Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2306980, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38344850

RESUMEN

A conceptual shift toward next-generation wearable electronics is driving research into self-powered electronics technologies that can be independently operated without plugging into the grid for external power feeding. Triboelectric nanogenerators (TENGs) are emerging as a key component of self-powered electronics, but a power type mismatch between supply and demand limits their direct implementation into wearable self-powered electronics. Here, a TENG with switchable power mode capability is reported where the charge flow direction is modulated over the course of slow and random mechanical stimuli, with exceptional rectification capabilities as high as ≈133, stable outputs over the cycles, and design flexibility in different platforms. Importantly, the remarkable switchable power generation with fabric counter materials illuminates a new path for the smooth integration of flexible TENGs into wearable self-powered electronics.

2.
Small ; 19(44): e2302072, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37431202

RESUMEN

Spectrally selective narrowband photodetection is critical for near-infrared (NIR) imaging applications, such as for communicationand night-vision utilities. It is a long-standing challenge for detectors based on silicon, to achieve narrowband photodetection without integrating any optical filters. Here, this work demonstrates a NIR nanograting Si/organic (PBDBT-DTBT:BTP-4F) heterojunction photodetector (PD), which for the first time obtains the full-width-at-half-maximum (FWHM) of only 26 nm and fast response of 74 µs at 895 nm. The response peak can be successfully tailored from 895 to 977 nm. The sharp and narrow response NIR peak is inherently attributed to the coherent overlapping between the NIR transmission spectrum of organic layer and diffraction enhanced absorption peak of patterned nanograting Si substrates. The finite difference time domain (FDTD) physics calculation confirms the resonant enhancement peaks, which is well consistent with the experiment results. Meanwhile, the relative characterization indicates that the introduction of the organic film can promote carrier transfer and charge collection, facilitating efficient photocurrent generation. This new device design strategy opens up a new window in developing low-cost sensitive NIR narrowband detection.

3.
Trop Anim Health Prod ; 56(1): 19, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110604

RESUMEN

In the current study, the role of the ovine IGF2 as a potential candidate gene was investigated as though marker-assisted selection in Chinese Tibetan sheep. The Sanger DNA sequencing method explored five single nucleotide polymorphisms (SNPs) in 5'UTR of the ovine IGF2 gene (C15640T, G15801A, G15870A, C15982G and G15991A) in Chinese Tibetan sheep. The frequencies of four SNPs were within the Hardy-Weinberg Equilibrium (chi-square test) except C15982G. The statistical analysis indicated that the C15640T and G15801A were significantly associated with body height, body length, chest circumference, and body weight (P < 0.05 or P < 0.01). Furthermore, C15982G variant exhibited significant correlation with the body weight (P < 0.01). These findings suggests that the promoter variants of IGF2 gene could be used as a candidate gene through marker-assisted selection for the body weight and body measurement traits in Tibetan sheep breeding program.


Asunto(s)
Péptidos Similares a la Insulina , Polimorfismo de Nucleótido Simple , Ovinos/genética , Animales , Tibet , Fenotipo , Peso Corporal/genética , Genotipo
4.
Opt Express ; 30(18): 33145-33155, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36242361

RESUMEN

Perovskite light-emitting diodes (PeLEDs) have attracted much attention due to their superior performance. When a bottleneck of energy conversion efficiency is achieved with materials engineering, nanostructure incorporation proves to be a feasible approach to further improve device efficiencies via light extraction enhancement. The finite-difference time-domain simulation is widely used for optical analysis of nanostructured optoelectronic devices, but reliable modeling of PeLEDs with nanostructured emissive layers remains unmet due to the difficulty of locating dipole light sources. Herein we established a hybrid process for modeling light emission behaviors of such nanostructured PeLEDs by calibrating light source distribution through electrical simulations. This hybrid modeling method serves as a universal tool for structure optimization of light-emitting diodes with nanostructured emissive layers.

5.
Mol Ther ; 29(4): 1411-1424, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33429084

RESUMEN

Pulmonary artery smooth muscle cells (PASMCs) proliferation caused by hypoxia is an important pathological process of pulmonary hypertension (PH). Prevention of PASMCs proliferation can effectively reduce PH mortality. Long non-coding RNAs (lncRNAs) are involved in the proliferation process. Recent evidence has demonstrated that functional peptides encoded by lncRNAs play important roles in cell pathophysiological process. Our previous study has demonstrated that lnc-Rps4l with high coding ability mediates the PASMCs proliferation under hypoxic conditions. We hypothesize in this study that a lnc-Rps4l-encoded peptide is involved in hypoxic-induced PASMCs proliferation. The presence of peptide 40S ribosomal protein S4 X isoform-like (RPS4XL) encoded by lnc-Rps4l in PASMCs under hypoxic conditions was confirmed by bioinformatics, immunofluorescence, and immunohistochemistry. Inhibition of proliferation by the peptide RPS4XL was demonstrated in hypoxic PASMCs by MTT, bromodeoxyuridine (BrdU) incorporation, and immunofluorescence assays. By using the bioinformatics, coimmunoprecipitation (coIP), and mass spectrometry, RPS6 was identified to interact with RPS4XL. Furthermore, lnc-Rps4l-encoded peptide RPS4XL inhibited the RPS6 process via binding to RPS6 and inhibiting RPS6 phosphorylation at p-RPS6 (Ser240+Ser244) phosphorylation site. These results systematically elucidate the role and regulatory network of Rps4l-encoded peptide RPS4XL in PASMCs proliferation. These discoveries provide potential targets for early diagnosis and a leading compound for treatment of hypoxic PH.


Asunto(s)
Hipertensión Pulmonar/terapia , Péptidos/genética , ARN Largo no Codificante/genética , Proteínas Ribosómicas/genética , Animales , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/genética , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Péptidos/farmacología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Remodelación Vascular/efectos de los fármacos
6.
BMC Plant Biol ; 20(1): 264, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513104

RESUMEN

BACKGROUND: As the main form of photoassimilates transported from vegetative tissues to the reproductive organs, sucrose and its degradation products are crucial for cell fate determination and development of maize kernels. Despite the relevance of sucrose synthase SH1 (shrunken 1)-mediated release of hexoses for kernel development, the underlying physiological and molecular mechanisms are not yet well understood in maize (Zea mays). RESULTS: Here, we identified a new allelic mutant of SH1 generated by EMS mutagenesis, designated as sh1*. The mutation of SH1 caused more than 90% loss of sucrose synthase activity in sh1* endosperm, which resulted in a significant reduction in starch contents while a dramatic increase in soluble sugars. As a result, an extremely high osmolality in endosperm cells of sh1* was generated, which caused kernel swelling and affected the seed development. Quantitative measurement of phosphorylated sugars showed that Glc-1-P in endosperm of sh1* (17 µg g- 1 FW) was only 5.2% of that of wild-type (326 µg g- 1 FW). As a direct source of starch synthesis, the decrease of Glc-1-P may cause a significant reduction in carbohydrates that flow to starch synthesis, ultimately contributing to the defects in starch granule development and reduction of starch content. CONCLUSIONS: Our results demonstrated that SH1-mediated sucrose degradation is critical for maize kernel development and starch synthesis by regulating the flow of carbohydrates and maintaining the balance of osmotic potential.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Glucosiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Almidón/metabolismo , Zea mays/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono/fisiología , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Presión Osmótica , Filogenia , Proteínas de Plantas/genética , Semillas/enzimología , Semillas/metabolismo , Zea mays/enzimología , Zea mays/genética , Zea mays/metabolismo
7.
Planta ; 251(6): 106, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424449

RESUMEN

MAIN CONCLUSION: The small 295-bp ZmPht1; 5 promoter is sufficient to drive high-intensity expression of target genes, especially under phosphate deprivation conditions, and is therefore useful for crop improvement via transgenic techniques. Phosphate (Pi) deficiency has become a major challenge and limiting factor in world agricultural production. Manipulating the gene expression using appropriate promoters to improve the Pi absorption and utilization efficiency of crops could reduce the requirement for Pi fertilizers. In the study, a 295-bp strong promoter (M2P-7) of maize high-affinity phosphate transporter ZmPht1; 5 was isolated and functionally validated in transgenic Nicotiana benthamiana and maize by analyzing the ZmPht1; 5 promoter (M2P-1) and its 5' truncated variants (M2P-2 ~ M2P-8) in different sizes under normal and Pi-deprivation conditions. The M2P-7 displayed the highest promoter activities among 5' truncated fragments in all tested tissues of transgenic Nicotiana benthamiana at different development stages, which was 1.5 and 3 times higher than the well-used CaMV35S promoter under normal and Pi-deprivation conditions, respectively. In maize, the M2P-7 promoter activity was comparable to the maize ubiquitin1 promoter widely used in monocots under normal condition, which was about 1.3 times that of the ubiquitin1 promoter under Pi-deprivation environments. Moreover, the M2P-7 fragment is only 295 bp in length, thus reducing the construct size, and is therefore beneficial for genetic transformation. Thus, the small promoter M2P-7 of plant origin could be of great use for monocotyledonous and dicotyledonous crop improvement via transgenic techniques based on its promoter activities, expression patterns and small size.


Asunto(s)
Proteínas de Transporte de Fosfato/genética , Zea mays/genética , Expresión Génica , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Nicotiana/genética , Nicotiana/metabolismo , Zea mays/metabolismo
9.
J Pharmacol Sci ; 141(2): 97-105, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31640920

RESUMEN

Pulmonary arterial hypertension (PAH) is defined as elevation of mean pulmonary arterial pressure to ≥25 mmHg within the low pressure pulmonary circulatory system. PAH is characterized by obstructive vascular remodeling, partially due to excessive pulmonary arterial smooth muscle cell (PASMC) proliferation. Puerarin is a natural flavonoid isolated from the herb Radix puerariae, which has been widely used for the treatment of cardiovascular and cerebrovascular disorders and diabetes. However, how puerarin mediates autophagy in the progression of pulmonary vascular remodeling is unclear. In this study, we explored the effects of puerarin in a hypoxic pulmonary hypertension (PH) rat model using immunohistochemistry, and morphometric analyses of right ventricle. In addition, cell counting kit 8 assay, western blotting and flow cytometry were employed to test cell proliferation in PASMCs, and then autophagy was tested with mRFP-GFP-LC3 fluorescence microscopy and Western blot. We found that puerarin could alleviate hypoxia-induced PH in rats and improved pulmonary histopathology, and also reduced the expression of autophagy markers in vivo and in vitro. Moreover, puerarin also ameliorated hypoxia-induced PASMC proliferation in an autophagy-dependent manner. Overall, these findings demonstrated that puerarin could prevent hypoxia-induced PH in rats, possibly via reducing autophagy and suppressing cell proliferation.


Asunto(s)
Autofagia/efectos de los fármacos , Hipertensión Pulmonar/prevención & control , Isoflavonas/farmacología , Animales , Hipoxia de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Isoflavonas/metabolismo , Pulmón/metabolismo , Masculino , Miocitos del Músculo Liso/efectos de los fármacos , Arteria Pulmonar/patología , Ratas Wistar , Transducción de Señal
10.
BMC Biotechnol ; 18(1): 59, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30241468

RESUMEN

BACKGROUND: Transgenic technology has become an important technique for crop genetic improvement. The application of well-characterized promoters is essential for developing a vector system for efficient genetic transformation. Therefore, isolation and functional validation of more alternative constitutive promoters to the CaMV35S promoter is highly desirable. RESULTS: In this study, a 2093-bp sequence upstream of the translation initiation codon ATG of AtSCPL30 was isolated as the full-length promoter (PD1). To characterize the AtSCPL30 promoter (PD1) and eight 5' deleted fragments (PD2-PD9) of different lengths were fused with GUS to produce the promoter::GUS plasmids and were translocated into Nicotiana benthamiana. PD1-PD9 could confer strong and constitutive expression of transgenes in almost all tissues and development stages in Nicotiana benthamiana transgenic plants. Additionally, PD2-PD7 drove transgene expression consistently over twofold higher than the well-used CaMV35S promoter under normal and stress conditions. Among them, PD7 was only 456 bp in length, and its transcriptional activity was comparable to that of PD2-PD6. Moreover, GUS transient assay in the leaves of Nicotiana benthamiana revealed that the 162-bp (- 456~ - 295 bp) and 111-bp (- 294~ - 184 bp) fragments from the AtSCPL30 promoter could increase the transcriptional activity of mini35S up to 16- and 18-fold, respectively. CONCLUSIONS: As a small constitutive strong promoter of plant origin, PD7 has the advantage of biosafety and reduces the probability of transgene silencing compared to the virus-derived CaMV35S promoter. PD7 would also be an alternative constitutive promoter to the CaMV35S promoter when multigene transformation was performed in the same vector, thereby avoiding the overuse of the CaMV35S promoter and allowing for the successful application of transgenic technology. And, the 162- and 111-bp fragments will also be very useful for synthetic promoter design based on their high enhancer activities.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Carboxipeptidasas/genética , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Carboxipeptidasas/metabolismo , Expresión Génica , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/metabolismo
11.
Opt Express ; 26(7): 8194-8200, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29715788

RESUMEN

A fast-reconfigurable and actively-stabilized fiber-optic interference lithography system is demonstrated in this paper. Employment of fiber-optic components greatly enhances the flexibility of the whole system, simplifies its optical alignment, and suppresses the interference of mechanical vibrations. Active stabilization is implemented in the system and evaluated through modeling and experiment. We demonstrate 3-inch-diameter wafer-scale patterning of 240-nm-period grating lines with a sub-50-nm linewidth and an aspect ratio over 3. Two-dimensional patterns of different geometries and dimensions are also demonstrated to show the versatility of our system. Step-and-repeat exposure is demonstrated with independently controlled patterning fields of 2×2cm2 large.

12.
Langmuir ; 34(30): 8798-8806, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29983064

RESUMEN

Hydrophilic or zwitterionic polymer-functionalized surfaces have become attractive biomaterials in bioscience and technology due to their excellent protein-resistant ability. Understanding the fundamental interactions between proteins and polymers plays an essential role in the surface design of biomaterials. In this work, we studied the interactions between bovine serum albumin (BSA) and two sorts of polymer brushes including zwitterionic poly(carboxybetaine methacrylate) (PCBMA) and hydrophilic poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) in NaCl aqueous solutions directly with a self-established total internal reflection microscope (TIRM) to provide a better understanding of the underlying nonfouling mechanism of polymers. Our results indicate that both the surface charge and brushes length can affect protein adsorption through electrostatic and steric repulsions, respectively. Both PCBMA- and POEGMA-coated surfaces display negative charge properties due to incomplete coverage and ionic adsorption. As a result, strong electrostatic repulsions between proteins and negatively charged polymer-coated surfaces could contribute to the resistance of protein-coated particles in solutions with low ionic strength (0.1, 0.5, and 1 mM) and disappear in solutions with high ionic strength (10 mM). The measured interaction profiles demonstrate that PCBMA brushes could provide apparent steric forces only at high ionic strength (10 mM), where zwitterionic brushes exhibit a relatively extended conformation with a lack of electrostatic forces between intra- and interpolymers. In contrast, the steric repulsion between proteins and POEGMA brushes appears when particles diffuse at low positions in all salt concentrations (0.1-10 mM) with similar steric decay lengths, which results from the unresponsiveness of POEGMA brushes to the salt stimulus.


Asunto(s)
Microesferas , Polímeros , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Polímeros/química , Electricidad Estática , Propiedades de Superficie , Agua/química
13.
Nano Lett ; 17(12): 7974-7979, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29144753

RESUMEN

The spin and orbital angular momentum (SAM and OAM) of light is providing a new gateway toward high capacity and robust optical communications. While the generation of light with angular momentum is well studied in linear optics, its further integration into nonlinear optical devices will open new avenues for increasing the capacity of optical communications through additional information channels at new frequencies. However, it has been challenging to manipulate the both SAM and OAM of nonlinear signals in harmonic generation processes with conventional nonlinear materials. Here, we report the generation of spin-controlled OAM of light in harmonic generations by using ultrathin photonic metasurfaces. The spin manipulation of OAM mode of harmonic waves is experimentally verified by using second harmonic generation (SHG) from gold meta-atom with 3-fold rotational symmetry. By introducing nonlinear phase singularity into the metasurface devices, we successfully generate and measure the topological charges of spin-controlled OAM mode of SHG through an on-chip metasurface interferometer. The nonlinear photonic metasurface proposed in this work not only opens new avenues for manipulating the OAM of nonlinear optical signals but also benefits the understanding of the nonlinear spin-orbit interaction of light in nanoscale devices.

