RESUMEN
Cerebrospinal fluid (CSF) circulation plays a key role in cerebral waste clearance via the glymphatic system. Although CSF flow velocity is an essential component of CSF dynamics, it has not been sufficiently characterized, and particularly, in studies of the glymphatic system in rat. To investigate the relationship between the flow velocity of CSF in the brain aqueduct and the glymphatic waste clearance rate, using phase-contrast MRI we performed the first measurements of CSF velocity in rats. Phase-contrast MRI was performed using a 7 T system to map mean velocity of CSF flow in the aqueduct in rat brain. The effects of age (3 months old versus 18 months old), gender, strain (Wistar, RNU, Dark Agouti), anesthetic agents (isoflurane versus dexmedetomidine), and neurodegenerative disorder (Alzheimer' disease in Fischer TgF344-AD rats, males and females) on CSF velocity were investigated in eight independent groups of rats (12 rats per group). Our results demonstrated that quantitative velocities of CSF flow in the aqueduct averaged 5.16 ± 0.86 mm/s in healthy young adult male Wistar rats. CSF flow velocity in the aqueduct was not altered by rat gender, strain, and the employed anesthetic agents in all rats, also age in the female rats. However, aged (18 months) Wistar male rats exhibited significantly reduced the CSF flow velocity in the aqueduct (4.31 ± 1.08 mm/s). In addition, Alzheimer's disease further reduced the CSF flow velocity in the aqueduct of male and female rats.
RESUMEN
GSLs are the major glycolipids in vertebrates and mediate many key biological processes from intercellular recognition to cis regulation of signal transduction. The fast-expanding field of glycobiology has led to a growing demand for diverse and structurally defined GSLs, and enzymatic GSL synthesis is developing rapidly in accordance. This article provides an overview of natural GSL biosynthetic pathways and surveys the bacterial enzymes applied to GSL synthesis and recent progress in synthesis strategies. By correlating these three areas, this article aims to define the gaps between GSL biosynthesis and chemoenzymatic synthesis and evaluate the opportunities for harnessing natural forces to access GSLs efficiently.
Asunto(s)
Glicoesfingolípidos , Glicoesfingolípidos/biosíntesis , Glicoesfingolípidos/metabolismo , Glicoesfingolípidos/química , Animales , Bacterias/metabolismo , Bacterias/enzimología , HumanosRESUMEN
The introduction of trifluoromethyl groups into organic molecules is of paramount importance in modern synthetic chemistry and medicinal chemistry. While methods for constructing C(sp2 )-CF3 bonds have been well established, the advancement of practical and comprehensive approaches for forming C(sp3 )-CF3 bonds remains considerably restricted. In this work, we describe an efficient and site-specific deaminative trifluoromethylation reaction of aliphatic primary amines to afford the corresponding alkyl trifluoromethyl compounds. The reaction proceeds at room temperature with readily accessible N-anomeric amide (Levin's reagent) and bench-stable bpyCu(CF3 )3 (Grushin's reagent, bpy=2,2'-bipyridine) under blue light. The protocol features mild reaction conditions, good functional group tolerance, and moderate to good yields. Remarkably, the method can be applied to the direct, late-stage trifluoromethylation of natural products and bioactive molecules. Experimental mechanistic studies were conducted, and a radical mechanism is proposed, wherein the dual roles of Grushin's reagent have been elucidated.
RESUMEN
In this study, we developed a novel type of dibenzocyclooctyne (DBCO)-functionalized microbubbles (MBs) and validated their attachment to azide-labelled sialoglycans on human pluripotent stem cells (hPSCs) generated by metabolic glycoengineering (MGE). This enabled the application of mechanical forces to sialoglycans on hPSCs through molecularly specific acoustic tweezing cytometry (mATC), that is, displacing sialoglycan-anchored MBs using ultrasound (US). It was shown that subjected to the acoustic radiation forces of US pulses, sialoglycan-anchored MBs exhibited significantly larger displacements and faster, more complete recovery after each pulse than integrin-anchored MBs, indicating that sialoglycans are more stretchable and elastic than integrins on hPSCs in response to mechanical force. Furthermore, stimulating sialoglycans on hPSCs using mATC reduced stage-specific embryonic antigen-3 (SSEA-3) and GD3 expression but not OCT4 and SOX2 nuclear localization. Conversely, stimulating integrins decreased OCT4 nuclear localization but not SSEA-3 and GD3 expression, suggesting that mechanically stimulating sialoglycans and integrins initiated distinctive mechanoresponses during the early stages of hPSC differentiation. Taken together, these results demonstrated that MGE-enabled mATC uncovered not only different mechanical properties of sialoglycans on hPSCs and integrins but also their different mechanoregulatory impacts on hPSC differentiation, validating MGE-based mATC as a new, powerful tool for investigating the roles of glycans and other cell surface biomolecules in mechanotransduction.
Asunto(s)
Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Microburbujas , Ingeniería MetabólicaRESUMEN
Electrophilic addition to alkenes is a textbook-taught reaction, yet it is not always possible to control the regioselectivity of addition to unsymmetrical 1,2-disubstituted substrates. We report the observation and applications of the ß-boron effect that accounts for high regioselectivity in electrophilic addition reactions to allylic MIDA (N-methyliminodiacetic acid) boronates. While the well-established ß-silicon effect bears partial resemblance to the observed reactivity, the silyl group is typically lost during functionalization. In contrast, the boryl moiety is retained in the product when B(MIDA) is used as the nucleophilic stabilizer. Mechanistic studies elucidate the origin of this effect and demonstrate how σ(C-B) hyperconjugation helps stabilize the incipient carbocation. This transformation represents a rare example of the stereospecific hydrohalogenation of secondary allyl MIDA-boronates that proceeds in a syn-fashion.
RESUMEN
The facile synthesis of stereo-defined and transformable functionality-enriched building blocks is of great importance in modern organic chemistry, as it allows the rapid and divergent assembly of complex molecules. Herein a halogen electrophile (N-bromosuccinimide and N-iodosuccinimide) initiated semipinacol rearrangement reaction of B(MIDA)-propargylic alcohols (MIDA=N-methyliminodiacetyl) by aryl migration towards the synthesis of amphoteric α-haloalkenyl boronates in moderate to good yields with excellent stereoselectivities is reported. The value of the products is evidenced by their ability to undergo divergent conversions to polysubstituted alkenes through manipulation of the C-B and C-X (X=Br, I) bonds and the carbonyl group.
RESUMEN
Geminal-difluoroalkanes featuring intriguing steric and electronic properties are of great significance in medicinal chemistry, and great progresses have been achieved for their synthesis. In recent years, iodine(III) reagent-mediated migratory gem-difluorination of alkenes has proved to be an efficient and powerful strategy to access to diverse gem-difluoroalkanes, especially those bearing a readily transformable functionality (TF), which are important for rapid assembly of complex gem-difluorinated molecules in a modular and diverse manner. In this review, we systematically summarize the recent development of iodine(III)-mediated migratory gem-difluorination reactions for the synthesis of gem-difluoroalkanes bearing a synthetically versatile TF at the ß position. The reaction mechanism and the utilities of the products are also discussed. This review is presented and grouped basically according to the types of transformable functionalities within the products.
RESUMEN
For internal alkenes possessing two or more sets of electronically and sterically similar allylic protons, the site-selectivity for allylic C-H functionalization is fundamentally challenging. Previously, the negative inductive effect from an electronegative atom has been demonstrated to be effective for several inspiring regioselective C-H functionalization reactions. Yet, the use of an electropositive atom for a similar purpose remains to be developed. α-Aminoboronic acids and their derivatives have found widespread applications. Their current syntheses rely heavily on functional group manipulations. Herein we report a boryl-directed intermolecular C-H amination of allyl N-methyliminodiacetyl boronates (B(MIDA)s) and propargylic B(MIDA)s to give α-amino boronates with an exceptionally high level of site-selectivities (up to 300:1). A wide variety of highly functionalized secondary and tertiary α-amino boronates are formed in generally good to excellent yields, thanks to the mildness of the reaction conditions. The unsaturated double and triple bonds within the product leave room for further decorations. Mechanistic studies reveal that the key stabilization effect of the B(MIDA) moiety on its adjacent developing positive charge is responsible for the high site-selectivity and that a closed transition state might be involved, as the reaction is fully stereoretentive. An activation effect of B(MIDA) is also found.
Asunto(s)
Alquenos , Protones , Alquenos/química , Aminación , CatálisisRESUMEN
LcGg4, a neutral glycosphingolipid (GSL) and cancer antigen, its epimers GalNAc-LcGg4 and GlcNAc-LcGg4, and three lipid forms of GalNAc-LcGg4 were studied by mass spectrometry (MS). It was found that different forms of GalNAc-LcGg4 carrying homologous (d16:1/18:0) and (d18:1/18:0) lipids were easily separated and identified using liquid chromatography (LC)-MS. In addition, like gangliosides, homologous lipid forms of GalNAc-LcGg4 showed the same fragmentation pattern, except for a uniform shift of their glycolipid product ions by a certain m/z number determined by the varied lipid structure. It was also disclosed that LcGg4 and its epimers GalNAc-LcGg4 and GlcNAc-LcGg4, which are different only in the C4-configuration of their non-reducing end sugar residues, gave the same MS/MS product ions in similar relative intensities, as well as the same LC retention time, suggesting the challenge to differentiate epimeric GSLs by LC-MS. However, ion mobility spectrometry (IMS)-MS was able to efficiently separate and distinguish these epimers. This study has demonstrated the promise of IMS-MS for isomeric GSL characterization and the IMS-MS and LC-MS/MS combination for natural GSL analysis.
Asunto(s)
Espectrometría de Movilidad Iónica , Glicoesfingolípidos Neutros , Cromatografía Liquida/métodos , Gangliósidos , Espectrometría de Masas en TándemRESUMEN
The indolyl-4(3H)-quinazolinone core is an important structural motif in functional molecules. However, few methods exist for its direct modification, which limits its potential application. Reported herein is a palladium-mediated amination of halogen-containing indolyl-4(3H)-quinazolinones with a variety of primary and secondary amines via the corresponding palladium oxidative addition complexes. The protocol allows the facile synthesis of indolyl-4(3H)-quinazolinone derivatives with amino groups at all the positions of the benzene ring in moderate to good yields with mild reaction conditions and good functional group tolerance. Furthermore, the antitumor activity of these products was evaluated.
Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Paladio/farmacología , Quinazolinonas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Oxidación-Reducción , Paladio/química , Quinazolinonas/químicaRESUMEN
A diversity-oriented strategy was developed for the synthesis of glycosphingolipids (GSLs). This strategy was highlighted by using a simple lactoside containing the core structures of GSL glycan and lipid as the universal starting material to obtain different synthetic targets upon stepwise elongation of the glycan via chemical glycosylations and on-site remodeling of the lipid via chemoselective cross-metathesis and N-acylation. The strategy was verified with the synthesis of a lacto-ganglio GSL, LcGg4, which is a biomarker of undifferentiated malignant myeloid cells, and a series of its analogues or derivatives carrying different sugar chains and unique functionalities or molecular labels. This synthetic strategy should be widely applicable and, therefore, be utilized to rapidly access various GSLs and related derivatives by using different donors for glycosylations and different substrates for lipid remodeling following each glycosylation.
RESUMEN
Mulberry Diels-Alder-type adducts (MDAAs) are a group of rare natural polyphenols biosynthetically derived from [4 + 2]-cycloaddition of chalcones and dehydroprenylphenols. In this study, kuwanons G (1) and H (2), two bioactive MDAAs with unique dehydroprenylflavonoid dienes, were totally synthesized for the first time in a biomimetic manner. The key features of the convergent route include the use of the Baker-Venkataraman rearrangement, alkylation of ß-diketone, intramolecular cyclization, and Suzuki-Miyaura coupling to achieve the subunit diene.
Asunto(s)
Chalconas , Morus , Ciclización , Reacción de Cicloadición , FrutasRESUMEN
A hypervalent iodine(III)-mediated ring-contractive fluorination reaction of 2-alkylidenecyclobutanol derivatives is presented. The protocol allows the facile synthesis of ß-monofluorinated cyclopropanecarbaldehydes via a fluorination/semipinacol rearrangement cascade using nucleophilic Py·HF as the fluorine source. For challenging electron-rich arene substrates, the installation of a protecting group on the free alcohol is pivotal for maintaining the reaction efficiency. The synthetic utility was demonstrated by the scalability of this reaction and further transformations of the products.
Asunto(s)
Halogenación , Yodo , Ciclohexenos , Estructura MolecularRESUMEN
A new and efficient method was developed for the synthesis of C3-substituted sialyl glycals that are useful for novel sialidase inhibitor discovery. This method was based on the cross-coupling reactions of 3-iodo-sialyl glycal methyl ester with boronic acids, alkenes and alkynes to directly introduce various functional groups to the sialyl glycal C3-position. A series of C3-aryl, alkyl, alkenyl, and alkynyl derivatives of sialyl glycal were efficiently and conveniently synthesized for the first time by this method, which has demonstrated its wide application scope.
Asunto(s)
Desoxiazúcares/química , Yodo/química , Ácidos Borónicos/química , Estructura MolecularRESUMEN
α-Haloboronates are useful organic synthons that can be converted to a diverse array of α-substituted alkyl borons. Methods to α-haloboronates are limiting and often suffer from harsh reaction conditions. Reported herein is a photochemical radical C-H halogenation of benzyl N-methyliminodiacetyl (MIDA) boronates. Fluorination, chlorination, and bromination reactions were effective by using this protocol. Upon reaction with different nucleophiles, the C-Br bond in the brominated product could be readily transformed to a series of C-C, C-O, C-N, C-S, C-P, and C-I bonds, some of which are difficult to forge with α-halo sp2 -B boronate esters. An activation effect of B(MIDA) moiety was found.
RESUMEN
The glymphatic system is functional waste clearance path from the brain parenchyma through dynamic exchange of cerebrospinal fluid (CSF) with interstitial fluid (ISF). Impairment of glymphatic waste clearance is involved in the development of neurodegenerative conditions. Despite many recent studies investigating the glymphatic system, few studies have tried to use a mathematical model to describe this system, quantitatively. In this study, we aim to model the glymphatic system from the kinetics of Gd-DTPA tracer measured using MRI in order to: 1) map the glymphatic system path, 2) derive kinetic parameters of the glymphatic system, and 3) provide quantitative maps of the structure and function of this system. In the proposed model, the brain is clustered to similar regions with respect to the profile of contrast agent (CA) density measured by MRI. Then, each region is described as a two-compartment kinetic model 'derived from' or 'clears to' its neighbors with local input function. We thus fit our model to the local cerebral regions rather than to the averaged time signal curve (TSC) of the whole brain. The estimated parameters showed distinctive differences between diabetes mellitus (DM) and control rats. The results suggest that in a typical DM brain the CSF bulk speed in the para-vasculature network is low. In addition, the resulting maps indicate that there may be increased binding and decreased absorbing of large molecules in a diabetic compared with a non-diabetic brain. The important contribution of this work was to fit the model to the local regions rather than to the averaged time signal curve (TSC) of the whole brain. This enabled us to derive quantitative maps of the glymphatic system from MRI.
Asunto(s)
Diabetes Mellitus/diagnóstico por imagen , Sistema Glinfático/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Modelos Teóricos , Neuroimagen/métodos , Animales , Modelos Animales de Enfermedad , RatasRESUMEN
An efficient synthesis of highly functionalized cyclohexadienylborons via an inverse electron-demand Diels-Alder reaction/CO2 extrusion of alkenyl MIDA boronates with 2-pyrones is outlined. By controlling the reaction temperature, the corresponding C(sp3 )-rich bicyclolactones could also be readily formed. The exo-selective reactions feature good functional-group tolerance, broad substrate scope, and excellent regio- and diastereoselectivity. Oxidation of the cyclohexadienylborons in a one-pot procedure led to the construction of aromatic boronates bearing valuable functional groups. Synthetic transformations of the C-B bond were demonstrated.
RESUMEN
Analogues of cancer-associated Lewis Y (Ley) antigen with varying structures at the reducing end were synthesized by a highly efficient strategy involving one-pot preactivation-based iterative glycosylation to obtain the key tetra-/pentasaccharide intermediates, which was followed by stereoselective fucosylation. After global deprotection, these oligosaccharides were coupled with carrier protein keyhole limpet hemocyanin. The resultant glycan-protein conjugates were subjected to immunological studies in mice. It was disclosed that the conjugate of the pentasaccharide analogue of Lewis Y antigen was more immunogenic than that of the hexasaccharide analogue, but the antisera of both conjugates could indiscriminately recognize each carbohydrate hapten. These results suggested that the short Lewis Y analogue may be utilized to develop functional conjugate cancer vaccines. More importantly, the results also proved that the reducing-end glucose residue in the hexasaccharide analogue of Lewis Y was probably not involved in its interaction with the immune system, whose discovery can have a broad impact on the design of new cancer vaccines.
Asunto(s)
Inmunoconjugados/química , Inmunoconjugados/inmunología , Antígenos del Grupo Sanguíneo de Lewis/química , Antígenos del Grupo Sanguíneo de Lewis/inmunología , Animales , Técnicas de Química Sintética , Reacciones Cruzadas , Femenino , Ratones , Ratones Endogámicos C57BL , Relación Estructura-ActividadRESUMEN
An oxidative [3 + 2] C-H spiroannulation reaction of 2-alkenylphenols with ynamides has been developed toward the synthesis of spiro[4,5]decane derivatives. This dearomative reaction employs earth-abundant cobalt as the metal catalyst and occurs under rather mild reaction conditions (room temperature). The use of ynamides confers unique reactivity and exclusive regioselectivity. The products bearing an all-carbon quaternary stereogenic center were constructed in generally good yields with good functional group tolerance being observed. Experimental mechanistic studies were conducted, and a possible reaction mechanism is proposed.
RESUMEN
The ring-opening reactions of N-methyliminodiacetyl (MIDA) α-chloroepoxyboronates with different nucleophiles allow the modular synthesis of a diverse array of organoboronates. These include seven types of α-functionalized acylboronates and seven types of borylated heteroarenes, some of which are difficult-to-access products using alternative methods. The common synthons, α-chloroepoxyboronates, could be viably synthesized by a two-step procedure from the corresponding alkenyl MIDA boronates. Mild reaction conditions, good functional-group tolerance, and generally good efficiency were observed. The utility of the products was also demonstrated.