Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38215751

RESUMEN

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Asunto(s)
Linfocitos T CD8-positivos , Serotonina , Linfocitos T CD8-positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Procesamiento Proteico-Postraduccional , Transducción de Señal
2.
J Cell Biochem ; 121(2): 1986-1997, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31693252

RESUMEN

Aberrant expression of the tripartite motif containing 59 (TRIM59) has been reported to participate in the development and progression of various human cancers. However, its expression pattern and cellular roles in pancreatic cancer (PC) remains unclear. In our study, we found that TRIM59 expression was significantly increased in PC tissues and was positively correlated with several malignant behaviors and poor overall survival of PC patients based on bioinformatics analysis and immunohistochemistry staining. Functionally, small interfering RNA-mediated TRIM59 depletion inhibited cell proliferation and migration in vitro, while TRIM59 overexpression promoted cell proliferation and migration in vitro and drove tumor growth and liver metastasis in vivo. Mechanically, TRIM59 was found to enhance glycolysis through activating the PI3K/AKT/mTOR pathway, ultimately contributing to PC progression. Taken together, our results demonstrate that TRIM59 may be a potential predictor for PC and promotes PC progression via the PI3K/AKT/mTOR-glycolysis signaling pathway, which establishes the rationale for targeting the TRIM59-related pathways to treat PC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Glucólisis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Pronóstico , Proteínas Proto-Oncogénicas c-akt/genética , Tasa de Supervivencia , Serina-Treonina Quinasas TOR/genética , Proteínas de Motivos Tripartitos/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Gut ; 68(11): 1994-2006, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30826748

RESUMEN

BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death worldwide. Neurotransmitter-initiated signalling pathway is profoundly implicated in tumour initiation and progression. Here, we investigated whether dysregulated neurotransmitter receptors play a role during pancreatic tumourigenesis. METHODS: The Cancer Genome Atlas and Gene Expression Omnibus datasets were used to identify differentially expressed neurotransmitter receptors. The expression pattern of gamma-aminobutyric acid type A receptor pi subunit (GABRP) in human and mouse PDAC tissues and cells was studied by immunohistochemistry and western blot analysis. The in vivo implications of GABRP in PDAC were tested by subcutaneous xenograft model and lung metastasis model. Bioinformatics analysis, transwell experiment and orthotopic xenograft model were used to identify the in vitro and in vivo effects of GABRP on macrophages in PDAC. ELISA, co-immunoprecipitation, proximity ligation assay, electrophysiology, promoter luciferase activity and quantitative real-time PCR analyses were used to identify molecular mechanism. RESULTS: GABRP expression was remarkably increased in PDAC tissues and associated with poor prognosis, contributed to tumour growth and metastasis. GABRP was correlated with macrophage infiltration in PDAC and pharmacological deletion of macrophages largely abrogated the oncogenic functions of GABRP in PDAC. Mechanistically, GABRP interacted with KCNN4 to induce Ca2+ entry, which leads to activation of nuclear factor κB signalling and ultimately facilitates macrophage infiltration by inducing CXCL5 and CCL20 expression. CONCLUSIONS: Overexpressed GABRP exhibits an immunomodulatory role in PDAC in a neurotransmitter-independent manner. Targeting GABRP or its interaction partner KCNN4 may be an effective therapeutic strategy for PDAC.


Asunto(s)
Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Macrófagos/fisiología , Ratones , Transducción de Señal/fisiología
4.
Mol Cancer ; 18(1): 18, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30704479

RESUMEN

BACKGROUND: Lysyl oxidase-like 4 (LOXL4) has been found to be dysregulated in several human malignancies, including hepatocellular carcinoma (HCC). However, the role of LOXL4 in HCC progression remains largely unclear. In this study, we investigated the clinical significance and biological involvement of LOXL4 in the progression of HCC. METHODS: LOXL4 expression was measured in HCC tissues and cell lines. Overexpression, shRNA-mediated knockdown, recombinant human LOXL4 (rhLOXL4), and deletion mutants were applied to study the function of LOXL4 in HCC. Exosomes derived from HCC cell lines were assessed for the ability to promote cancer progression in standard assays. The effects of LOXL4 on the FAK/Src pathway were examined by western blotting. RESULTS: LOXL4 was commonly upregulated in HCC tissues and predicted a poor prognosis. Elevated LOXL4 was associated with tumor differentiation, vascular invasion, and tumor-node-metastasis (TNM) stage. Overexpression of LOXL4 promoted, whereas knockdown of LOXL4 inhibited cell migration and invasion of HCC in vitro, and overexpressed LOXL4 promoted intrahepatic and pulmonary metastases of HCC in vivo. Most interestingly, we found that HCC-derived exosomes transferred LOXL4 between HCC cells, and intracellular but not extracellular LOXL4 promoted cell migration by activating the FAK/Src pathway dependent on its amine oxidase activity through a hydrogen peroxide-mediated mechanism. In addition, HCC-derived exosomes transferred LOXL4 to human umbilical vein endothelial cells (HUVECs) though a paracrine mechanism to promote angiogenesis. CONCLUSIONS: Taken together, our data demonstrate a novel function of LOXL4 in tumor metastasis mediated by exosomes through regulation of the FAK/Src pathway and angiogenesis in HCC.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Carcinoma Hepatocelular/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Hepatocitos/metabolismo , Neoplasias Hepáticas/genética , Neovascularización Patológica/genética , Adulto , Anciano , Aminoácido Oxidorreductasas/antagonistas & inhibidores , Aminoácido Oxidorreductasas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Exosomas/patología , Femenino , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Hepatocitos/patología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Metástasis Linfática , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Neovascularización Patológica/metabolismo , Neovascularización Patológica/mortalidad , Neovascularización Patológica/patología , Comunicación Paracrina , Proteína-Lisina 6-Oxidasa , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
5.
Cell Oncol (Dordr) ; 46(5): 1529-1541, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37178367

RESUMEN

PURPOSE: Although immunotherapy improves clinical outcomes in several types of malignancies, as an immunologically 'cold' tumor, pancreatic ductal adenocarcinoma (PDAC) is arrantly resistant to immunotherapy. However, the role of N6-methyladenosine (m6A) modification in the immune microenvironment of PDAC is still poorly understood. METHODS: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to identify differentially expressed m6A related enzymes. The biological role and mechanism of METTL3 in PDAC growth and metastasis were determined in vitro and in vivo. RNA-sequencing and bioinformatics analysis were used to identify signaling pathways involved in METTL3. Western blot, m6A dot blot assays, co-immunoprecipitation, immunofluorescence, and flow cytometry were used to explore the molecular mechanism. RESULTS: Here, we demonstrate that METTL3, the key regulator of m6A modification, is downregulated in PDAC, and negatively correlates with PDAC malignant features. Elevated METTL3 suppresses PDAC growth and overcomes resistance to immune checkpoint blockade. Mechanistically, METTL3 promotes the accumulation of endogenous double-stranded RNA (dsRNA) through protecting m6A-transcripts from further Adenosine-to-inosine (A-to-I) editing. The dsRNA stress activates RIG-I-like receptors (RLRs) to enhance anti-tumor immunity, finally suppressing PDAC progression. CONCLUSION: Our findings indicate that tumor cell-intrinsic m6A modification participates in the regulation of tumor immune landscape. Adjusting the m6A level may be an effective strategy to overcome the resistance to immunotherapy and increase responsiveness to immunotherapy in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , ARN Bicatenario , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Adenosina , Microambiente Tumoral , Metiltransferasas , Neoplasias Pancreáticas
6.
Int J Biol Sci ; 19(6): 1894-1909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063425