14.
Small ; 12(22): 3021-30, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27027390

RESUMEN

A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost-effective solution-based fabrication strategy for this new transparent electrode. The embedded nature of the metal-mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum-based metal deposition with an electrodeposition process and is potentially suitable for high-throughput, large-volume, and low-cost production. In particular, this strategy enables fabrication of a high-aspect-ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq(-1) , as well as extremely high figures of merit up to 1.5 × 10(4) , which are among the highest reported values in recent studies. Finally using our embedded metal-mesh electrode, a flexible transparent thin-film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage.

15.
Protein Expr Purif ; 118: 70-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26500192

RESUMEN

BACKGROUND: Plectasin might serve as a substitute for traditional antibiotics, but its yields and antimicrobial activities warrant further investigation. OBJECTIVE: To identify the influence of inducible versus constitutive expression of plectasin on yields and antimicrobial activities. METHODS: Through SOE-PCR, a recombinant plectasin gene was generated and inserted into inducible (pPICZαA) and constitutive (pGAPZαA) vectors in order to create Pichia pastoris GS115 strains. After 120 h of fermentation, supernatants were purified by an AKTA purifier using nickel columns. Minimal inhibitory concentration (MIC) and inhibition zone assays were performed after Tricine-SDS-PAGE. RESULTS: After 120 h of fermentation, the yield of constitutive plectasin (370 µg/ml) was much lower than that from inducible vector (880 µg/ml) (P < 0.05). However, constitutive strain reached its plateau phase faster and keep more consistent yield (P < 0.05). The MICs of inducible plectasin against Methicillin-resistant Staphylococcus aureus (MRSA) 15471118, vancomycin-resistant Enterococcus feces (VREF), and penicillin-resistant Streptococcus pneumonia (PRSP) 31355 were 64, 32, and 64 µg/ml, respectively, while those of constitutive plectasin were 4, 4, and 16 µg/ml. No significant differences were observed in antimicrobial activities between inducible and constitutive plectasin for MRSA 15471118, VREF and PRSP 31355 (all P ï¼ž 0.05). However, constitutive plectasin had a larger inhibition zone than inducible plectasin with the same mass. CONCLUSIONS: Although P. pastoris GS115 (pGAPZαA-Plectasin-GS115) had lower expression than P. pastoris GS115 (pPICZαA-plectasin-GS115), it reached the plateau phase faster, had steadier yields and showed superiority in antimicrobial activities. Therefore, pGAPZαA might be more suitable for expression of plectasin in GS115 compared with pPICZαA.


Asunto(s)
Antibacterianos/biosíntesis , Péptidos/genética , Péptidos/metabolismo , Pichia/genética , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Humanos , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Pichia/clasificación , Pichia/metabolismo
16.
Opt Express ; 23(3): 2328-38, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25836100

RESUMEN

We theoretically study the metal-insulator-metal (MIM) structure based ultrathin broadband optical absorber which consists of a metallic substrate, a dielectric middle layer, and a nanostructured metallic top layer. It is found that, there exists an effective permittivity, εnull, for the top nanostructured metallic layer which leads to unit-absorption (zero-reflection) of the MIM structure. Importantly, this εnull exhibits abnormal dispersion behaviors. Both its real and imaginary parts increase monotonically with the wavelength. To obtain such naturally non-existing permittivity, we investigate the optical properties of two typical types of metal-dielectric nanocomposites, namely, thoroughly mingled composites using Bruggeman's effective medium theory, and more realistic Au nanosphere-in-dielectric structures using numerical permittivity retrieval techniques. We demonstrate that the εnull-type dispersions, and consequently, perfect absorption can be obtained over a broad spectral range when the filling factor of the metal component is close to the percolation threshold. The result not only explains the recently reported broadband absorbers made of randomly deposited Au nanoparticles [M. K. Hedayati, et al, Adv. Mater. 23, 5410 (2011)], but also provides theoretical guidelines for designing ultrathin broadband plasmonic absorbers for a wealthy of important applications.

17.
PLoS Genet ; 8(7): e1002772, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22829774

RESUMEN

The Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the ATRX gene are hallmarks of ALT-immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB) repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.


Asunto(s)
ADN Helicasas/genética , Histonas , Proteínas Nucleares/genética , Homeostasis del Telómero/genética , Telómero/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ensamble y Desensamble de Cromatina/genética , Proteínas Co-Represoras , Roturas del ADN de Doble Cadena , Daño del ADN/genética , ADN Helicasas/metabolismo , Reparación del ADN/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Inestabilidad Genómica , Células HeLa , Histonas/genética , Histonas/metabolismo , Recombinación Homóloga , Humanos , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Transducción de Señal , Telomerasa/genética , Telómero/metabolismo , Proteína Nuclear Ligada al Cromosoma X
18.
PLoS Genet ; 7(6): e1002102, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21655086

RESUMEN

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder seen in Fragile X premutation carriers. Previous studies found that Fragile X rCGG repeats are sufficient to cause neurodegeneration and that the rCGG repeat-binding proteins Pur α and hnRNP A2/B1 can modulate rCGG-mediated neuronal toxicity. To explore the role of Pur α in rCGG-mediated neurodegeneration further, we took a proteomic approach and identified more than 100 proteins that interact with Pur α. Of particular interest is Rm62, the Drosophila ortholog of p68 RNA helicase, which could modulate rCGG-mediated neurodegeneration. Here we show that rCGG repeats decreased the expression of Rm62 posttranscriptionally, leading to the nuclear accumulation of Hsp70 transcript, as well as additional mRNAs involved in stress and immune responses. Together these findings suggest that abnormal nuclear accumulation of these mRNAs, likely as a result of impaired nuclear export, could contribute to FXTAS pathogenesis.


Asunto(s)
Núcleo Celular/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Mutación , Neuronas/metabolismo , ARN Mensajero/metabolismo , Expansión de Repetición de Trinucleótido/genética , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Microsyst Nanoeng ; 10: 49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595945

RESUMEN

The high stretchability of two-dimensional (2D) materials has facilitated the possibility of using external strain to manipulate their properties. Hence, strain engineering has emerged as a promising technique for tailoring the performance of 2D materials by controlling the applied elastic strain field. Although various types of strain engineering methods have been proposed, deterministic and controllable generation of the strain in 2D materials remains a challenging task. Here, we report a nanoimprint-induced strain engineering (NISE) strategy for introducing controllable periodic strain profiles on 2D materials. A three-dimensional (3D) tunable strain is generated in a molybdenum disulfide (MoS2) sheet by pressing and conforming to the topography of an imprint mold. Different strain profiles generated in MoS2 are demonstrated and verified by Raman and photoluminescence (PL) spectroscopy. The strain modulation capability of NISE is investigated by changing the imprint pressure and the patterns of the imprint molds, which enables precise control of the strain magnitudes and distributions in MoS2. Furthermore, a finite element model is developed to simulate the NISE process and reveal the straining behavior of MoS2. This deterministic and effective strain engineering technique can be easily extended to other materials and is also compatible with common semiconductor fabrication processes; therefore, it provides prospects for advances in broad nanoelectronic and optoelectronic devices.

20.
Mater Horiz ; 11(7): 1752-1759, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38291904

RESUMEN

The synergistic integration of a fine-tuned chiral donor with a hybrid long/short-range charge-transfer mechanism offers an accessible pathway to construct highly efficient circularly polarized emitters. Consequently, a notable dissymmetry factor of 1.6 × 10-3, concomitantly with a record-setting maximum external quantum efficiency of 37.4%, is synchronously realized within a single embodiment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA