RESUMEN
The high volatility of the price of cobalt and the geopolitical limitations of cobalt mining have made the elimination of Co a pressing need for the automotive industry1. Owing to their high energy density and low-cost advantages, high-Ni and low-Co or Co-free (zero-Co) layered cathodes have become the most promising cathodes for next-generation lithium-ion batteries2,3. However, current high-Ni cathode materials, without exception, suffer severely from their intrinsic thermal and chemo-mechanical instabilities and insufficient cycle life. Here, by using a new compositionally complex (high-entropy) doping strategy, we successfully fabricate a high-Ni, zero-Co layered cathode that has extremely high thermal and cycling stability. Combining X-ray diffraction, transmission electron microscopy and nanotomography, we find that the cathode exhibits nearly zero volumetric change over a wide electrochemical window, resulting in greatly reduced lattice defects and local strain-induced cracks. In-situ heating experiments reveal that the thermal stability of the new cathode is significantly improved, reaching the level of the ultra-stable NMC-532. Owing to the considerably increased thermal stability and the zero volumetric change, it exhibits greatly improved capacity retention. This work, by resolving the long-standing safety and stability concerns for high-Ni, zero-Co cathode materials, offers a commercially viable cathode for safe, long-life lithium-ion batteries and a universal strategy for suppressing strain and phase transformation in intercalation electrodes.
RESUMEN
Flaviviruses in the Japanese encephalitis virus (JEV) serogroup, such as JEV, West Nile virus, and St. Louis encephalitis virus, can cause severe neurological diseases. The nonstructural protein 1 (NS1) is a multifunctional protein of flavivirus that can be secreted by infected cells and circulate in the host bloodstream. NS1' is an additional form of NS1 protein with 52 amino acids extension at its carboxy-terminal and is produced exclusively by flaviviruses in the JEV serogroup. In this study, we demonstrated that the secreted form of both NS1 and NS1' can disrupt the blood-brain barrier (BBB) of mice, with NS1' exhibiting a stronger effect. Using the in vitro BBB model, we found that treatment of soluble recombinant JEV NS1 or NS1' protein increases the permeability of human brain microvascular endothelial cells (hBMECs) and leads to the degradation of tight junction proteins through the autophagy-lysosomal pathway. Consistently, NS1' protein exhibited a more pronounced effect compared to NS1 in these cellular processes. Further research revealed that the increased expression of macrophage migration inhibitory factor (MIF) is responsible for triggering autophagy after NS1 or NS1' treatment in hBMECs. In addition, TLR4 and NF-κB signaling was found to be involved in the activation of MIF transcription. Moreover, administering the MIF inhibitor has been shown to decrease viral loads and mitigate inflammation in the brains of mice infected with JEV. This research offers a novel perspective on the pathogenesis of JEV. In addition, the stronger effect of NS1' on disrupting the BBB compared to NS1 enhances our understanding of the mechanism by which flaviviruses in the JEV serogroup exhibit neurotropism.IMPORTANCEJapanese encephalitis (JE) is a significant viral encephalitis worldwide, caused by the JE virus (JEV). In some patients, the virus cannot be cleared in time, leading to the breach of the blood-brain barrier (BBB) and invasion of the central nervous system. This invasion may result in cognitive impairment, behavioral disturbances, and even death in both humans and animals. However, the mechanism by which JEV crosses the BBB remains unclear. Previous studies have shown that the flavivirus NS1 protein plays an important role in causing endothelial dysfunction. The NS1' protein is an elongated form of NS1 protein that is particularly produced by flaviviruses in the JEV serogroup. This study revealed that both the secreted NS1 and NS1' of JEV can disrupt the BBB by breaking down tight junction proteins through the autophagy-lysosomal pathway, and NS1' is found to have a stronger effect compared to NS1 in this process. In addition, JEV NS1 and NS1' can stimulate the expression of MIF, which triggers autophagy via the ERK signaling pathway, leading to damage to BBB. Our findings reveal a new function of JEV NS1 and NS1' in the disruption of BBB, thereby providing the potential therapeutic target for JE.
Asunto(s)
Autofagia , Barrera Hematoencefálica , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Proteínas no Estructurales Virales , Animales , Humanos , Ratones , Barrera Hematoencefálica/virología , Barrera Hematoencefálica/metabolismo , Encéfalo/virología , Encéfalo/metabolismo , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/virología , Encefalitis Japonesa/metabolismo , Células Endoteliales/virología , Células Endoteliales/metabolismo , Factores Inhibidores de la Migración de Macrófagos/metabolismo , FN-kappa B/metabolismo , Proteínas no Estructurales Virales/metabolismoRESUMEN
BACKGROUND: Microglia is the primary source of inflammatory factors during migraine attacks. This study aims to investigate the role of microglia related genes (MRGs) in migraine attacks. METHODS: The RNA sequencing results of migraineurs and the panglaodb database were used to obtain differentially expressed genes (DEGs) in migraine related to microglia. A migraine rat model was established for validating and localizing of the MRGs, and subsequent screening for target genes was conducted. A shRNA was designed to interference the expression of target genes and administered into the trigeminal ganglion (TG) of rats. Pain sensitivity in rats was evaluated via the hot water tail-flick (HWTF) and formalin-induced pain (FIP) experiments. ELISA was used to quantify the levels of inflammatory cytokines and CGRP. WB and immunofluorescence assays were applied to detect the activation of microglia. RESULTS: A total of five DEGs in migraine related to microglia were obtained from RNA sequencing and panglaodb database. Animal experiments showed that these genes expression were heightened in the TG and medulla oblongata (MO) of migraine rats. The gene S100A8 co-localized with microglia in both TG and MO. The HWTF and FIP experiments demonstrated that interference with S100A8 alleviated the sense of pain in migraine rats. Moreover, the levels of TNFα, IL-1ß, IL-6, and CGRP in the TG and MO of rats in the model rats were increased, and the expression of microglia markers IBA-1, M1 polarization markers CD86 and iNOS was upregulated. Significantly, interference with S100A8 reversed these indicators. CONCLUSION: Interference with S100A8 in microglia increased the pain threshold during migraine attacks, and inhibited neuroinflammation and microglia activation.
Asunto(s)
Calgranulina A , Microglía , Trastornos Migrañosos , Enfermedades Neuroinflamatorias , Ratas Sprague-Dawley , Animales , Microglía/metabolismo , Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/genética , Ratas , Masculino , Calgranulina A/metabolismo , Calgranulina A/genética , Enfermedades Neuroinflamatorias/metabolismo , Ganglio del Trigémino/metabolismo , Modelos Animales de EnfermedadRESUMEN
BACKGROUND: Global per capita meat consumption continues to rise, especially pork. Meat quality is influenced by the content of intramuscular fat (IMF) as a key factor. The longissimus dorsi muscle of Dahe pigs (DHM, IMF: 7.98% ± 1.96%) and Dahe black pigs (DHBM, IMF: 3.30% ± 0.64%) was studied to explore cellular heterogeneity and differentially expressed genes (DEGs) associated with IMF deposition using single-nucleus RNA sequencing (snRNA-seq). The lipid composition was then analyzed using non-targeted lipidomics. RESULTS: A total of seven cell subpopulations were identified, including myocytes, fibroblast/fibro/adipogenic progenitors (FAPs), satellite cells, endothelial cells, macrophages, pericytes, and adipocytes. Among them, FAPs and adipocytes were more focused because they could be associated with lipid deposition. 1623 DEGs in the FAPs subpopulation of DHBM were up-regulated compared with DHM, while 1535 were down-regulated. These DEGs enriched in the glycolysis/gluconeogenesis pathway. 109 DEGs were up-regulated and 806 were down-regulated in the adipocyte subpopulation of DHBM compared with DHM, which were mainly enriched in the PPAR signaling pathway and fatty acid (FA) biosynthesis. The expression level of PPARG, ABP4, LEP, and ACSL1 genes in DHM was higher than that in DHBM. Lipidomics reveals porcine lipid composition characteristics of muscle tissue. A total of 41 lipid classes and 2699 lipid species were identified in DHM and DHBM groups. The top ten relative peak areas of lipid classes in DHM and DHBM were triglyceride (TG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), diglyceride (DG), cardiolipin (CL), ceramides (Cer), Simple Glc series (Hex1Cer), sphingomyelin (phSM), and phosphatidylinositol (PI). The relative peak areas of 35 lipid species in DHM were lower than DHBM, and 28 lipid species that were higher. There was a significant increase in the TG fatty acyl chains C6:0, C17:0, and C11:4, and a significant decrease in C16:0, C18:1, C18:2, and C22:4 in DHBM (p < 0.05). CONCLUSIONS: C16:0 FA may downregulate the expression level of PPARG gene, which leads to the downregulation of fat metabolism-related genes such as ACSL, PLIN2, and FABP4 in DHBM compared with DHM. This may be the reason that the lipid deposition ability of Dahe pigs is stronger than that of Dahe black pigs, which need further investigation.
Asunto(s)
Metabolismo de los Lípidos , Músculo Esquelético , Animales , Porcinos , Músculo Esquelético/metabolismo , Metabolismo de los Lípidos/genética , Lipidómica , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Lípidos/análisis , Perfilación de la Expresión GénicaRESUMEN
BACKGROUND: Identifying reliable prognostic markers is crucial for the effective management of hypertension. The neutrophil-to-lymphocyte ratio (NLR) has emerged as a potential inflammatory marker linked to cardiovascular outcomes. This study aims to investigate the association of NLR with all-cause and cardiovascular mortality among patients with hypertension. METHODS: This study analyzed data from 3067 hypertensive adults in the National Health and Nutritional Examination Surveys (NHANES) from 2009 to 2014. Mortality details were obtained from the National Death Index (NDI). Restricted cubic spline (RCS) was deployed to visualize the association of the NLR with mortality risk. Weighted Cox proportional hazards models were employed to assess the independent association of NLR with mortality risk. Time-dependent receiver operating characteristic curve (ROC) analysis was conducted to access the predictive ability of NLR for survival. Mediation analysis was used to explore the indirect impact of NLR on mortality mediated through eGFR. RESULTS: Over a median 92.0-months follow-up, 538 deaths occurred, including 114 cardiovascular deaths. RCS analysis revealed a positive association between NLR and both all-cause and cardiovascular mortality. Participants were stratified into higher (> 3.5) and lower (≤ 3.5) NLR groups. Weighted Cox proportional hazards models demonstrated that individuals with higher NLR had a significantly increased risk of all-cause (HR 1.96, 95% confidence interval (CI) 1.52-2.52, p < 0.0001) and cardiovascular mortality (HR 2.33, 95% CI 1.54-3.51, p < 0.0001). Stratified and interaction analysis confirmed the stability of the core results. Notably, eGFR partially mediated the association between NLR and both all-cause and cardiovascular mortality by a 5.4% and 4.7% proportion, respectively. Additionally, the areas under the curve (AUC) of the 3-, 5- and 10- year survival was 0.68, 0.65 and 0.64 for all-cause mortality and 0.68, 0.70 and 0.69 for cardiovascular mortality, respectively. CONCLUSION: Elevated NLR independently confers an increased risk for both all-cause and cardiovascular mortality in individuals with hypertension.
Asunto(s)
Sistema Cardiovascular , Hipertensión , Adulto , Humanos , Neutrófilos , Encuestas Nutricionales , Linfocitos , Hipertensión/diagnóstico , Pronóstico , Estudios RetrospectivosRESUMEN
BACKGROUND: Diabetic cardiomyopathy (DCM) poses a growing health threat, elevating heart failure risk in diabetic individuals. Understanding DCM is crucial, with fibroblasts and endothelial cells playing pivotal roles in driving myocardial fibrosis and contributing to cardiac dysfunction. Advances in Multimodal single-cell profiling, such as scRNA-seq and scATAC-seq, provide deeper insights into DCM's unique cell states and molecular landscape for targeted therapeutic interventions. METHODS: Single-cell RNA and ATAC data from 10x Multiome libraries were processed using Cell Ranger ARC v2.0.1. Gene expression and ATAC data underwent Seurat and Signac filtration. Differential gene expression and accessible chromatin regions were identified. Transcription factor activity was estimated with chromVAR, and Cis-coaccessibility networks were calculated using Cicero. Coaccessibility connections were compared to the GeneHancer database. Gene Ontology analysis, biological process scoring, cell-cell communication analysis, and gene-motif correlation was performed to reveal intricate molecular changes. Immunofluorescent staining utilized various antibodies on paraffin-embedded tissues to verify the findings. RESULTS: This study integrated scRNA-seq and scATAC-seq data obtained from hearts of WT and DCM mice, elucidating molecular changes at the single-cell level throughout the diabetic cardiomyopathy progression. Robust and accurate clustering analysis of the integrated data revealed altered cell proportions, showcasing decreased endothelial cells and macrophages, coupled with increased fibroblasts and myocardial cells in the DCM group, indicating enhanced fibrosis and endothelial damage. Chromatin accessibility analysis unveiled unique patterns in cell types, with heightened transcriptional activity in myocardial cells. Subpopulation analysis highlighted distinct changes in cardiomyocytes and fibroblasts, emphasizing pathways related to fatty acid metabolism and cardiac contraction. Fibroblast-centered communication analysis identified interactions with endothelial cells, implicating VEGF receptors. Endothelial cell subpopulations exhibited altered gene expressions, emphasizing contraction and growth-related pathways. Candidate regulators, including Tcf21, Arnt, Stat5a, and Stat5b, were identified, suggesting their pivotal roles in DCM development. Immunofluorescence staining validated marker genes of cell subpopulations, confirming PDK4, PPARγ and Tpm1 as markers for metabolic pattern-altered cardiomyocytes, activated fibroblasts and endothelial cells with compromised proliferation. CONCLUSION: Our integrated scRNA-seq and scATAC-seq analysis unveils intricate cell states and molecular alterations in diabetic cardiomyopathy. Identified cell type-specific changes, transcription factors, and marker genes offer valuable insights. The study sheds light on potential therapeutic targets for DCM.
Asunto(s)
Cardiomiopatías Diabéticas , Análisis de la Célula Individual , Transcriptoma , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Animales , Perfilación de la Expresión Génica , Cromatina/metabolismo , Cromatina/genética , Ratones Endogámicos C57BL , Redes Reguladoras de Genes , Ensamble y Desensamble de Cromatina , Modelos Animales de Enfermedad , Masculino , RNA-Seq , Regulación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patologíaRESUMEN
This Letter proposes a novel, to the best of our knowledge, matrix digitization method for a photonic analog-to-digital converter with phase-shifted optical quantization (PSOQ-ADC). This method overcomes the issues of excessive bit width of the output code and the generation of invalid codes encountered by the traditional direct digitization method. A PSOQ-ADC was fabricated on a lithium niobate on insulator (LNOI) platform, and an experimental platform was built. The results show that RF signals at 1/2/5â GHz, which were sampled by a 50GS/s optical pulse train, were digitized successfully with the matrix digitization method, producing 5-bit codes without invalid codes. In comparison, the direct digitization method yields 10-bit codes, and as the optical signal-to-noise ratio (OSNR) decreases, the ratio of invalid codes increases in the direct digitization method; even with Hamming distance correction, its effective number of bits (ENOB) remains smaller than that of the matrix digitization.
RESUMEN
As a prototypical aggregation-induced emission luminogen (AIEgen), the tetraphenylethene (TPE) moiety has been judiciously modified as organic linkers for constructing various functional metal-organic frameworks (MOFs). However, these AIEgen-based MOFs have rarely received research attention in photocatalytic applications due to their limited stability in harsh reaction conditions. In this work, we report a robust Ni8-pyrazolate-based MOF (denoted as TPE4Pz-Ni) under the guidance of reticular chemistry, which is assembled by an AIE-active tetratopic linker of 1,1,2,2-tetrakis(4-(1H-pyrazol-4-yl)phenyl)ethane (H4-TPE4Pz) with a 12-connected Ni8-cluster of [Ni8(OH)4(H2O)2Pz12] (Pz = pyrazolate) in a (4,12)-connected ftw-a topological network. Notably, MOF TPE4Pz-Ni exhibits excellent stability in a wide range of solvents and even in a saturated NaOH solution. Moreover, its luminescent emission is effectively quenched via a ligand-to-metal charge transfer (LMCT) process originating from the TPE-cored linker to the Ni8 cluster, which enables TPE4Pz-Ni to act as an efficient photoredox/nickel dual catalyst for light-mediated C-S cross-coupling reactions between various aryl iodides and thiols.
RESUMEN
Preclinical studies demonstrating high cure rates with PD1/PD-L1 combinations have led to numerous clinical trials, but emerging results are disappointing. These combined immunotherapies are commonly employed for patients with refractory tumors following prior treatment with cytotoxic agents. Here, we uncovered that the post-chemotherapy tumor presents a unique mechanical microenvironment characterized by an altered extracellular matrix (ECM) elasticity and increased stiffness, which facilitate the development of aggressive tumor phenotypes and confer resistance to checkpoint blocking therapy. As thus, we rationally designed an in situ nanocomposite hydrogel system, LOS&FeOX@Gel, which enabled effective and specific delivery of the therapeutic payloads (losartan [LOS] and oxaliplatin [OX]) into tumor. We demonstrate that sustained release of LOS effectively remodels the tumor mechanical microenvironment (TMM) by reducing ECM deposition and its associated "solid stress", thereby augmenting the efficacy of OX and its immunological effects. Importantly, this hydrogel system greatly sensitized post-chemotherapy tumor to checkpoint blocking therapy, showing synergistic therapeutic effects against cancer metastasis. Our study provides mechanistic insights and preclinical rationale for modulating TMM as a potential neoadjuvant regimen for tumor to optimize the benefits of chemo-immunotherapy, which lays the groundwork for leveraging "mechanical-immunoengineering" strategies to combat refractory tumors.
Asunto(s)
Hidrogeles , Inmunoterapia , Losartán , Nanocompuestos , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Animales , Nanocompuestos/química , Hidrogeles/química , Ratones , Inmunoterapia/métodos , Línea Celular Tumoral , Losartán/farmacología , Losartán/química , Matriz Extracelular/metabolismo , Humanos , Oxaliplatino/farmacología , Oxaliplatino/química , Oxaliplatino/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Endogámicos C57BLRESUMEN
OBJECTIVE: Perioperative neurocognitive disorders (PND) are a group of prevalent neurological complications that often occur in elderly individuals following major or emergency surgical procedures. The etiologies are not fully understood. This study endeavored to investigate novel targets and prediction methods for the occurrence of PND. METHODS: A total of 229 elderly patients diagnosed with prostatic hyperplasia who underwent transurethral resection of the prostate (TURP) combined with spinal cord and epidural analgesia were included in this study. The patients were divided into two groups, the PND group and non-PND group, based on the Z-score method. According to the principle of maintaining consistency between preoperative and intraoperative conditions, three patients from each group were randomly chosen for serum sample collection. isobaric tags for relative and absolute quantification (iTRAQ) proteomics technology was employed to analyze and identify the proteins that exhibited differential expression in the serum samples from the two groups. Bioinformatics analysis was performed on the proteins that exhibited differential expression. RESULTS: Among the 1101 serum proteins analyzed in the PND and non-PND groups, eight differentially expressed proteins were identified in PND patients. Of these, six proteins showed up-regulation, while two proteins showed down-regulation. Further bioinformatics analysis of the proteins that exhibited differential expression revealed their predominant involvement in cellular biological processes, cellular component formation, as well as endocytosis and phagocytosis Additionally, these proteins were found to possess the RING domain of E3 ubiquitin ligase. CONCLUSION: The iTRAQ proteomics technique was employed to analyze the variation in protein expression in serum samples from patients with PND and those without PND. This study successfully identified eight proteins that exhibited differential expression levels between the two groups. Bioinformatics analysis indicates that proteins exhibiting differential expression are primarily implicated in the biological processes associated with microtubules. Investigating the microtubule formation process as it relates to neuroplasticity and synaptic formation may offer valuable insights for enhancing our comprehension and potential prevention of PND. CLINICAL TRIAL REGISTRATION: Registered (ChiCTR2000028836). Date (20190306).
Asunto(s)
Resección Transuretral de la Próstata , Humanos , Masculino , Anciano , Resección Transuretral de la Próstata/efectos adversos , Proteómica , Hiperplasia Prostática/cirugía , Hiperplasia Prostática/sangre , Trastornos Neurocognitivos/etiología , Trastornos Neurocognitivos/sangre , Trastornos Neurocognitivos/metabolismo , Complicaciones Cognitivas Postoperatorias/etiología , Complicaciones Cognitivas Postoperatorias/sangre , Periodo Perioperatorio , Anciano de 80 o más Años , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análisis , Biología ComputacionalRESUMEN
BACKGROUND: As the largest substantive organ of animals, the liver plays an essential role in the physiological processes of digestive metabolism and immune defense. However, the cellular composition of the pig liver remains poorly understood. This investigation used single-nucleus RNA sequencing technology to identify cell types from liver tissues of pigs, providing a theoretical basis for further investigating liver cell types in pigs. RESULTS: The analysis revealed 13 cells clusters which were further identified 7 cell types including endothelial cells, T cells, hepatocytes, Kupffer cells, stellate cells, B cells, and cholangiocytes. The dominant cell types were endothelial cells, T cells and hepatocytes in the liver tissue of Dahe pigs and Dahe black pigs, which accounts for about 85.76% and 82.74%, respectively. The number of endothelial cells was higher in the liver tissue of Dahe pigs compared to Dahe black pigs, while the opposite tendency was observed for T cells. Moreover, functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic endothelial cells were significantly enriched in the protein processing in endoplasmic reticulum, MAPK signaling pathway, and FoxO signaling pathway. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic T cells were significantly enriched in the thyroid hormone signaling pathway, B cell receptor signaling pathway, and focal adhesion. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic hepatocytes were significantly enriched in the metabolic pathways. CONCLUSIONS: In summary, this study provides a comprehensive cell atlas of porcine hepatic tissue. The number, gene expression level and functional characteristics of each cell type in pig liver tissue varied between breeds.
Asunto(s)
Células Endoteliales , Transcriptoma , Animales , Porcinos , Fitomejoramiento , Hepatocitos/metabolismo , Hígado/metabolismoRESUMEN
Histone methylation is an important epigenetic modification that affects various biological processes, including the inflammatory response. In this study, we found that infection with Japanese encephalitis virus (JEV) leads to an increase in H3K27me3 in BV2 microglial cell line, primary mouse microglia and mouse brain. Inhibition of H3K27me3 modification through EZH2 knockdown and treatment with EZH2 inhibitor significantly reduces the production of pro-inflammatory cytokines during JEV infection, which suggests that H3K27me3 modification plays a crucial role in the neuroinflammatory response caused by JEV infection. The chromatin immunoprecipitation-sequencing (ChIP-sequencing) assay revealed an increase in H3K27me3 modification of E3 ubiquitin ligases Rnf19a following JEV infection, which leads to downregulation of Rnf19a expression. Furthermore, the results showed that Rnf19a negatively regulates the neuroinflammatory response induced by JEV. This is achieved through the degradation of RIG-I by mediating its ubiquitination. In conclusion, our findings reveal a novel mechanism by which JEV triggers extensive neuroinflammation from an epigenetic perspective.
Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Virus de la Encefalitis Japonesa (Subgrupo) , Encefalitis Japonesa , Animales , Ratones , Histonas , Encefalitis Japonesa/genética , Inflamación , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
KIN17 DNA and RNA binding protein (Kin17) is involved in the regulation of tumorigenesis of diverse human cancers. However, its role in the cancer progression and metastasis in hepatocellular carcinoma (HCC) remains largely unknown. Bioinformatics and immunohistochemistry staining were used to investigate the expression pattern of KIN17 and its prognostic value in HCC patients. The transwell, wound-healing assay was employed to determine the effects of KIN17 on migration and invasion of HCC cells in vitro. The tail veins model was employed to determine the effects of KIN17 on lung metastasis in vivo. The biological mechanisms involved in cell migration and invasion regulated by KIN17 were determined with Western blot analysis method. KIN17 expression was significantly increased in HCC tissues compared with adjacent normal tissues, with particularly higher in portal vein tumor thrombus and intrahepatic metastasis tissues. Patients with higher KIN17 expression experienced poor overall and disease free survival. KIN17 knockdown in HuH7 and HepG2 cells significantly reduced cell migration and invasion abilities, whereas its overexpression promoted migration and invasion in MHCC-97L and HepG2 cells in vitro and in vivo. In HuH7 and HepG2 cells, KIN17 knockdown inhibited the TGF-ß/Smad2 pathway. In contrast, KIN17 overexpression stimulated TGF-ß/Smad2 pathway in MHCC-97L and HepG2 cells, along with the genes involved in the epithelial-mesenchymal transition. These findings suggest that KIN17 promotes migration and invasion in HCC cells by stimulating the TGF-ß/Smad2 pathway. KIN17 could be a promising prognostic biomarker, as well as a potential therapeutic target in HCC.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Proteína Smad2/genética , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
We propose what we believe to be a novel approach to enhance the dynamic range of a photonic analog-to-digital converter (PADC) without the need of additional custom-designed circuits or components. The method utilizes the unique characteristic of our previously reported multimode interference (MMI) coupler-based optical quantizer that exploits the periodicity of the optical phase to realize a modulo operation. Experiments were carried out to verify the effectiveness of the proposed method on our phase-shifted optical quantization ADC (PSOQ-ADC) chip. Experimental results show that our proposed method enhance the dynamic range from [-V π, V π] to [-2V π, 2V π] and has the potential to be further extended. Additionally, we successfully reconstructed radio frequency (RF) signals at a sampling rate of 30 Gs/s. Our work provides a promising solution for achieving a high dynamic range in on-chip PSOQ-ADC.
RESUMEN
Background: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a class of widely used hypoglycemic agents for the treatment of type 2 diabetes mellitus (T2DM). In addition to lowering blood glucose, SGLT2i protects the heart and kidney, significantly reduces cardiovascular events, and delays the progression of heart failure and chronic kidney disease. However, previous studies have not exhaustively discussed the association between SGLT2i and the risk of developing cardiac arrhythmias. The purpose of this study is to assess the association of SGLT2i with cardiac arrhythmias in patients with T2DM and without T2DM in cardiovascular outcome trials (CVOTs). Methods: We performed a meta-analysis and systematic review of CVOTs that compared SGLT2i with placebo. MEDLINE, Web of Science, The Cochrane Library and Embase were systematically searched from inception to December 2022. We included CVOTs reporting cardiovascular or renal outcomes with a follow-up duration of at least 6 months. Results: A total of 12 CVOTs with 77,470 participants were included in this meta-analysis (42,016 SGLT2i vs 35,454 control), including patients with T2DM, heart failure (HF), or chronic kidney disease (CKD). Follow-up duration ranged from 9 months to 5.65 years. Medications included empagliflozin, canagliflozin, dapagliflozin and ertugliflozin. SGLT2i were associated with a lower risk of tachycardia (risk ratio (RR) 0.86; 95% confidence interval (CI) 0.79-0.95), supraventricular tachycardia (SVT; RR 0.84; 95% CI 0.75-0.94), atrial fibrillation (AF; RR 0.86; 95% CI 0.75-0.97) and atrial flutter (AFL; RR 0.75; 95% CI 0.57-0.99) in patients with T2DM, HF and CKD. SGLT2i could also reduce the risk of cardiac arrest in CKD patients (RR 0.50; 95% CI 0.26-0.95). Besides, SGLT2i therapy was not associated with a lower risk of ventricular arrhythmia and bradycardia. Conclusions: SGLT2i therapy is associated with significantly reduced the risk of tachycardia, SVT, AF, and AFL in patients with T2DM, HF, and CKD. In addition, SGLT2i could also reduce the risk of cardiac arrest in CKD patients. Further researches are needed to fully elucidate the antiarrhythmic mechanism of SGLT2i.
RESUMEN
In spite of the fact that remarkable developments are achieved in the design and development of novel nanocatalysts for H2 release upon dimethylamineborane hydrolysis, the development of an "on-off" switch for demand-based H2 evolution upon dimethylamineborane hydrolysis is still a matter of supreme importance, however. Herein, we synthesized a string of MoS2 nanosheet-supported RuNi bimetallic nanohybrids (RuxNi1-x/MoS2), by fixation of RuNi nanoparticles at the MoS2 surface, for the H2 evolution upon the hydrolysis of dimethylamineborane at 30 °C. For safely and effectively generating, transporting, and storing H2 gas, the selective "on-off" switch for on-demand H2 evolution upon dimethylamineborane hydrolysis over the Ru0.8Ni0.2/MoS2 nanohybrid has been successfully realized by the Zn2+/EDTA-2Na system. In particular, the H2 evolution is totally switched off by adding Zn(NO3)2. It seems that Zn2+ ions are attached and anchored at the Ru0.8Ni0.2/MoS2 surface, inhibiting their surface-active sites, leading to the termination of H2 evolution. Then, the H2 generation is subsequently reactivated by adding the EDTA-2Na solution because of its excellent coordination ability with Zn2+ ions. This study not only offers a new and efficient RuNi nanocatalyst for dimethylamineborane hydrolysis but also proposes a new method for the demand-based H2 production.
RESUMEN
BACKGROUND: Thyroid disease is a prominent endocrine disorder, yet the clinical epidemiology of this condition remains unclear. This study aims to describe the recent trends in the prevalence of thyroid disease in US adults from 1999-2018. METHODS: This cross-sectional study used nationally representative data collected through the National Health and Nutrition Examination Survey (NHANES) from January 1, 1999 to December 31, 2018. Patients with thyroid disease were defined as patients who reported having a thyroid disease and were on thyroid-related treatment. Age-standardized prevalence of thyroid disease was calculated within 4-year survey periods (1999-2002, 2003-2006, 2007-2010, 2011-2014, and 2015-2018). RESULTS: During the NHANES 1999-2018, a total of 57 540 participants were examined. The age-standardized prevalence of thyroid disease was 5.05% (95% CI, 4.55%-5.60%) from 2015-2018, signifying a significant increase from the 1999-2002 period (P <.0002). However, prevalent thyroid disease remained steady between 2003 and 2014. The highest prevalence of thyroid disease was observed in non-Hispanic Whites (8.1%; 95% CI, 7.3%-9.0%), individuals aged ≥60 years (15.4%; 95% CI, 13.3%-17.8%), and tended to be higher in women (7.6%; 95% CI, 6.8%-8.5%). Multiple regression analysis revealed that age, women sex, non-Hispanic White and Mexican American, body mass index, higher education and incomes were independently associated with increased risks of thyroid disease. CONCLUSION: The age-standardized prevalence of thyroid disease among US adults increased from 1999-2003, remained stable between 2003 and 2014, and then saw an increase from 2014-2018, with the highest rate observed among elders, women, and non-Hispanic Whites.
Asunto(s)
Enfermedades de la Tiroides , Adulto , Anciano , Femenino , Humanos , Estudios Transversales , Americanos Mexicanos/estadística & datos numéricos , Encuestas Nutricionales , Prevalencia , Enfermedades de la Tiroides/epidemiología , Enfermedades de la Tiroides/etnología , Estados Unidos/epidemiología , MasculinoRESUMEN
High-fat diet (HFD)-induced insulin resistance (IR) in skeletal muscle is often accompanied by mitochondrial dysfunction and oxidative stress. Boosting nicotinamide adenine dinucleotide (NAD) using nicotinamide riboside (NR) can effectively decrease oxidative stress and increase mitochondrial function. However, whether NR can ameliorate IR in skeletal muscle is still inconclusive. We fed male C57BL/6J mice with an HFD (60% fat) ± 400 mg/kg·bw NR for 24 weeks. C2C12 myotube cells were treated with 0.25 mM palmitic acid (PA) ± 0.5 mM NR for 24 h. Indicators for IR and mitochondrial dysfunction were analyzed. NR treatment alleviated IR in HFD-fed mice with regard to improved glucose tolerance and a remarkable decrease in the levels of fasting blood glucose, fasting insulin and HOMA-IR index. NR-treated HFD-fed mice also showed improved metabolic status regarding a significant reduction in body weight and lipid contents in serum and the liver. NR activated AMPK in the skeletal muscle of HFD-fed mice and PA-treated C2C12 myotube cells and upregulated the expression of mitochondria-related transcriptional factors and coactivators, thereby improving mitochondrial function and alleviating oxidative stress. Upon inhibiting AMPK using Compound C, NR lost its ability in enhancing mitochondrial function and protection against IR induced by PA. In summary, improving mitochondrial function through the activation of AMPK pathway in skeletal muscle may play an important role in the amelioration of IR using NR.
Asunto(s)
Resistencia a la Insulina , Masculino , Ratones , Animales , Resistencia a la Insulina/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Endogámicos C57BL , Mitocondrias , Músculo Esquelético/metabolismo , Insulina/metabolismo , Ácido Palmítico/farmacología , Ácido Palmítico/metabolismo , Dieta Alta en Grasa/efectos adversosRESUMEN
In recent years, gold nanoparticles (AuNPs) have attracted much attention due to their ease of surface modification, excellent biocompatibility, and extraordinary optoelectronic and catalytic activities. Herein, based on a AuNP-catalyzed reaction, a strategy for tailoring luminescent molecules in situ is proposed to trigger an ultrastrong chemiluminescence (CL). In the strategy, flower-like AuNPs are prepared using CL molecular probes (Probe-OH for NaClO/ONOO-) via one-pot synthesis and subsequently act as a tailor for Probe-OH to generate novel CL molecules, allowing a synergistic CL enhancement about 4 times that of initial Probe-OH. Furthermore, by modification with poly(vinylpyrrolidone) (PVP) on the surface, the CL signals (only for NaClO) are amplified by 100 times based on an intermolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Given the improved sensitivity and selectivity over Probe-OH, the thus-formed CIEEL nanoplatform (PVP-Au) is successfully developed for detecting NaClO in a wide range of 2.5-100 µM, and the detection limit is 10.68 nM. This work provides unprecedented perspectives for expanding this facile and effective strategy for CL amplification based on AuNP catalysis.
Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Luminiscencia , Mediciones Luminiscentes , Luminol/química , Nanopartículas del Metal/químicaRESUMEN
OBJECTIVE: Clinical guidelines recommend an optimal serum potassium concentration between 4.0 and 5.0 mmol/L in patients with acute myocardial infarction (AMI), which was based on lower-quality evidence from more than 20 years ago. Therefore, it is essential to re-evaluate the range of optimal potassium levels in patients with AMI in intensive care unit (ICU). METHODS: This was a retrospective study based on Philips eICU Collaborative Research Database, which covered 9776 patients with AMI between 2014 and 2015. All patients had more than or equal to 2 serum potassium measurements and were categorized by the mean serum potassium level (<3.5, 3.5-4.5, 4.5-5.5, ≥5.5 mmol/L) and potassium variability (1st, 2nd, and ≥3rd standard deviation (SD)). Binary logistic regression was used to determine the association between mean potassium levels, variability and in-hospital mortality in AMI. RESULTS: Of all 9776 AMI patients in ICU, 8731 (89.3%) patients were included. A total of 69847 potassium measurements were performed in these patients. There was a J-shaped relationship between mean serum potassium level and in-hospital mortality. The lowest mortality (mortality rate, 7.2%; 95% CI, 6.57%-7.76%) was observed in patients with mean potassium level between 3.5 and 4.5 mmol/L and a low potassium variability within the 1st SD. Logistic regression showed that the risk of in-hospital mortality is highest when the mean potassium level ≥5.5 mmol/L (57.6%; 95% Cl, 45.02%-70.24%; multivariable adjusted OR, 14.8; 95% CI, 8.4-26.2) compared to the reference group of 3.5-4.5 mmol/L and potassium variability within the 3rd SD (16.5%; 95% Cl, 15.19%-17.88%; multivariable adjusted OR, 3.3; 95% CI, 2.7-4.1) compared to 1st SD. Several sensitivity analyses confirmed these results. CONCLUSION: Among AMI patients in ICU, the minimum risk of in-hospital mortality was observed in those with mean potassium levels between 3.5 and 4.5 mmol/L or a minimal potassium variability compared to those who had higher or lower values.