RESUMEN

Epithelial-mesenchymal transition (EMT) is closely associated with tumor invasion and metastasis. However, key regulators of EMT in pancreatic ductal adenocarcinoma (PDAC) need to be further studied. Bioinformatics analyses of pancreatic cancer public datasets showed that glycogen phosphorylase L (PYGL) expression is elevated in quasimesenchymal PDAC (QM-PDAC) and positively associated with EMT. In vitro cellular experiments further confirm PYGL as a crucial EMT regulator in PDAC cells. Functionally, PYGL overexpression promotes cell migration and invasion in vitro and facilitates liver metastasis in vivo, while PYGL knockdown has opposite effects. Mechanically, hypoxia induces PYGL expression in a hypoxia inducible factor 1α (HIF1α)-dependent manner and promotes glycogen accumulation. Elevated PYGL mobilizes accumulated glycogen to fuel glycolysis via its activity as a glycogen phosphorylase, thus inducing the EMT process, which could be suppressed by the glycolysis inhibitor 2-deoxy-D-glucose (2-DG). Clinically, PYGL expression is upregulated in PDAC and correlates with its malignant features and poor prognosis. Collectively, the data from our study reveal that the hypoxia/PYGL/glycolysis-induced EMT promotes PDAC metastasis, which establishes the rational for targeting hypoxia/PYGL/glycolysis/EMT signaling pathway against PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pancreáticas/metabolismo , Fenotipo , Glucógeno Fosforilasa de Forma Hepática/metabolismo , Neoplasias Pancreáticas
7.
Theranostics ; 12(9): 4386-4398, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35673560

RESUMEN

Rationale: Oxaliplatin is a widely used chemotherapy drug for advanced colorectal cancer (CRC) and its resistance is a major challenge for disease treatment. However, the molecular mechanism underlying oxaliplatin resistance remains largely elusive. Methods: An integrative analysis was performed to determine differentially expressed genes involved in oxaliplatin resistance. Loss- and gain-of-function studies were employed to investigate the roles of type Iγ phosphatidylinositol phosphate kinase (PIPKIγ) on oxaliplatin resistance in CRC cells. Exosomes derived from CRC cell lines were assessed for PD-L1 level and the ability to promote oxaliplatin resistance. Quantitative real-time PCR, immunofluorescence, luciferase reporter assay, Western blotting and other techniques were conducted to decipher the molecular mechanism. Results: PIPKIγ was identified as a critical gene related to oxaliplatin resistance in CRC. Genetic manipulation studies revealed that PIPKIγ profoundly facilitated oxaliplatin resistance and affected the expression of DNA damage repair proteins. Mechanistically, PIPKIγ promoted the expression of the immune checkpoint molecule PD-L1 via activation of NF-κB signaling pathway. Genetic silencing of PD-L1 did not affect CRC cell proliferation but significantly sensitized CRC cells to oxaliplatin. Notably, PD-L1 was revealed to be encapsulated in the exosomes, and the addition of exosomal PD-L1 to sh-PD-L1 CRC cells restored oxaliplatin resistance. Pharmacological hijacking PIPKIγ-exosomal PD-L1 axis largely reduced oxaliplatin resistance in CRC cells. In vivo experiments showed that PD-L1 loss significantly blocked oxaliplatin resistance and the addition of PD-L1-enriched exosomes promoted tumor growth and reduced mouse survival time. Conclusion: Our findings reveal a previous unprecedented role of PIPKIγ in oxaliplatin resistance and provide a key mechanism of exosomal PD-L1 in CRC with potential therapeutics.


Asunto(s)
Antígeno B7-H1 , Neoplasias Colorrectales , Animales , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/genética , Ratones , Oxaliplatino/farmacología , Fosfatos/uso terapéutico , Fosfatos de Fosfatidilinositol/uso terapéutico
8.
J Immunol Res ; 2022: 7966089, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35879949

RESUMEN

Neutrophils, known as an important part of the immune system, are the most abundant leukocyte population in peripheral blood, but excessive recruitment will lead to tissue/organ injury. RNA sequencing showed that ionizing radiation significantly increased the expression of characteristic genes of neutrophils in intestinal tissues compared with liver and lung tissues. By clearing neutrophils with an anti-Ly6G antibody, we found that neutrophil infiltration is critical for irradiation-induced intestinal injury. CXCR2 is a G-protein-coupled receptor that mediates the migration of neutrophils by combining with its ligands. Compared with observations in liver and lung tissues, we found that CXCR2 and its ligands, including CXCL1, CXCL2, CXCL3, and CXCL5, were all significantly upregulated in irradiated intestinal tissues. Further studies showed that SB225002, an inhibitor of CXCR2, could effectively inhibit the chemotaxis of neutrophils and tissue damage mediated by the CXCL-CXCR2 signalling pathway.


Asunto(s)
Neutrófilos , Receptores de Interleucina-8B , Hígado/metabolismo , Infiltración Neutrófila
9.
Cell Death Discov ; 8(1): 332, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869042

RESUMEN

Lipid peroxidation-induced ferroptosis is a newly recognized type of programmed cell death. With the method of RNA sequencing, we found that irradiation (IR) markedly increased the expression of ferroptosis promotive genes, whereas reduced the expression of ferroptosis suppressive genes in murine intestine tissues, when compared with those of liver and lung tissues. By using ferroptosis inducer RSL-3 and inhibitor liproxstatin-1, we found that ferroptosis is essential for IR-induced intestinal injury. Acyl-CoA Synthetase Long-Chain Family Member 4 (ACSL4) is an important component for ferroptosis execution, and we found that ACSL4 expression was significantly upregulated in irradiated intestine tissues, but not in liver or lung tissues. Antibacterial and antifungal regents reduced the expression of ASCL4 and protected against tissue injury in irradiated intestine tissues. Further studies showed that troglitazone, a ACSL4 inhibitor, succeeded to suppresses intestine lipid peroxidation and tissue damage after IR.

10.
JCI Insight ; 7(14)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35708906

RESUMEN

Although macrophages are undoubtedly attractive therapeutic targets for acute kidney injury (AKI) because of their critical roles in renal inflammation and repair, the underlying mechanisms of macrophage phenotype switching and efferocytosis in the regulation of inflammatory responses during AKI are still largely unclear. The present study elucidated the role of junctional adhesion molecule-like protein (JAML) in the pathogenesis of AKI. We found that JAML was significantly upregulated in kidneys from 2 different murine AKI models including renal ischemia/reperfusion injury (IRI) and cisplatin-induced AKI. By generation of bone marrow chimeric mice, macrophage-specific and tubular cell-specific Jaml conditional knockout mice, we demonstrated JAML promoted AKI mainly via a macrophage-dependent mechanism and found that JAML-mediated macrophage phenotype polarization and efferocytosis is one of the critical signal transduction pathways linking inflammatory responses to AKI. Mechanistically, the effects of JAML on the regulation of macrophages were, at least in part, associated with a macrophage-inducible C-type lectin-dependent mechanism. Collectively, our studies explore for the first time to our knowledge new biological functions of JAML in macrophages and conclude that JAML is an important mediator and biomarker of AKI. Pharmacological targeting of JAML-mediated signaling pathways at multiple levels may provide a novel therapeutic strategy for patients with AKI.


Asunto(s)
Lesión Renal Aguda , Lesión Renal Aguda/patología , Animales , Moléculas de Adhesión Celular , Moléculas de Adhesión de Unión/metabolismo , Riñón/patología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL
11.
Front Oncol ; 11: 695740, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34568024

RESUMEN

Emerging evidence suggests that the tripartite motif (TRIM) family play important roles in tumor development and progression. Tripartite motif-containing 50 (TRIM50) is a member of the TRIM family, but little is known regarding its expression and potential functional roles in cancer. In this study, we first analyzed the expression pattern and clinical significance of TRIM50 in pancreatic cancer and found that TRIM50 expression is significantly reduced in pancreatic cancer tissues and its downregulation is associated with poor survival for pancreatic cancer patients. Functionally, TRIM50 overexpression in pancreatic cancer cells decreases their proliferation and motility capabilities and reverses the epithelial-mesenchymal transition (EMT) process, whereas TRIM50 depletion had the opposite effects. Mechanically, TRIM50 directly interacts with Snail1, a key regulator of EMT, and acts as an E3 ubiquitin ligase to target Snail1 for ubiquitous degradation. The function of TRIM50 in suppressing cell migration and EMT depends on TRIM50-promoted Snail1 degradation. In conclusion, our findings identify TRIM50 as a tumor suppressor that inhibits pancreatic cancer progression and reverses EMT via degrading Snail1 and provide new insights into the progression of pancreatic cancer.

12.
Front Immunol ; 12: 696766, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354708

RESUMEN

Inflammatory bowel disease (IBD) remains one of the most prevalent gastrointestinal diseases worldwide. Purinergic signaling has emerged as a promising therapeutic target of inflammation-associated diseases. However, little is known about the specific roles of purinergic receptors in IBD. In the present study, expression profile of purinergic receptors was screened in the public Gene Expression Omnibus (GEO) datasets, and we found that expression of P2RX1 was significantly upregulated in inflamed colon tissues. Then, purinergic receptor P2RX1 was genetically ablated in the background of C57BL/6 mice, and dextran sulfate sodium (DSS) was used to induce mice colitis. RNA sequencing results of colon tissues showed that genetic knockout of P2RX1 suppressed the inflammation responses in DSS-induced mice colitis. Flow cytometry indicated that neutrophil infiltration was inhibited in P2RX1 ablated mice. 16S ribosomal DNA sequencing revealed major differences of intestinal microbiota between WT and P2RX1 ablated mice. Functional metagenomics prediction indicated that the indole alkaloid biogenesis pathway was upregulated in P2RX1 gene ablated mice. Further studies revealed that microbiota metabolites (indole alkaloid)-involved aryl hydrocarbon receptor (AhR)/IL-22 axis was associated with the beneficial effects of P2RX1 ablation. Finally, we found that a specific P2RX1 inhibitor succeeded to improve the therapeutic efficiency of anti-TNF-α therapy in DSS-induced mice colitis. Therefore, our study suggests that targeting purinergic receptor P2RX1 may provide novel therapeutic strategy for IBD.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Bacterias/metabolismo , Bencenosulfonatos/farmacología , Colitis/prevención & control , Colon/efectos de los fármacos , Microbioma Gastrointestinal , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X1/metabolismo , Inhibidores del Factor de Necrosis Tumoral/farmacología , Animales , Colitis/inmunología , Colitis/metabolismo , Colitis/microbiología , Colon/inmunología , Colon/metabolismo , Colon/microbiología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Disbiosis , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Purinérgicos P2X1/genética , Transducción de Señal
13.
J Exp Clin Cancer Res ; 40(1): 121, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33832535

RESUMEN

BACKGROUND: Reprogrammed glucose metabolism, also known as the Warburg effect, which is essential for tumor progression, is regarded as a hallmark of cancer. MAP17, a small 17-kDa non-glycosylated membrane protein, is frequently dysregulated in human cancers. However, its role in hepatocellular carcinoma (HCC) remains largely unknown. METHODS: Immunohistochemistry was used to analyze the expression pattern of MAP17 in HCC. Loss-of-function and gain-of-function studies were performed to investigate the oncogenic roles of MAP17 in vitro and in vivo. RNA sequencing, co-immunoprecipitation, immunofluorescence and western blotting were used to study the molecular mechanism of MAP17 affecting the tumor growth and glycolytic phenotype of HCC. RESULTS: An integrative analysis showed that MAP17, a small 17-kDa non-glycosylated membrane protein, is significantly related to the glycolytic phenotype of hepatocellular carcinoma (HCC). Firstly, we found that MAP17 expression is hypoxia-dependent and predicts a poor prognosis in HCC. Genetic silencing of MAP17 reduced the rate of glucose uptake, lactate release, extracellular acidification rate, and expression of glycolytic genes. Ectopic expression of wild type MAP17 but not its PDZ binding domain mutant MAP17-PDZm increased tumor glycolysis. Further research showed that MAP17 knockdown markedly retarded in vivo tumor growth in HCC. Importantly, attenuation of tumor glycolysis by galactose largely hijacked the growth-promoting role of MAP17 in HCC cells. RNA sequencing analysis revealed that MAP17 knockdown leads to transcriptional changes in the ROS metabolic process, cell surface receptor signaling, cell communication, mitotic cell cycle progression, and regulation of cell differentiation. Mechanistically, MAP17 exerted an increased tumoral phenotype associated with an increase in reactive oxygen species (ROS), which activates downstream effectors AKT and HIF1α to enhance the Warburg effect. In HCC clinical samples, there is a close correlation between MAP17 expression and HIF1α or phosphorated level of AKT. CONCLUSIONS: Our results show that MAP17 is a novel glycolytic regulator, and targeting MAP17/ROS pathway may be an alternative approach for the prevention and treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Inmunohistoquímica/métodos , Neoplasias Hepáticas/genética , Proteínas de la Membrana/metabolismo , Carcinoma Hepatocelular/patología , Hipoxia de la Célula , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/patología , Transfección , Efecto Warburg en Oncología
14.
Cell Death Dis ; 12(12): 1106, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836938

RESUMEN

Hypoxic microenvironment is common in solid tumors, particularly in pancreatic ductal adenocarcinoma (PDAC). The Warburg effect is known to facilitate cancer aggressiveness and has long been linked to hypoxia, yet the underlying mechanism remains largely unknown. In this study, we identify that lysyl oxidase-like 2 (LOXL2) is a hypoxia-responsive gene and is essential for the Warburg effect in PDAC. LOXL2 stabilizes hypoxia-inducible factor 1α (HIF1α) from prolyl hydroxylase (PHD)-dependent hydroxylation via hydrogen peroxide generation, thereby facilitating the transcription of multiple glycolytic genes. Therefore, a positive feedback loop exists between LOXL2 and HIF1α that facilitates glycolytic metabolism under hypoxia. Moreover, LOXL2 couples the Warburg effect to tumor growth and metastasis in PDAC. Hijacking glycolysis largely compromises LOXL2-induced oncogenic activities. Collectively, our results identify a hitherto unknown hypoxia-LOXL2-HIF1α axis in regulating the Warburg effect and provide an intriguing drug target for PDAC therapy.


Asunto(s)
Adenocarcinoma/genética , Aminoácido Oxidorreductasas/metabolismo , Carcinoma Ductal Pancreático/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Adenocarcinoma/patología , Carcinoma Ductal Pancreático/patología , Humanos , Microambiente Tumoral , Efecto Warburg en Oncología
15.
Int J Biol Sci ; 17(1): 107-118, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390837

RESUMEN

Aerobic glycolysis, also known as the Warburg effect, is emerged as a hallmark of most cancer cells. Increased aerobic glycolysis is closely associated with tumor aggressiveness and predicts a poor prognosis. Pancreatic ductal adenocarcinoma (PDAC) is characterized by prominent genomic aberrations and increased glycolytic phenotype. However, the detailed molecular events implicated in aerobic glycolysis of PDAC are not well understood. In this study, we performed a comprehensive molecular characterization using multidimensional ''omic'' data from The Cancer Genome Atlas (TCGA). Detailed analysis of 89 informative PDAC tumors identified substantial copy number variations (MYC, GATA6, FGFR1, IDO1, and SMAD4) and mutations (KRAS, SMAD4, and RNF43) related to aerobic glycolysis. Moreover, integrated analysis of transcriptional profiles revealed many differentially expressed long non-coding RNAs involved in PDAC aerobic glycolysis. Loss-of-function studies showed that LINC01559 and UNC5B-AS1 knockdown significantly inhibited the glycolytic capacity of PDAC cells as revealed by reduced glucose uptake, lactate production, and extracellular acidification rate. Moreover, genetic silencing of LINC01559 and UNC5B-AS1 suppressed tumor growth and resulted in alterations in several signaling pathways, such as TNF signaling pathway, IL-17 signaling pathway, and transcriptional misregulation in cancer. Notably, high expression of LINC01559 and UNC5B-AS1 predicted poor patient prognosis and correlated with the maximum standard uptakevalue (SUVmax) in PDAC patients who received preoperative 18F-FDG PET/CT. Taken together, our results decipher the glycolysis-associated copy number variations, mutations, and lncRNA landscapes in PDAC. These findings improve our knowledge of the molecular mechanism of PDAC aerobic glycolysis and may have practical implications for precision cancer therapy.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , ARN Largo no Codificante/metabolismo , Efecto Warburg en Oncología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Variaciones en el Número de Copia de ADN , Genoma Humano , Humanos , Terapia Molecular Dirigida , Mutación , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 41(4): 595-9, 2010 Jul.
Artículo en Zh | MEDLINE | ID: mdl-20848776

RESUMEN

OBJECTIVE: To investigate whether EGFR inhibitor AG1478 combined with celecoxib could enhance the inhibitive effects on the growth of gastric cancer cells. METHODS: Human gastric cancer cell line SGC-7901 was cultured and treated with different concentration of AG1478 and celecoxib, the proliferation of SGC-7901 cells was determined by MTT. The expression of proliferation cell nuclear antigen (PCNA) of SGC-7901 cells was detected by immunocytochemistry. ERK and p-ERK expression were determined by immunoblot. The TdT-mediated dUTP nick end labeling (TUNEL) assay was used to detect apoptosis. RESULTS: When SGC-7901 cells was treated with AG1478 or celecoxib alone, cell growth was only inhibited by high concentration of the two agents (10, 100 micromol/L) significantly, the IC50 of AG1478 and celecoxib were 69.69 micromol/L and 70.98 micromol/L respectively. Compared with AG1478 or celecoxib alone, combination of AG1478 and celecoxib at different doses significantly enhanced the inhibitive effects on cell growth (P < 0.01). Compared with control (56. 55%), the expression of PCNA was decreased in the cells treated with AG1478, celecoxib and the combination of these two agents, PCNA indeices were 26.24%, 38.16%, and 9.08%, respectively (P < 0.01). AG1478 induced cell apoptosis at 10 micromol/L, the rate was 7.88% vs. 3.54% in control (P < 0.01), and the combination of AG1478 with celecoxib showed an enhanced effect, the apoptosis rate was 14.90%. There were no any effects on ERK expression with the treatments of either AG1478, celecoxib alone or toghether, but the phospholation of ERK was decreased by AG1478 (P < 0.01). CONCLUSION: AG1478 combined with celecoxib results in enhanced inhibitive effect on the growth of SGC-7901, which may partly due to the suppression of ERK phospholation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Pirazoles/farmacología , Neoplasias Gástricas/patología , Sulfonamidas/farmacología , Tirfostinos/farmacología , Celecoxib , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación , Antígeno Nuclear de Célula en Proliferación/análisis , Quinazolinas
17.
J Exp Clin Cancer Res ; 38(1): 214, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118109

RESUMEN

BACKGROUND: Gastric cancer is one of the deadliest malignant tumours, with a high incidence in China, and is regulated by aberrantly overexpressed oncogenes. However, existing therapies are insufficient to meet patients' needs; thus, the identification of additional therapeutic targets and exploration of the underlying mechanism are urgently needed. GPAA1 is the subunit of the GPI transamidase that transfers the GPI anchor to proteins within the ER. The functional impacts of increased expression levels of GPAA1 in human cancers are not well understood. METHODS: Data mining was performed to determine the pattern of GPAA1 expression and the reason for its overexpression in tumour and adjacent normal tissues. In vitro and in vivo experiments evaluating proliferation and metastasis were performed using cells with stable deletion or overexpression of GPAA1. A tissue microarray established by the Ren Ji Hospital was utilized to analyse the expression profile of GPAA1 and its correlation with prognosis. Western blotting, an in situ proximity ligation assay, and co-immunoprecipitation (co-IP) were performed to reveal the mechanism of GPAA1 in gastric cancer. RESULTS: GPAA1 was a markedly upregulated oncogene in gastric cancer due to chromosomal amplification. GPAA1 overexpression was confirmed in specimens from the Ren Ji cohort and was associated with ERBB2 expression, predicting unsatisfactory patient outcomes. Aberrantly upregulated GPAA1 dramatically contributed to cancer growth and metastasis in in vitro and in vivo studies. Mechanistically, GPAA1 enhanced the levels of metastasis-associated GPI-anchored proteins to increase tumour metastasis and intensified lipid raft formation, which consequently promoted the interaction between EGFR and ERBB2 as well as downstream pro-proliferative signalling. CONCLUSIONS: GPAA1 facilitates the expression of cancer-related GPI-anchored proteins and supplies a more robust platform-the lipid raft-to promote EGFR-ERBB2 dimerization, which further contributes to tumour growth and metastasis and to cancer progression. GPAA1 could be a promising diagnostic biomarker and therapeutic target for gastric cancer.


Asunto(s)
Proteínas Ligadas a GPI/genética , Glicoproteínas de Membrana/genética , Receptor ErbB-2/genética , Neoplasias Gástricas/genética , Aciltransferasas/genética , Anciano , Animales , Proliferación Celular/genética , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Receptores ErbB/química , Receptores ErbB/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Masculino , Glicoproteínas de Membrana/química , Microdominios de Membrana/genética , Ratones , Persona de Mediana Edad , Metástasis de la Neoplasia , Pronóstico , Multimerización de Proteína/genética , Receptor ErbB-2/química , Transducción de Señal/genética , Neoplasias Gástricas/patología , Análisis de Matrices Tisulares
19.
J Cancer ; 8(18): 3764-3773, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29151964

RESUMEN

Integrin, beta-like 1 (ITGBL1), a ß-integrin-related extracellular matrix protein, was found more commonly up-regulated in gastric cancer (GC) by screening and analyzing Gene Expression Omnibus (GEO) and Oncomine databases, reminding us to explore its prognostic significance in GC. In our current study, we observed that ITGBL1 expression was significantly up-regulated in GC compared with normal controls in clinical specimens. In addition, elevated ITGBL1 expression was positively correlated with patients' tumor-node-metastasis (TNM) stage and distant metastasis. Kaplan-Meier analysis indicated that high ITGBL1 expression was significantly associated with shorter survival times in GC patients. Multivariate Cox regression analysis confirmed ITGBL1 expression as an independent prognostic factor in GC. Gene set enrichment analysis (GSEA) of multiple GEO datasets revealed a close relationship between ITGBL1 expression and the KRAS/epithelial-mesenchymal transition (EMT) signaling pathway. In conclusion, these data provide evidences that ITGBL1 is a potential predictor and may be involved in cancer cell invasion and metastasis via inducing EMT, and the ITGBL1-related pathways may represent a novel therapeutic strategy for treatment of GC.

20.
J Immunol Res ; 2017: 3072745, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29464186

RESUMEN

Exemestane (EXE) is an irreversible steroidal aromatase inhibitor mainly used as an adjuvant endocrine therapy for postmenopausal women suffering from breast cancer. Besides inhibiting aromatase activity, EXE has multiple biological functions, such as antiproliferation, anti-inflammatory, and antioxidant activities which are all involved in hepatic fibrosis. Therefore, we investigated the role of EXE during the progress of hepatic fibrosis. The effect of EXE on liver injury and fibrosis were assessed in two hepatic fibrosis rat models, which were induced by either carbon tetrachloride (CCl4) or bile duct ligation (BDL). The influence of EXE treatment on activation and proliferation of primary rat hepatic stellate cells (HSCs) was observed in vitro. The results showed that EXE attenuated the liver fibrosis by decreasing the collagen deposition and α-SMA expression in vivo and inhibited the activation and proliferation of primary rat HSCs in vitro. Additionally, EXE promoted the secretion of antifibrotic and anti-inflammatory cytokine IL-10 in vivo and in HSC-T6 culture media. In conclusion, our findings reveal a new function of EXE on hepatic fibrosis and prompted its latent application in liver fibrotic-related disease.


Asunto(s)
Androstadienos/uso terapéutico , Antiinflamatorios/uso terapéutico , Inhibidores de la Aromatasa/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Células Estrelladas Hepáticas/fisiología , Hígado/patología , Actinas/metabolismo , Animales , Conductos Biliares/cirugía , Tetracloruro de Carbono/toxicidad , Línea Celular Transformada , Proliferación Celular/efectos de los fármacos , Colágeno/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Interleucina-10/metabolismo , Hígado/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA