RESUMEN
Artificial neuromorphic devices can emulate dendric integration, axonal parallel transmission, along with superior energy efficiency in facilitating efficient information processing, offering enormous potential for wearable electronics. However, integrating such circuits into textiles to achieve biomimetic information perception, processing, and control motion feedback remains a formidable challenge. Here, we engineer a quasi-solid-state iontronic synapse fiber (ISF) comprising photoresponsive TiO2, ion storage Co-MoS2, and an ion transport layer. The resulting ISF achieves inherent short-term synaptic plasticity, femtojoule-range energy consumption, and the ability to transduce chemical/optical signals. Multiple ISFs are interwoven into a synthetic neural fabric, allowing the simultaneous propagation of distinct optical signals for transmitting parallel information. Importantly, IFSs with multiple input electrodes exhibit spatiotemporal information integration. As a proof of concept, a textile-based multiplexing neuromorphic sensorimotor system is constructed to connect synaptic fibers with artificial fiber muscles, enabling preneuronal sensing information integration, parallel transmission, and postneuronal information output to control the coordinated motor of fiber muscles. The proposed fiber system holds enormous promise in wearable electronics, soft robotics, and biomedical engineering.
Asunto(s)
Sinapsis , Textiles , Sinapsis/fisiología , Dispositivos Electrónicos Vestibles , Biomimética/métodos , Biomimética/instrumentación , Humanos , Plasticidad Neuronal/fisiologíaRESUMEN
Fibers of liquid crystal elastomers (LCEs) as promising artificial muscle show ultralarge and reversible contractile strokes. However, the contractile force is limited by the poor mechanical properties of the LCE fibers. Herein, we report high-strength LCE fibers by introducing a secondary network into the single-network LCE. The double-network LCE (DNLCE) shows considerable improvements in tensile strength (313.9%) and maximum actuation stress (342.8%) compared to pristine LCE. To facilitate the controllability and application, a coiled artificial muscle fiber consisting of DNLCE-coated carbon nanotube (CNT) fiber is prepared. When electrothermally driven, the artificial muscle fiber outputs a high actuation performance and programmable actuation. Furthermore, by knitting the artificial muscle fibers into origami structures, an intelligent gripper and crawling inchworm robot have been demonstrated. These demonstrations provide promising application scenarios for advanced intelligent systems in the future.
RESUMEN
The emergence of one-dimensional van der Waals heterostructures (1D vdWHs) opens up potential fields with unique properties, but precise synthesis remains a challenge. The utilization of mixed conductive types of carbon nanotubes as templates has imposed restrictions on the investigation of the electrical behavior and interlayer interaction of 1D vdWHs. In this study, we efficiently encapsulated silver iodide in high-purity semiconducting single-walled carbon nanotubes (sSWCNTs), forming 1D AgI@sSWCNT vdWHs. We characterized the semiconductor-metal transition and increased the carrier concentration of individual AgI@sSWCNTs via sensitive dielectric force microscopy and confirmed the results through electrical device tests. The electrical behavior transition was attributed to an interlayer charge transfer, as demonstrated by Kelvin probe force microscopy. Furthermore, we showed that this method of synthesizing 1D heterostructures can be extended to other metal halides. This work opens the door for the further exploration of the electrical properties of 1D vdWHs.
RESUMEN
One-dimensional (1D) high-entropy compounds (HECs) with subnano diameters are highly attractive because long-range electron delocalization may occur along the high-entropy atomic chain, which results in extraordinary properties. Nevertheless, synthesizing such 1D HECs presents a substantial challenge, and the physicochemical attributes of these novel structures remain ambiguous. Herein, we developed a comelting-filling-freezing-modification (co-MFFM) method for synthesizing 1D high-entropy metal phosphide (HEP) by simultaneously encapsulating various metal cations within single-walled carbon nanotubes (SWCNTs) followed with a phosphorization process. The resulting 1D HEP nanowires confined within SWCNTs exhibit crucial features, including an ultrafine, high-entropy, and amorphous structure, along with a core-shell arrangement. The SWCNT as a shell could donate π electrons to 1D HEP for enhanced electron delocalization and protect 1D HEP as an atomically single-layered protective covering, thus boosting high electrocatalytic activity and stability. Moreover, the co-MFFM method demonstrates scalability for mass production and displays universal applicability to the synthesis of various 1D HECs.
