Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Gerontol A Biol Sci Med Sci ; 75(4): 647-653, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-30423026

RESUMEN

Nuclear factor (NF)κB is a transcription factor that controls immune and inflammatory signaling pathways. In skeletal muscle, NFκB has been implicated in the regulation of metabolic processes and tissue mass, yet its affects on mitochondrial function in this tissue are unclear. To investigate the role of NFκB on mitochondrial function and its relationship with muscle mass across the life span, we study a mouse model with muscle-specific NFκB suppression (muscle-specific IκBα super-repressor [MISR] mice). In wild-type mice, there was a natural decline in muscle mass with aging that was accompanied by decreased mitochondrial function and mRNA expression of electron transport chain subunits. NFκB inactivation downregulated expression of PPARGC1A, and upregulated TFEB and PPARGC1B. NFκB inactivation also decreased gastrocnemius (but not soleus) muscle mass in early life (1-6 months old). Lower oxygen consumption rates occurred in gastrocnemius and soleus muscles from young MISR mice, whereas soleus (but not gastrocnemius) muscles from old MISR mice displayed increased oxygen consumption compared to age-matched controls. We conclude that the NFκB pathway plays an important role in muscle development and growth. The extent to which NFκB suppression alters mitochondrial function is age dependent and muscle specific. Finally, mitochondrial function and muscle mass are tightly associated in both genotypes and across the life span.


Asunto(s)
Mitocondrias Musculares/fisiología , Desarrollo de Músculos/fisiología , FN-kappa B/fisiología , Envejecimiento/genética , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Citrato (si)-Sintasa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/genética , Desarrollo de Músculos/genética , Músculo Esquelético/fisiología , Músculo Esquelético/ultraestructura , FN-kappa B/antagonistas & inhibidores , Consumo de Oxígeno , Transducción de Señal
2.
J Clin Invest ; 128(7): 2914-2926, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29664737

RESUMEN

Complications of diabetes affect tissues throughout the body, including the central nervous system. Epidemiological studies show that diabetic patients have an increased risk of depression, anxiety, age-related cognitive decline, and Alzheimer's disease. Mice lacking insulin receptor (IR) in the brain or on hypothalamic neurons display an array of metabolic abnormalities; however, the role of insulin action on astrocytes and neurobehaviors remains less well studied. Here, we demonstrate that astrocytes are a direct insulin target in the brain and that knockout of IR on astrocytes causes increased anxiety- and depressive-like behaviors in mice. This can be reproduced in part by deletion of IR on astrocytes in the nucleus accumbens. At a molecular level, loss of insulin signaling in astrocytes impaired tyrosine phosphorylation of Munc18c. This led to decreased exocytosis of ATP from astrocytes, resulting in decreased purinergic signaling on dopaminergic neurons. These reductions contributed to decreased dopamine release from brain slices. Central administration of ATP analogs could reverse depressive-like behaviors in mice with astrocyte IR knockout. Thus, astrocytic insulin signaling plays an important role in dopaminergic signaling, providing a potential mechanism by which astrocytic insulin action may contribute to increased rates of depression in people with diabetes, obesity, and other insulin-resistant states.


Asunto(s)
Astrocitos/fisiología , Conducta Animal/fisiología , Insulina/fisiología , Transmisión Sináptica/fisiología , Adenosina Trifosfato/metabolismo , Animales , Ansiedad/etiología , Ansiedad/fisiopatología , Encéfalo/fisiología , Depresión/etiología , Depresión/fisiopatología , Diabetes Mellitus/fisiopatología , Diabetes Mellitus/psicología , Modelos Animales de Enfermedad , Dopamina/fisiología , Exocitosis , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Modelos Neurológicos , Proteínas Munc18/metabolismo , Núcleo Accumbens/fisiopatología , Receptor de Insulina/deficiencia , Receptor de Insulina/genética , Receptor de Insulina/fisiología
3.
Aging Cell ; 16(4): 847-858, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28556540

RESUMEN

Older adults universally suffer from sarcopenia and approximately 60-70% are diabetic or prediabetic. Nonetheless, the mechanisms underlying these aging-related metabolic disorders are unknown. NFκB has been implicated in the pathogenesis of several aging-related pathologies including sarcopenia and type 2 diabetes and has been proposed as a target against them. NFκB also is thought to mediate muscle wasting seen with disuse, denervation, and some systemic diseases (e.g., cancer, sepsis). We tested the hypothesis that lifelong inhibition of the classical NFκB pathway would protect against aging-related sarcopenia and insulin resistance. Aged mice with muscle-specific overexpression of a super-repressor IκBα mutant (MISR) were protected from insulin resistance. However, MISR mice were not protected from sarcopenia; to the contrary, these mice had decreases in muscle mass and strength compared to wild-type mice. In MISR mice, NFκB suppression also led to an increase in proteasome activity and alterations in several genes and pathways involved in muscle growth and atrophy (e.g., myostatin). We conclude that the mechanism behind aging-induced sarcopenia is NFκB independent and differs from muscle wasting due to pathologic conditions. Our findings also indicate that, while suppressing NFκB improves insulin sensitivity in aged mice, this transcription factor is important for normal muscle mass maintenance and its sustained inhibition is detrimental to muscle function.


Asunto(s)
Envejecimiento/metabolismo , Resistencia a la Insulina , Músculo Esquelético/metabolismo , Miostatina/genética , FN-kappa B/genética , Sarcopenia/genética , Envejecimiento/patología , Animales , Glucemia/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Línea Celular , Ceramidas/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Mioblastos/metabolismo , Mioblastos/patología , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Sarcopenia/metabolismo , Sarcopenia/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA