RESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.
Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteogenómica , Adenocarcinoma/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Carcinoma Ductal Pancreático/diagnóstico , Estudios de Cohortes , Células Endoteliales/metabolismo , Epigénesis Genética , Femenino , Dosificación de Gen , Genoma Humano , Glucólisis , Glicoproteínas/biosíntesis , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Neoplasias Pancreáticas/diagnóstico , Fenotipo , Fosfoproteínas/metabolismo , Fosforilación , Pronóstico , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Especificidad por Sustrato , Transcriptoma/genéticaRESUMEN
To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.
Asunto(s)
Carcinoma de Células Renales/genética , Proteínas de Neoplasias/genética , Proteogenómica , Transcriptoma/genética , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Supervivencia sin Enfermedad , Exoma/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano/genética , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/inmunología , Fosforilación Oxidativa , Fosforilación/genética , Transducción de Señal/genética , Transcriptoma/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Secuenciación del ExomaRESUMEN
BACKGROUND: Spatial proteomics seeks to understand the spatial organization of proteins in tissues or at different subcellular localization in their native environment. However, capturing the spatial organization of proteins is challenging. Here, we present an innovative approach termed Spatial Proteomics through On-site Tissue-protein-labeling (SPOT), which combines the direct labeling of tissue proteins in situ on a slide and quantitative mass spectrometry for the profiling of spatially-resolved proteomics. MATERIALS AND METHODS: Efficacy of direct TMT labeling was investigated using seven types of sagittal mouse brain slides, including frozen tissues without staining, formalin-fixed paraffin-embedded (FFPE) tissues without staining, deparaffinized FFPE tissues, deparaffinized and decrosslinked FFPE tissues, and tissues with hematoxylin & eosin (H&E) staining, hematoxylin (H) staining, eosin (E) staining. The ability of SPOT to profile proteomes at a spatial resolution was further evaluated on a horizontal mouse brain slide with direct TMT labeling at eight different mouse brain regions. Finally, SPOT was applied to human prostate cancer tissues as well as a tissue microarray (TMA), where TMT tags were meticulously applied to confined regions based on the pathological annotations. After on-site direct tissue-protein-labeling, tissues were scraped off the slides and subject to standard TMT-based quantitative proteomics analysis. RESULTS: Tissue proteins on different types of mouse brain slides could be directly labeled with TMT tags. Moreover, the versatility of our direct-labeling approach extended to discerning specific mouse brain regions based on quantitative outcomes. The SPOT was further applied on both frozen tissues on slides and FFPE tissues on TMAs from prostate cancer tissues, where a distinct proteomic profile was observed among the regions with different Gleason scores. CONCLUSIONS: SPOT is a robust and versatile technique that allows comprehensive profiling of spatially-resolved proteomics across diverse types of tissue slides to advance our understanding of intricate molecular landscapes.
RESUMEN
BACKGROUND: Omics characterization of pancreatic adenocarcinoma tissue is complicated by the highly heterogeneous and mixed populations of cells. We evaluate the feasibility and potential benefit of using a coring method to enrich specific regions from bulk tissue and then perform proteogenomic analyses. METHODS: We used the Biopsy Trifecta Extraction (BioTExt) technique to isolate cores of epithelial-enriched and stroma-enriched tissue from pancreatic tumor and adjacent tissue blocks. Histology was assessed at multiple depths throughout each core. DNA sequencing, RNA sequencing, and proteomics were performed on the cored and bulk tissue samples. Supervised and unsupervised analyses were performed based on integrated molecular and histology data. RESULTS: Tissue cores had mixed cell composition at varying depths throughout. Average cell type percentages assessed by histology throughout the core were better associated with KRAS variant allele frequencies than standard histology assessment of the cut surface. Clustering based on serial histology data separated the cores into three groups with enrichment of neoplastic epithelium, stroma, and acinar cells, respectively. Using this classification, tumor overexpressed proteins identified in bulk tissue analysis were assigned into epithelial- or stroma-specific categories, which revealed novel epithelial-specific tumor overexpressed proteins. CONCLUSIONS: Our study demonstrates the feasibility of multi-omics data generation from tissue cores, the necessity of interval H&E stains in serial histology sections, and the utility of coring to improve analysis over bulk tissue data.
RESUMEN
BACKGROUND: The identification of differentially expressed tumor-associated proteins and genomic alterations driving neoplasia is critical in the development of clinical assays to detect cancers and forms the foundation for understanding cancer biology. One of the challenges in the analysis of pancreatic ductal adenocarcinoma (PDAC) is the low neoplastic cellularity and heterogeneous composition of bulk tumors. To enrich neoplastic cells from bulk tumor tissue, coring, and laser microdissection (LMD) sampling techniques have been employed. In this study, we assessed the protein and KRAS mutation changes associated with samples obtained by these enrichment techniques and evaluated the fraction of neoplastic cells in PDAC for proteomic and genomic analyses. METHODS: Three fresh frozen PDAC tumors and their tumor-matched normal adjacent tissues (NATs) were obtained from three sampling techniques using bulk, coring, and LMD; and analyzed by TMT-based quantitative proteomics. The protein profiles and characterizations of differentially expressed proteins in three sampling groups were determined. These three PDACs and samples of five additional PDACs obtained by the same three sampling techniques were also subjected to genomic analysis to characterize KRAS mutations. RESULTS: The neoplastic cellularity of eight PDACs ranged from less than 10% to over 80% based on morphological review. Distinctive proteomic patterns and abundances of certain tumor-associated proteins were revealed when comparing the tumors and NATs by different sampling techniques. Coring and bulk tissues had comparable proteome profiles, while LMD samples had the most distinct proteome composition compared to bulk tissues. Further genomic analysis of bulk, cored, or LMD samples demonstrated that KRAS mutations were significantly enriched in LMD samples while coring was less effective in enriching for KRAS mutations when bulk tissues contained a relatively low neoplastic cellularity. CONCLUSIONS: In addition to bulk tissues, samples from LMD and coring techniques can be used for proteogenomic studies. The greatest enrichment of neoplastic cellularity is obtained with the LMD technique.
RESUMEN
Colorectal cancer is the third most common cancer worldwide, with 1.2 million patients diagnosed annually. In late-stage colorectal cancer, the most commonly used targeted therapies are the monoclonal antibodies cetuximab and panitumumab, which prevent epidermal growth factor receptor (EGFR) activation. Recent studies have identified alterations in KRAS and other genes as likely mechanisms of primary and secondary resistance to anti-EGFR antibody therapy. Despite these efforts, additional mechanisms of resistance to EGFR blockade are thought to be present in colorectal cancer and little is known about determinants of sensitivity to this therapy. To examine the effect of somatic genetic changes in colorectal cancer on response to anti-EGFR antibody therapy, here we perform complete exome sequence and copy number analyses of 129 patient-derived tumour grafts and targeted genomic analyses of 55 patient tumours, all of which were KRAS wild-type. We analysed the response of tumours to anti-EGFR antibody blockade in tumour graft models and in clinical settings and functionally linked therapeutic responses to mutational data. In addition to previously identified genes, we detected mutations in ERBB2, EGFR, FGFR1, PDGFRA, and MAP2K1 as potential mechanisms of primary resistance to this therapy. Novel alterations in the ectodomain of EGFR were identified in patients with acquired resistance to EGFR blockade. Amplifications and sequence changes in the tyrosine kinase receptor adaptor gene IRS2 were identified in tumours with increased sensitivity to anti-EGFR therapy. Therapeutic resistance to EGFR blockade could be overcome in tumour graft models through combinatorial therapies targeting actionable genes. These analyses provide a systematic approach to evaluating response to targeted therapies in human cancer, highlight new mechanisms of responsiveness to anti-EGFR therapies, and delineate new avenues for intervention in managing colorectal cancer.
Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Genoma Humano/genética , Genómica , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cetuximab/farmacología , Cetuximab/uso terapéutico , Neoplasias Colorrectales/metabolismo , Variaciones en el Número de Copia de ADN/genética , Receptores ErbB/química , Receptores ErbB/genética , Exoma/genética , Femenino , Humanos , Proteínas Sustrato del Receptor de Insulina/genética , MAP Quinasa Quinasa 1/genética , Ratones , Terapia Molecular Dirigida , Mutación/genética , Panitumumab , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptor ErbB-2/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer, comprising approximately 75% of all kidney tumors. Recent the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) studies have significantly advanced the molecular characterization of RCC and facilitated the development of targeted therapies. Such advances have improved the median survival of patients with advanced disease from less than 10 months prior to 2004 to 30 months by 2011. However, approximately 30% of localized ccRCC patients will nevertheless develop recurrence or metastasis after surgical resection of their tumor. Therefore, it is critical to further analyze potential tumor-associated proteins and their profiles during disease progression. Over the past decade, tremendous effort has been focused on the study of molecular pathways, including genomics, transcriptomics, and proteomics in order to identify potential molecular biomarkers, as well as to facilitate early detection, monitor tumor progression and uncover potentially therapeutic targets. In this review, we focus on recent advances in the proteomic analysis of ccRCC, current strategies and challenges, and perspectives in the field. This insight will highlight the discovery of tumor-associated proteins, and their potential clinical impact on personalized precision-based care in ccRCC.
Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Renales/genética , Proteoma/genética , Proteómica , Carcinoma de Células Renales/patología , Regulación Neoplásica de la Expresión Génica , Genómica/tendencias , HumanosRESUMEN
Recently, the rapid development and application of mass spectrometry (MS)-based technologies have markedly improved the comprehensive proteomic characterization of global proteome and protein post-translational modifications (PTMs). However, the current conventional approach for global proteomic analysis is often carried out separately from PTM analysis. In our study, we developed an integrated workflow for multiplex analysis of global, glyco-, and phospho-proteomics using breast cancer patient-derived xenograft (PDX) tumor samples. Our approach included the following steps: trypsin-digested tumor samples were enriched for phosphopeptides through immobilized metal ion affinity chromatography (IMAC), followed by enrichment of glycopeptides through mixed anion exchange (MAX) method, and then the flow-through peptides were analyzed for global proteomics. Our workflow demonstrated an increased identification of peptides and associated proteins in global proteome, as compared to those using the peptides without PTM depletion. In addition to global proteome, the workflow identified phosphopeptides and glycopeptides from the PTM enrichment. We also found a subset of glycans with unique distribution profiles in the IMAC flow-through, as compared to those enriched directly using the MAX method. Our integrated workflow provided an effective platform for simultaneous global proteomic and PTM analysis of biospecimens.
Asunto(s)
Neoplasias de la Mama/química , Glicopéptidos/análisis , Fosfopéptidos/análisis , Proteoma/análisis , Proteómica/métodos , Flujo de Trabajo , Animales , Cromatografía Liquida , Xenoinjertos/química , Humanos , Ratones , Proteolisis , Proteoma/química , Espectrometría de Masas en Tándem , Tripsina/químicaRESUMEN
Recent large scale genomic studies from the Clinical Lung Cancer Genome Project have identified different driver gene mutations in the subtypes of non-small cell lung carcinoma (NSCLC). These findings not only lead to remarkable progress in targeted therapies for lung cancer patients, but also provide fundamental knowledge for the subclassification of NSCLC. More recently, the advancement and clinical application of immunotherapy have reinforced the need for the accurate subclassification of NSCLC. In 2015, the World Health Organization (WHO) and the International Association for the Study of Lung Cancer (IASLC) updated their guidelines for the subclassification of lung cancers. These guidelines emphasize: (1) the subclassification of NSCLC, (2) the critical role of molecular characterization of tumors for targeted therapy, (3) the unique terminology for subclassifying NSCLC using small biopsy specimens, and (4) the utility of IHC biomarkers in the accurate diagnosis and subclassification of lung cancer. The guidelines have significant prognostic impact on oncologic practice and patient care. In this review, we summarize the current WHO guidelines for the classification of lung cancer, discuss advancements of targeted therapy and immunotherapy, and address the utility and limitation of immunomarkers in the subclassification of NSCLC, as well as the prospective future of the field.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Guías de Práctica Clínica como Asunto , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/terapia , Humanos , Inmunohistoquímica , Inmunoterapia/métodos , Inmunoterapia/tendencias , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Organización Mundial de la SaludRESUMEN
Protein glycosylation is one of the most abundant post-translational modifications. However, detailed analysis of O-linked glycosylation, a major type of protein glycosylation, has been severely impeded by the scarcity of suitable methodologies. Here, a chemoenzymatic method is introduced for the site-specific extraction of O-linked glycopeptides (EXoO), which enabled the mapping of over 3,000 O-linked glycosylation sites and definition of their glycans on over 1,000 proteins in human kidney tissues, T cells, and serum. This large-scale localization of O-linked glycosylation sites demonstrated that EXoO is an effective method for defining the site-specific O-linked glycoproteome in different types of sample. Detailed structural analysis of the sites identified revealed conserved motifs and topological orientations facing extracellular space, the cell surface, the lumen of the Golgi, and the endoplasmic reticulum (ER). EXoO was also able to reveal significant differences in the O-linked glycoproteome of tumor and normal kidney tissues pointing to its broader use in clinical diagnostics and therapeutics.
Asunto(s)
Glicoproteínas/metabolismo , Riñón/metabolismo , Proteómica/métodos , Suero/metabolismo , Linfocitos T/metabolismo , Células Cultivadas , Cromatografía Liquida , Glicoproteínas/sangre , Glicosilación , Humanos , Procesamiento Proteico-Postraduccional , Extracción en Fase Sólida , Espectrometría de Masas en TándemRESUMEN
Oncogenic Kras mutations are one of the most common alterations in non-small cell lung cancer and are associated with poor response to treatment and reduced survival. Driver oncogenes, such as Kras are now appreciated for their ability to promote tumor growth via up-regulation of anabolic pathways. Therefore, we wanted to identify metabolic vulnerabilities in Kras-mutant lung cancer. Using the Kras LSL-G12D lung cancer model, we show that mutant Kras drives a lipogenic gene-expression program. Stable-isotope analysis reveals that mutant Kras promotes de novo fatty acid synthesis in vitro and in vivo. The importance of fatty acid synthesis in Kras-induced tumorigenesis was evident by decreased tumor formation in Kras LSL-G12D mice after treatment with a fatty acid synthesis inhibitor. Importantly, with gain and loss of function models of mutant Kras, we demonstrate that mutant Kras potentiates the growth inhibitory effects of several fatty acid synthesis inhibitors. These studies highlight the potential to target mutant Kras tumors by taking advantage of the lipogenic phenotype induced by mutant Kras.-Singh, A., Ruiz, C., Bhalla, K., Haley, J. A., Li, Q. K., Acquaah-Mensah, G., Montal, E., Sudini, K. R., Skoulidis, F., Wistuba, I. I., Papadimitrakopoulou, V., Heymach, J. V., Boros, L. G., Gabrielson, E., Carretero, J., Wong, K.-k., Haley, J. D., Biswal, S., Girnun, G. D. De novo lipogenesis represents a therapeutic target in mutant Kras non-small cell lung cancer.
RESUMEN
Predicting response to checkpoint blockade therapy for lung cancer has largely focused on measuring programmed death-ligand 1 (PD-L1) expression on tumor cells. PD-L1 expression is geographically heterogeneous within many tumors, however, and we questioned whether small tissue samples, such as biopsies, might be sufficiently representative of PD-L1 expression for evaluating this marker in lung cancer tumors. To evaluate the extent of variability of PD-L1 expression in small tissue samples, and how that variability affects accuracy of overall assessment of PD-L1 in lung cancer, we scored immunohistochemical staining for PD-L1 in tissue microarray cores from a series of 79 squamous cell lung cancers and 71 pulmonary adenocarcinomas. Our study found substantial inconsistencies for the percentages of cells staining positive for PD-L1 among different tissue microarray cores in many cases of both adenocarcinoma and squamous cell carcinoma. This variable scoring was seen at both high levels and low levels of PD-L1 expression, and by further evaluation of cases with discordant results on full-face sections to assess geographic distribution of staining, we found that discordant results among different tissue microarray cores reflected geographic variation of PD-L1 expression in those tumors. Moreover, we found that as a result of heterogeneous expression, the sensitivity of a single small tissue sample can be as low as 85% for detecting PD-L1 expression at scoring thresholds commonly used in clinical practice. Based on these studies, we conclude that many cases of lung cancer could be inaccurately or variably scored for PD-L1 expression with a single biopsy sample. Accordingly, lung cancer patients can be inconsistently classified for PD-L1 expression status, particularly when a threshold for the percentage of positive cells is used to determine eligibility for checkpoint blockade therapy.
Asunto(s)
Adenocarcinoma/metabolismo , Antígeno B7-H1/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Pulmonares/metabolismo , Adenocarcinoma/patología , Biomarcadores de Tumor/metabolismo , Biopsia , Carcinoma de Células Escamosas/patología , Femenino , Humanos , Inmunohistoquímica , Neoplasias Pulmonares/patología , Masculino , Análisis de Matrices TisularesRESUMEN
BACKGROUND: Non-small cell lung carcinoma (NSCLC) remains the leading cause of cancer deaths in the United States. More than half of NSCLC patients have clinical presentations with locally advanced or metastatic disease at the time of diagnosis. The large-scale genomic analysis of NSCLC has demonstrated that molecular alterations are substantially different between adenocarcinoma (ADC) and squamous cell carcinoma (SqCC). However, a comprehensive analysis of proteins and glycoproteins in different subtypes of NSCLC using advanced proteomic approaches has not yet been conducted. METHODS: We applied mass spectrometry (MS) technology featuring proteomics and glycoproteomics to analyze six primary lung SqCCs and eleven ADCs, and we compared the expression level of proteins and glycoproteins in tumors using quantitative proteomics. Glycoproteins were analyzed by enrichment using a chemoenzymatic method, solid-phase extraction of glycopeptides, and quantified by iTRAQ-LC-MS/MS. Protein quantitation was further annotated via Ingenuity Pathway Analysis. RESULTS: Over 6000 global proteins and 480 glycoproteins were quantitatively identified in both SqCC and ADC. ADC proteins (8337) consisted of enzymes (22.11%), kinases (5.11%), transcription factors (6.85%), transporters (6.79%), and peptidases (3.30%). SqCC proteins (6967) had a very similar distribution. The identified glycoproteins, in order of relative abundance, included membrane (42%) and extracellular matrix (>33%) glycoproteins. Oncogene-coded proteins (82) increased 1.5-fold among 1047 oncogenes identified in ADC, while 124 proteins from SqCC were up-regulated in tumor tissues among a total of 827 proteins. We identified 680 and 563 tumor suppressor genes from ADC and SqCC, respectively. CONCLUSION: Our systematic analysis of proteins and glycoproteins demonstrates changes of protein and glycoprotein relative abundance in SqCC (TP53, U2AF1, and RXR) and in ADC (SMARCA4, NOTCH1, PTEN, and MST1). Among them, eleven glycoproteins were upregulated in both ADC and SqCC. Two glycoproteins (ELANE and IGFBP3) were only increased in SqCC, and six glycoproteins (ACAN, LAMC2, THBS1, LTBP1, PSAP and COL1A2) were increased in ADC. Ingenuity Pathway Analysis (IPA) showed that several crucial pathways were activated in SqCC and ADC tumor tissues.
RESUMEN
BACKGROUND: Epithelial ovarian carcinomas encompass a heterogeneous group of diseases with a poor 5-year survival rate. Serous carcinoma is the most common type. Most FDA-approved serum tumor markers are glycoproteins. These glycoproteins on cell surface or shed into the bloodstream could serve as therapeutic targets as well as surrogates of tumor. In addition to glycoprotein expressions, the analysis of protein glycosylation occupancy could be important for the understanding of cancer biology as well as the identification of potential glycoprotein changes in cancer. In this study, we used an integrated proteomics and glycoproteomics approach to analyze global glycoprotein abundance and glycosylation occupancy for proteins from high-grade ovarian serous carcinoma (HGSC) and serous cystadenoma, a benign epithelial ovarian tumor, by using LC-MS/MS-based technique. METHODS: Fresh-frozen ovarian HGSC tissues and benign serous cystadenoma cases were quantitatively analyzed using isobaric tags for relative and absolute quantitation for both global and glycoproteomic analyses by two dimensional fractionation followed by LC-MS/MS analysis using a Orbitrap Velos mass spectrometer. RESULTS: Proteins and N-linked glycosite-containing peptides were identified and quantified using the integrated global proteomic and glycoproteomic approach. Among the identified N-linked glycosite-containing peptides, the relative abundances of glycosite-containing peptide and the glycoprotein levels were compared using glycoproteomic and proteomic data. The glycosite-containing peptides with unique changes in glycosylation occupancies rather than the protein expression levels were identified. CONCLUSION: In this study, we presented an integrated proteomics and glycoproteomics approach to identify changes of glycoproteins in protein expression and glycosylation occupancy in HGSC and serous cystadenoma and determined the changes of glycosylation occupancy that are associated with malignant and benign tumor tissues. Specific changes in glycoprotein expression or glycosylation occupancy have the potential to be used in the discrimination between benign and malignant epithelial ovarian tumors and to improve our understanding of ovarian cancer biology.
RESUMEN
In this study, we investigated the use of metabolic oligosaccharide engineering and bio-orthogonal ligation reactions combined with lectin microarray and mass spectrometry to analyze sialoglycoproteins in the SW1990 human pancreatic cancer line. Specifically, cells were treated with the azido N-acetylmannosamine analog, 1,3,4-Bu3ManNAz, to label sialoglycoproteins with azide-modified sialic acids. The metabolically labeled sialoglyproteins were then biotinylated via the Staudinger ligation, and sialoglycopeptides containing azido-sialic acid glycans were immobilized to a solid support. The peptides linked to metabolically labeled sialylated glycans were then released from sialoglycopeptides and analyzed by mass spectrometry; in parallel, the glycans from azido-sialoglycoproteins were characterized by lectin microarrays. This method identified 75 unique N-glycosite-containing peptides from 55 different metabolically labeled sialoglycoproteins of which 42 were previously linked to cancer in the literature. A comparison of two of these glycoproteins, LAMP1 and ORP150, in histological tumor samples showed overexpression of these proteins in the cancerous tissue demonstrating that our approach constitutes a viable strategy to identify and discover sialoglycoproteins associated with cancer, which can serve as biomarkers for cancer diagnosis or targets for therapy.
RESUMEN
Aberrant protein glycosylation is known to be associated with the development of cancers. The aberrant glycans are produced by the combined actions of changed glycosylation enzymes, substrates and transporters in glycosylation synthesis pathways in cancer cells. To identify glycosylation enzymes associated with aggressive prostate cancer (PCa), we analyzed the difference in the expression of glycosyltransferase genes between aggressive and non-aggressive PCa. Three candidate genes encoding glycosyltransferases that were elevated in aggressive PCa were subsequently selected. The expression of the three candidates was then further evaluated in androgen-dependent (LNCaP) and androgen-independent (PC3) PCa cell lines. We found that the protein expression of one of the glycosyltransferases, α (1,6) fucosyltransferase (FUT8), was only detected in PC3 cells, but not in LNCaP cells. We further showed that FUT8 protein expression was elevated in metastatic PCa tissues compared to normal prostate tissues. In addition, using tissue microarrays, we found that FUT8 overexpression was statistically associated with PCa with a high Gleason score. Using PC3 and LNCaP cells as models, we found that FUT8 overexpression in LNCaP cells increased PCa cell migration, while loss of FUT8 in PC3 cells decreased cell motility. Our results suggest that FUT8 may be associated with aggressive PCa and thus is potentially useful for its prognosis.
Asunto(s)
Fucosiltransferasas/biosíntesis , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Fucosiltransferasas/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Clasificación del Tumor , Polisacáridos/genética , Polisacáridos/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/enzimología , Neoplasias de la Próstata Resistentes a la Castración/patologíaRESUMEN
Objective: Benign histiocytic proliferation in effusion specimens can be found in a variety of diseases such as rheumatoid arthritis, systemic lupus erythematosus, microorganism infections, trauma, reactive eosinophilic pleuritis, and others. In addition, nodular histiocytic/mesothelial hyperplasia is another well-recognized rare cause. The previous studies have shown that proliferative histiocytes have raisinoid nuclei and abundant eosinophilic granular cytoplasm and can be confused with malignant lesions, especially metastatic carcinomas. In this study, we evaluated the cytomorphology of benign histiocytes, discussed the diagnosis and differential diagnosis, and the clinical significance of histiocytic signet ring cells in effusion cytology. Material and Methods: Seven hundred and fifty-five benign effusion cases (433 pleural effusions and 322 abdominal fluids) were found over 1 year. Among benign cases, 35 cases (28 pleural effusions and seven abdominal fluids) were included with findings of dominantly histiocytic signet ring cell morphology as well as immunohistochemical (IHC) stains. The clinical findings were also correlated. Results: In contrast to the well-documented cytomorphology of raisinoid nuclei and eosinophilic cytoplasm of proliferative histiocytes in previous studies, we find that these cells predominately presented as signet ring cell morphology with clear cytoplasm. The most characteristic findings of benign histiocytes in pleural effusions are: (1) cells are arranged in sheets and/or scattered individual cells, but no two- or three-dimensional cell clusters; (2) cells are intermediate in size and with normal N/C ratio; (3) cells have eccentric located nuclei and abundant clear cytoplasm, giving signet ring cell appearance; (4) nuclei have fine granular chromatin pattern, no hyperchromia or coarse chromatin pattern, no nuclear atypia; and (5) immunohistochemical (IHC) stains demonstrate a strongly positivity for macrophage-histiocyte lineage marker CD68, but negativity for epithelial markers and mesothelial markers. Clinically, these patients do not demonstrate nodularity or lesions in the mesothelial lining of serous cavities. Conclusion: Our study provides a detailed characterization of benign histiocytic signet ring cells in effusion cytology. The differential diagnosis of histiocytic signet ring cells is broad. The most important differential diagnoses are metastatic adenocarcinoma and epithelioid signet ring cell mesothelioma. The accurate diagnosis is critical for the appropriate clinical management of the patient. Cytopathologists should be aware of the diagnostic pitfalls of benign histiocytic signet ring cells in effusion samples in daily practice.
RESUMEN
PURPOSE: Although immunotherapy is the mainstay of therapy for advanced non-small cell lung cancer (NSCLC), robust biomarkers of clinical response are lacking. The heterogeneity of clinical responses together with the limited value of radiographic response assessments to timely and accurately predict therapeutic effect-especially in the setting of stable disease-calls for the development of molecularly informed real-time minimally invasive approaches. In addition to capturing tumor regression, liquid biopsies may be informative in capturing immune-related adverse events (irAE). EXPERIMENTAL DESIGN: We investigated longitudinal changes in circulating tumor DNA (ctDNA) in patients with metastatic NSCLC who received immunotherapy-based regimens. Using ctDNA targeted error-correction sequencing together with matched sequencing of white blood cells and tumor tissue, we tracked serial changes in cell-free tumor load (cfTL) and determined molecular response. Peripheral T-cell repertoire dynamics were serially assessed and evaluated together with plasma protein expression profiles. RESULTS: Molecular response, defined as complete clearance of cfTL, was significantly associated with progression-free (log-rank P = 0.0003) and overall survival (log-rank P = 0.01) and was particularly informative in capturing differential survival outcomes among patients with radiographically stable disease. For patients who developed irAEs, on-treatment peripheral blood T-cell repertoire reshaping, assessed by significant T-cell receptor (TCR) clonotypic expansions and regressions, was identified on average 5 months prior to clinical diagnosis of an irAE. CONCLUSIONS: Molecular responses assist with the interpretation of heterogeneous clinical responses, especially for patients with stable disease. Our complementary assessment of the peripheral tumor and immune compartments provides an approach for monitoring of clinical benefits and irAEs during immunotherapy.