RESUMEN
Acquiring a deep insight into the electron transfer mechanism and applications of one-dimensional (1D) van der Waals heterostructures (vdWHs) has always been a significant challenge. Herein, through direct observation using aberration-corrected transmission electron microscopy (AC-TEM), we verify the stable formation of a high-quality 1D heterostructure composed of PbI2@single-walled carbon nanotubes (SWCNTs). The phenomenon of electron transfer between PbI2 and SWCNT is elucidated through spectroscopic investigations, including Raman and X-ray photoelectron spectroscopy (XPS). Electrochemical testing indicates the electron transfer and enduring stability of 1D PbI2 within SWCNTs. Moreover, leveraging the aforementioned electron transfer mechanism, we engineer self-powered photodetectors that exhibit exceptional photocurrent and a 3-order-of-magnitude switching ratio. Subsequently, we reveal its unique electron transfer behavior using Kelvin probe force microscopic (KPFM) tests. According to KPFM, the average surface potential of SWCNTs decreases by 80.6 mV after filling. Theoretical calculations illustrate a charge transfer of 0.02 e per unit cell. This work provides an effective strategy for the in-depth investigation and application of electron transfer in 1D vdWHs.
RESUMEN
Single-walled carbon nanotubes (SWCNTs) that have a reproducible distribution of chiralities or single chirality are among the most competitive materials for realizing post-silicon electronics. Molecular doping, with its non-destructive and fine-tunable characteristics, is emerging as the primary doping approach for the structure-controlled SWCNTs, enabling their eventual use in various functional devices. This review provides an overview of important advances in the area of molecular doping of structure-controlled SWCNTs and their applications. The first part introduces the underlying physical process of molecular doping, followed by a comprehensive survey of the commonly used dopants for SWCNTs to date. Then, it highlights how the convergence of molecular doping and structure-sorting strategies leads to significantly improved functionality of SWCNT-based field-effect transistor arrays, transparent electrodes in optoelectronics, thermoelectrics, and many emerging devices. At last, several challenges and opportunities in this field are discussed, with the hope of shedding light on promoting the practical application of SWCNTs in future electronics.
RESUMEN
INTRODUCTION: Since the discovery of gonadotropin-inhibitory hormone (GnIH), it has been found to play a critical role in reproduction in vertebrates. Recently, a regulatory role of GnIH in appetite and energy metabolism has emerged, although its precise physiological mechanisms remain unknown. METHODS: Thus, the present study evaluated the effects of a single or long-term intraperitoneal GnIH treatment on the food intake, weight, and glucolipid metabolism of chickens, as well as investigating the possible neuroendocrinology factors and mechanisms involved in GnIH-induced obesity and glucolipid metabolism disorder. RESULTS: Our results show that the intraperitoneal administration of GnIH to chickens resulted in a marked body mass increase, hyperlipidemia, hyperglycemia, and glucose intolerance. Subsequently, the results of metabolomics studies and the pharmacological inhibition of the 5-HT2C receptor revealed that blocking the 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight, and blood glucose and lipid levels, resulting in even worse cases of GnIH-induced hyperglycemia, hyperlipidemia, and hepatic lipid deposition. This suggests that, via the 5-HT2C receptor, peripheral 5-HT may act as a negative feedback regulator to interplay with GnIH and jointly control energy balance homeostasis in chickens. DISCUSSION: Our present study provides evidence of cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level, and it proposes a molecular basis for these interactions, suggesting that functional interactions between GnIH and 5-HT may open new avenues for understanding the mechanism of the neuroendocrine network involved in appetite and energy metabolism, as well as providing a new therapeutic strategy to prevent obesity, diabetes, and metabolic disorders.
Asunto(s)
Pollos , Metabolismo Energético , Conducta Alimentaria , Receptor de Serotonina 5-HT2C , Serotonina , Animales , Metabolismo Energético/efectos de los fármacos , Receptor de Serotonina 5-HT2C/metabolismo , Serotonina/metabolismo , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Hormonas Hipotalámicas/metabolismo , Masculino , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Hiperlipidemias/metabolismo , Hiperlipidemias/inducido químicamenteRESUMEN
Metal-organic frameworks (MOFs) have recently emerged as ideal electrode materials and precursors for electrochemical energy storage and conversion (EESC) owing to their large specific surface areas, highly tunable porosities, abundant active sites, and diversified choices of metal nodes and organic linkers. Both MOF-based and MOF-derived materials in powder form have been widely investigated in relation to their synthesis methods, structure and morphology controls, and performance advantages in targeted applications. However, to engage them for energy applications, both binders and additives would be required to form postprocessed electrodes, fundamentally eliminating some of the active sites and thus degrading the superior effects of the MOF-based/derived materials. The advancement of freestanding electrodes provides a new promising platform for MOF-based/derived materials in EESC thanks to their apparent merits, including fast electron/charge transmission and seamless contact between active materials and current collectors. Benefiting from the synergistic effect of freestanding structures and MOF-based/derived materials, outstanding electrochemical performance in EESC can be achieved, stimulating the increasing enthusiasm in recent years. This review provides a timely and comprehensive overview on the structural features and fabrication techniques of freestanding MOF-based/derived electrodes. Then, the latest advances in freestanding MOF-based/derived electrodes are summarized from electrochemical energy storage devices to electrocatalysis. Finally, insights into the currently faced challenges and further perspectives on these feasible solutions of freestanding MOF-based/derived electrodes for EESC are discussed, aiming at providing a new set of guidance to promote their further development in scale-up production and commercial applications.
Asunto(s)
Estructuras Metalorgánicas , Electrodos , Estructuras Metalorgánicas/química , MetalesRESUMEN
BACKGROUND: Diabetic nephropathy (DN) is a prevalent chronic microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD). Understanding the progressive etiology of DN is critical for the development of effective health policies and interventions. Recent research indicated that polystyrene microplastics (PS-MPs) contaminate our diets and accumulate in various organs, including the liver, kidneys, and muscles. METHODS: In this study, ten-week-old db/db mice and db/m mice were fed. Besides, db/db mice were divided into two groups: PS-MPs group (oral administration of 0.5⯵m PS-MPs) and an H2O group, and they were fed for three months. A type II diabetes model was established using db/db mice to investigate the effects of PS-MPs on body weight, blood glucose level, renal function, and renal fibrosis. RESULTS: The results demonstrated that PS-MPs significantly exacerbated various biochemical indicators of renal tissue damage, including fasting blood glucose, serum creatinine, blood urea nitrogen, and blood uric acid. Additionally, PS-MPs worsened the pathological alterations and degree of fibrosis in renal tissue. An increased oxidative stress state and elevated levels of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and monocyte chemoattractant protein-1 (MCP-1) were identified. Furthermore, PS-MPs significantly enhanced renal fibrosis by inhibiting the transition from epithelial cells to mesenchymal cells, specifically through the inhibition of the TGF-ß/Smad signaling pathway. The expression levels of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1, and cleaved Caspase-1, which are inflammasome proteins, were significantly elevated in the PS-MPs group. CONCLUSION: The findings suggested that PS-MPs could aggravate kidney injury and renal fibrosis in db/db mice by promoting NLRP3/Caspase-1 and TGF-ß1/Smads signaling pathways. These findings had implications for elucidating the role of PS-MPs in DN progression, underscoring the necessity for additional research and public health interventions.
RESUMEN
Fiber-shaped photodetectors (FPDs) with multidirectional light absorption properties offer exciting opportunities for intelligent optoelectronic textiles. However, achieving FPDs capable of working in ampule environments, especially with high sensitivity, remains a fundamental challenge. Here, quasi-solid-state twisted-fiber photoelectrochemical photodetectors (FPPDs) consisting of photoanode, gel electrolyte, and counter electrode are successfully assembled. In situ decorated n-type one-dimensional (1D) TiO2 nanowire arrays with 2D Ni-Fe metal-organic framework (NiFeMOF) nanosheets serve as hierarchical heterojunction photoanodes, thereby optimizing carrier transfer dynamics at the photoanode/electrolyte interface. As expected, the resulting self-powered FPPD exhibits 88.6 mA W-1 high responsiveness and a < 30 ms fast response time. Significantly, our FPPD can operate in both terrestrial and aquatic environments thanks to its intrinsic ionic properties, making it a versatile tool for detecting ultraviolet light on land and facilitating optical communication underwater. These high-sensitivity self-powered FPPDs with hierarchical heterojunction photoelectrodes hold promise for the development of wearable amphibious optoelectronic textiles.
RESUMEN
Heparin, a highly sulfated and epimerized form of heparan sulfate, is a linear polysaccharide with anticoagulant activity widely used in the clinic to prevent and treat thrombotic diseases. However, there are several noteworthy drawbacks associated with animal-sourced heparin during the preparation process. The in vitro enzymatic synthesis of heparin has become a promising substitute for animal-derived heparin. The synthesis of bioengineered heparin involves recombinant expression and preparation of polymerases, sulfotransferases, and an epimerase. D-glucuronyl C5-epimerase (HSepi) catalyzes D-glucuronic acids immediately adjacent to N-sulfo-glucosamine units to L-iduronic acid. Preparation of recombinant HSepi with high activity and production yield for in vitro heparin synthesis has not been resolved as of now. The findings of this study indicate that the catalytic activity of HSepi is regulated using post-translational modifications, including N-linked glycosylation and disulfide bond formation. Further mutation studies suggest that tyrosine residues, such as Tyr168, Tyr222, Tyr500, Tyr560, and Tyr578, are crucial in maintaining HSepi activity. A high-yield expression strategy was established using the lentiviral-based transduction system to produce recombinant HSepi (HSepi589) with a specific activity of up to 1.6 IU/mg. Together, this study contributes to the preparation of highly active HSepi for the enzymatic synthesis of heparins by providing additional insights into the catalytic activity of HSepi.
Asunto(s)
Carbohidrato Epimerasas , Heparitina Sulfato , Animales , Humanos , Carbohidrato Epimerasas/metabolismo , Heparitina Sulfato/química , Heparina , Racemasas y Epimerasas/genética , Mutación , Mamíferos/metabolismoRESUMEN
Prostate cancer refers to the epithelial malignant tumor of the prostate. It has a high incidence and mortality rate, seriously endangering the lives of men. In recent years, lncRNAs have become a hot topic for lots of scholars for their regulation functions on assorted cancers. Several lncRNAs have been proven they can take part in the regulation of prostate cancer development. Nevertheless, how HOXA11-AS (homeobox A11 antisense RNA)functioned in prostate cancer is not explained. In our research, the expression of HOXA11-AS in prostate cancer cells was evaluated through qRT-PCR. Colony formation experiments, EdU experiments, Tanswelland TUNEL experiments, as well as caspase-3 detection, were designed to test cell proliferation, migration, invasion and apoptosis. RIP, pull down and luciferase reporter experiments examined the correlations of HOXA11-AS, miR-148b-3p and MLPH. We discovered a high level of HOXA11-AS in prostate cancer cells.HOXA11-AS silence could restrain the mentioned cell malignant behavior. Mechanically, HOXA11-AS could sponge miR-148b-3p to target MLPH. MLPH was positively associated with HOXA11-AS and overexpressed it accelerated the progression of prostate cancer. Taken together, HOXA11-AS elevated MLPH expression by sponging miR-148b-3p and accelerated prostate cancer cell proliferation.
Asunto(s)
MicroARNs , Hiperplasia Prostática , Neoplasias de la Próstata , ARN Largo no Codificante , Humanos , Masculino , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/genéticaRESUMEN
The semiconductor industry is increasingly of the view that Moore's law-which predicts the biennial doubling of the number of transistors per microprocessor chip-is nearing its end. Consequently, the pursuit of alternative semiconducting materials for nanoelectronic devices, including single-walled carbon nanotubes (SWNTs), continues. Arrays of horizontal nanotubes are particularly appealing for technological applications because they optimize current output. However, the direct growth of horizontal SWNT arrays with controlled chirality, that would enable the arrays to be adapted for a wider range of applications and ensure the uniformity of the fabricated devices, has not yet been achieved. Here we show that horizontal SWNT arrays with predicted chirality can be grown from the surfaces of solid carbide catalysts by controlling the symmetries of the active catalyst surface. We obtained horizontally aligned metallic SWNT arrays with an average density of more than 20 tubes per micrometre in which 90 per cent of the tubes had chiral indices of (12, 6), and semiconducting SWNT arrays with an average density of more than 10 tubes per micrometre in which 80 per cent of the nanotubes had chiral indices of (8, 4). The nanotubes were grown using uniform size Mo2C and WC solid catalysts. Thermodynamically, the SWNT was selectively nucleated by matching its structural symmetry and diameter with those of the catalyst. We grew nanotubes with chiral indices of (2m, m) (where m is a positive integer), the yield of which could be increased by raising the concentration of carbon to maximize the kinetic growth rate in the chemical vapour deposition process. Compared to previously reported methods, such as cloning, seeding and specific-structure-matching growth, our strategy of controlling the thermodynamics and kinetics offers more degrees of freedom, enabling the chirality of as-grown SWNTs in an array to be tuned, and can also be used to predict the growth conditions required to achieve the desired chiralities.
RESUMEN
This study aimed to improve the use of YF8, a matrine derivative obtained through chemical transformation of matrine extracted from Sophora alopecuroides. YF8 has demonstrated improved cytotoxicity compared to matrine, but its hydrophobic nature hinders its application. To overcome this, the lipid prodrug YF8-OA was synthesized by linking oleic acid (OA) to YF8 through an ester bond. Although YF8-OA could self-assemble into unique nanostructures in water, it was not sufficiently stable. To enhance the stability of YF8-OA lipid prodrug nanoparticles (LPs), we employed the strategy of PEGylation using DSPE-mPEG2000 or DSPE-mPEG2000 conjugated with folic acid (FA). This resulted in the formation of uniform spherical nanoparticles with greatly improved stability and a maximum drug load capacity upto 58.63%. Cytotoxicity was evaluated in A549, HeLa, and HepG2 cell lines. The results showed that in HeLa cells, the IC50 value of YF8-OA/LPs with FA-modified PEGylation was significantly lower than that of YF8-OA/LPs modified by PEGylation alone. However, no significant enhancement was observed in A549 and HepG2 cells. In conclusion, the lipid prodrug YF8-OA can form nanoparticles in aqueous solution to address its poor water solubility. Modification with FA resulted in further enhanced cytotoxicity, providing a potential avenue for exerting the antitumor activity of matrine analogs.
Asunto(s)
Antineoplásicos , Nanopartículas , Profármacos , Humanos , Profármacos/farmacología , Profármacos/química , Sistemas de Liberación de Medicamentos/métodos , Ácido Oléico , Células HeLa , Ácido Fólico/química , Lipopolisacáridos , Nanopartículas/química , Antineoplásicos/químicaRESUMEN
Formononetin is a flavonoid compound with anti-tumor and anti-inflammatory properties. However, its low solubility limits its clinical use. We employed microfluidic technology to prepare formononetin-loaded PLGA-PEGDA microspheres (Degradable polymer PLGA, Crosslinking agent PEGDA), which can encapsulate and release drugs in a controlled manner. We optimized and characterized the microspheres, and evaluated their antitumor effects. The microspheres had uniform size, high drug loading efficiency, high encapsulation efficiency, and stable release for 35 days. They also inhibited the proliferation, migration, and apoptosis. The antitumor mechanism involved the induction of reactive oxygen species and modulation of Bcl-2 family proteins. These findings suggested that formononetin-loaded PLGA-PEGDA microspheres, created using microfluidic technology, could be a novel drug delivery system that can overcome the limitations of formononetin and enhance its antitumor activity.
Asunto(s)
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Microesferas , Microfluídica , Tamaño de la PartículaRESUMEN
Carbon nanotube (CNT)/copper (Cu) composite fibers are placed great expectations as the next generation of light-weight, conductive wires. However, the electrical and mechanical performances still need to be enhanced. Herein, we demonstrate a strategy that is electrodeposition Cu on thiolated CNT fibers to solve the grand challenge which is enhancing the performance of CNT/Cu composite fibers. Thiol groups are introduced to the surface of the CNT fibers through a controllable O2plasma carboxylation process and amide reaction. Compared with CNT/Cu composite fibers, there are 82.7% and 29.6% improvements in electrical conductivity and tensile strength of interface thiol-modification composite fibers. The enhancement mechanism is also explored that thiolated CNT fibers could make strong interactions between Cu and CNT, enhancing the electrical and mechanical performance of CNT/Cu composites. This work proposes a convenient, heat-treatment-free strategy for high-performance CNT/Cu composite fibers, which can be manufactured for large-scale production and applied to next-generation conductive wires.
RESUMEN
Effective and reliable encapsulation of phase change materials (PCMs) is essential and critical to the high-performance solar-thermal energy harvesting and storage. However, challenges remain pertaining to manufacturing scalability, high efficiency in energy storage/release, and anti-leakage of melted PCMs. Herein, inspired by natural legume, a facile and scalable extrusion-based core-sheath 3D printing strategy is demonstrated for directly constructing bean-pod-structured octadecane (OD)/graphene (BOG) phase change microlattices, with regular porous configuration as well as individual and effective encapsulation of OD "beans" into highly interconnected graphene network wrapping layer built by closely stacked and aligned graphene sheets. The unique architectural features enable the ready spreading of light into the interior of phase change microlattice, a high transversal thermal conductivity of 1.67 W m-1 K-1 , and rapid solar-thermal energy harvesting and transfer, thereby delivering a high solar-thermal energy storage efficiency, and a large phase change enthalpy of 190 J g-1 with 99.1% retention after 200 cycles. Most importantly, such encapsulated PCMs feature an exceptional thermal reliability and stability, with no leakage and shape variation even at 1000 thermal cycles and partial damage of BOG. This work validates the feasibility of scalably printing practical encapsulated PCMs, which may revolutionize the fabrication of composite PCMs for solar-thermal energy storage devices.
Asunto(s)
Fabaceae , Calor , Impresión Tridimensional , Reproducibilidad de los Resultados , Conductividad TérmicaRESUMEN
To address the lack of a suitable electrolyte that supports the stable operation of the electrochemical yarn muscles in air, an ionic-liquid-in-nanofibers sheathed carbon nanotube (CNT) yarn muscle is prepared. The nanofibers serve as a separator to avoid the short-circuiting of the yarns and a reservoir for ionic liquid. The ionic-liquid-in-nanofiber-sheathed yarn muscles are strong, providing an isometric stress of 10.8 MPa (about 31 times the skeletal muscles). The yarn muscles are highly robust, which can reversibly contract stably at such conditions as being knotted, wide-range humidity (30 to 90 RH%) and temperature (25 to 70 °C), and long-term cycling and storage in air. By utilizing the accumulated isometric stress, the yarn muscles achieve a high contraction rate of 36.3% s-1 . The yarn muscles are tightly bundled to lift heavy weights and grasp objects. These unique features can make the strong and robust yarn muscles as a desirable actuation component for robotic devices.
Asunto(s)
Líquidos Iónicos , Nanofibras , Nanotubos de Carbono , Electrólitos , Músculo EsqueléticoRESUMEN
Low-melting-point (LMP) metals represent an interesting family of electrode materials owing to their high ionic conductivity, good ductility or fluidity, low hardness and/or superior alloying capability, all of which are crucial characteristics to address battery challenges such as interfacial incompatibility, electrode pulverization, and dendrite growth. This minireview summarizes recent research progress of typical LMP metals including In, Ga, Hg, and their alloys in rechargeable metal batteries. Emphasis is placed on mainstream electrochemical storage devices of Li, Na, and K batteries as well as the representative multi-valent metal batteries. The fundamental correlations between unique physiochemical properties of LMP metals and the battery performance are highlighted. In addition, this article also provides insights into future development and potential directions of LMP metals/alloys for practical applications.
RESUMEN
Two new tetrahydrobenzannulated 5,5-spiroketal sesquiterpenes (1 and 2) and three novel benzannulated 5,5-spiroketal sesquiterpenes (3-5) namely angepubesins A-E, together with a new heliannane-type benzannulated sesquiterpene namely angepubesin F (6) and two known monoterpenes (7 and 8), were isolated from the roots of Angelica Pubescens. Their structures were identified by various spectroscopic analyses (NMR, MS, UV, IR), in combination with 13C NMR calculation as well as MAE, CMAE, DP4 + and MAEΔΔδ values analyses. The absolute configurations of 1-6 were determined by modified Mosher's method, ECD calculation and single-crystal X-ray diffraction (Cu Kα). Furthermore, the inhibitory activities of these isolated compounds against nitric oxide (NO) production induced by lipopolysaccharide (LPS) in RAW264.7 macrophage cells were evaluated. The results showed that compounds 2-4, 6 and 7, especially 6, displayed markedly inhibitory effects on NO production in a concentration-dependent manner. Mechanical study revealed that compound 6 could significantly inhibit the expression of nitric oxide synthase (iNOS) protein at a concentration of 10 µM. In addition, compound 6 suppressed the activation of JAK-STAT and NF-κB pathways.