that the fungal consolidated bioprocessing technology that we develop here (one-step, one-strain ethanol production) is promising for fueling sustainable carbon-neutral biomanufacturing in the future.
Asunto(s)
Celulasa , Sordariales , Celulasa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sordariales/metabolismo , Fermentación , Etanol/metabolismo , Celulosa/genética , Celulosa/metabolismoRESUMEN
Copper (Cu) homeostasis has not been well documented in filamentous fungi, especially extremophiles. One of the main obstacles impeding their characterization is the lack of a powerful genome-editing tool. In this study, we applied a CRISPR/Cas9 system for efficient targeted gene disruption in the acidophilic fungus Acidomyces richmondensis MEY-1, formerly known as Bispora sp. strain MEY-1. Using this system, we investigated the basis of Cu tolerance in strain MEY-1. This strain has extremely high Cu tolerance among filamentous fungi, and the transcription factor ArAceA (A. richmondensis AceA) has been shown to be involved in this process. The ArAceA deletion mutant (ΔArAceA) exhibits specific growth defects at Cu concentrations of ≥10 mM and is transcriptionally more sensitive to Cu than the wild-type strain. In addition, the putative metallothionein ArCrdA was involved in Cu tolerance only under high Cu concentrations. MEY-1 has no Aspergillus nidulans CrpA homologs, which are targets of AceA-like transcription factors and play a role in Cu tolerance. Instead, we identified the Cu-transporting P-type ATPase ArYgA, homologous to A. nidulans YgA, which was involved in pigmentation rather than Cu tolerance. When the ΔArYgA mutant was grown on medium supplemented with Cu ions, the black color was completely restored. The lack of CrpA homologs in A. richmondensis MEY-1 and its high tolerance to Cu suggest that a novel Cu detoxification mechanism differing from the AceA-CrpA axis exists. IMPORTANCE Filamentous fungi are widely distributed worldwide and play an important ecological role as decomposers. However, the mechanisms of their adaptability to various environments are not fully understood. Various extremely acidophilic filamentous fungi have been isolated from acidic mine drainage (AMD) with extremely low pH and high heavy metal and sulfate concentrations, including A. richmondensis. The lack of genetic engineering tools, particularly genome-editing tools, hinders the study of these acidophilic and heavy metal-resistant fungi at the molecular level. Here, we first applied a CRISPR/Cas9-mediated gene-editing system to A. richmondensis MEY-1. Using this system, we identified and characterized the determinants of Cu resistance in A. richmondensis MEY-1. The conserved roles of the Cu-binding transcription factor ArAceA in Cu tolerance and the Cu-transporting P-type ATPase ArYgA in the Cu-dependent production of pigment were confirmed. Our findings provide insights into the molecular basis of Cu tolerance in the acidophilic fungus A. richmondensis MEY-1. Furthermore, the CRISPR/Cas9 system used here would be a powerful tool for studies of the mechanisms of adaptability of acidophilic fungi to extreme environments.
Asunto(s)
Ascomicetos , ATPasas Tipo P , Cobre/farmacología , Cobre/metabolismo , Sistemas CRISPR-Cas , Edición Génica , Ascomicetos/genética , Ascomicetos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ATPasas Tipo P/genéticaRESUMEN
Plutella xylostella is a pest that severely damages cruciferous vegetables worldwide and has been shown to be infected with the maternally inherited bacteria Wolbachia, with the main infected strain was plutWB1. In this study, we performed a large-scale global sampling of P. xylostella and amplified 3 mtDNA genes of P. xylostella and 6 Wolbachia genes to analyze the infection status, diversity of Wolbachia in P. xylostella, and its effect on mtDNA variation in P. xylostella. This study provides a conservative estimate of Wolbachia infection rates in P. xylostella, which was found to be 7% (104/1440). The ST 108 (plutWB1) was shared among butterfly species and the moth species P. xylostella, revealing that Wolbachia strain plutWB1 acquisition in P. xylostella may be through horizontal transmission. The Parafit analyses indicated a significant association between Wolbachia and Wolbachia-infected P. xylostella individuals, and individuals infected with plutWB1 tended to cluster in the basal positions of the phylogenetic tree based on the mtDNA data. Additionally, Wolbachia infections were associated with increased mtDNA polymorphism in the infected P. xylostella population. These data suggest that Wolbachia endosymbionts may have a potential effect on mtDNA variation of P. xylostella.
Asunto(s)
Mariposas Nocturnas , Wolbachia , Animales , Mariposas Nocturnas/genética , Wolbachia/genética , Filogenia , ADN Mitocondrial/genética , Mitocondrias/genéticaRESUMEN
Reciprocal interactions between tumor cells and immune cells shape the tumor microenvironment. Recent studies indicate that enhanced cell cycle activity in cancer cells suppresses antitumor immunity. Herein we discuss potential mechanisms by which cell cycle programs intrinsic to tumor cells are coupled to immune behavior, with consequences for immunotherapy.
Asunto(s)
Ciclo Celular , Terapia de Inmunosupresión , Neoplasias , Ciclo Celular/inmunología , Humanos , Inmunoterapia , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/inmunologíaRESUMEN
Xenotransplantation is considered a solution for the shortage of organs, and pigs play an indispensable role as donors in xenotransplantation. The biosecurity of pigs, especially the zoonotic viruses carried by pigs, has attracted attention. This review introduces several viruses, including porcine endogenous retroviruses that are integrated into the pig genome in a DNA form, herpesviruses that have been proven to clearly affect recipient survival time in previous xenotransplant surgeries, the zoonotic hepatitis E virus, and the widely distributed porcine circoviruses. The detail virus information, such as structure, caused diseases, transmission pathways, and epidemiology was introduced in the current review. Diagnostic and control measures for these viruses, including detection sites and methods, vaccines, RNA interference, antiviral pigs, farm biosecurity, and drugs, are discussed. The challenges faced, including those posed by other viruses and newly emerged viruses, and the challenges brought by the modes of transmission of the viruses are also summarized.
Asunto(s)
Circovirus , Virus de la Hepatitis E , Animales , Porcinos , Trasplante Heterólogo/efectos adversos , Antivirales , GranjasRESUMEN
Epithelial plasticity, or epithelial-to-mesenchymal transition (EMT), is a well-recognized form of cellular plasticity, which endows tumor cells with invasive properties and alters their sensitivity to various agents, thus representing a major challenge to cancer therapy. It is increasingly accepted that carcinoma cells exist along a continuum of hybrid epithelial-mesenchymal (E-M) states and that cells exhibiting such partial EMT (P-EMT) states have greater metastatic competence than those characterized by either extreme (E or M). We described recently a P-EMT program operating in vivo by which carcinoma cells lose their epithelial state through post-translational programs. Here, we investigate the underlying mechanisms and report that prolonged calcium signaling induces a P-EMT characterized by the internalization of membrane-associated E-cadherin (ECAD) and other epithelial proteins as well as an increase in cellular migration and invasion. Signaling through Gαq-associated G-protein-coupled receptors (GPCRs) recapitulates these effects, which operate through the downstream activation of calmodulin-Camk2b signaling. These results implicate calcium signaling as a trigger for the acquisition of hybrid/partial epithelial-mesenchymal states in carcinoma cells.