Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(17): 3726-3743.e24, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37442136

RESUMEN

Elucidating the cellular organization of the cerebral cortex is critical for understanding brain structure and function. Using large-scale single-nucleus RNA sequencing and spatial transcriptomic analysis of 143 macaque cortical regions, we obtained a comprehensive atlas of 264 transcriptome-defined cortical cell types and mapped their spatial distribution across the entire cortex. We characterized the cortical layer and region preferences of glutamatergic, GABAergic, and non-neuronal cell types, as well as regional differences in cell-type composition and neighborhood complexity. Notably, we discovered a relationship between the regional distribution of various cell types and the region's hierarchical level in the visual and somatosensory systems. Cross-species comparison of transcriptomic data from human, macaque, and mouse cortices further revealed primate-specific cell types that are enriched in layer 4, with their marker genes expressed in a region-dependent manner. Our data provide a cellular and molecular basis for understanding the evolution, development, aging, and pathogenesis of the primate brain.


Asunto(s)
Corteza Cerebral , Macaca , Análisis de la Célula Individual , Transcriptoma , Animales , Humanos , Ratones , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Macaca/metabolismo , Transcriptoma/genética
2.
Small ; : e2308564, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049201

RESUMEN

Lithium-sulfur batteries (LSBs) with ultra-high energy density (2600 W h kg-1 ) and readily available raw materials are emerging as a potential alternative device with low cost for lithium-ion batteries. However, the insulation of sulfur and the unavoidable shuttle effect leads to slow reaction kinetics of LSBs, which in turn cause various roadblocks including poor rate capability, inferior cycling stability, and low coulombic efficiency. The most effective way to solve the issues mentioned above is to rationally design and control the synthesis of the cathode host for LSBs. Transition metal phosphides (TMPs) with good electrical conductivity and dual adsorption-conversion capabilities for polysulfide (PS) are regarded as promising cathode hosts for new-generation LSBs. In this review, the main obstacles to commercializing the LSBs and the development processes of their cathode host are first elaborated. Then, the sulfur fixation principles, and synthesis methods of the TMPs are briefly summarized and the recent progress of TMPs in LSBs is reviewed in detail. Finally, a perspective on the future research directions of LSBs is provided.

3.
Liver Int ; 43(7): 1473-1485, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37088973

RESUMEN

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. Aberrant lipid metabolism and accumulation of extracellular matrix proteins are hallmarks of the disease, but the underlying mechanisms are largely unknown. This study aims to elucidate the key role of sine oculis homeobox homologue 1 (SIX1) in the development of NAFLD. METHODS: Alb-Cre mice were administered the AAV9 vector for SIX1 liver-specific overexpression or knockdown. Metabolic disorders, hepatic steatosis, and inflammation were monitored in mice fed with HFHC or MCD diet. High throughput CUT&Tag analysis was employed to investigate the mechanism of SIX1 in diet-induced steatohepatitis. RESULTS: Here, we found increased SIX1 expression in the livers of NAFLD patients and animal models. Liver-specific overexpression of SIX1 using adeno-associated virus serotype 9 (AAV9) provoked more severe inflammation, metabolic disorders, and hepatic steatosis in the HFHC or MCD-induced mice model. Mechanistically, we demonstrated that SIX1 directly activated the expression of liver X receptor α (LXRα) and liver X receptor ß (LXRß), thus inducing de novo lipogenesis (DNL). In addition, our results also illustrated a critical role of SIX1 in regulating the TGF-ß pathway by increasing the levels of type I and II TGF-ß receptor (TGFßRI/TGFßRII) in hepatic stellate cells (HSCs). Finally, we found that liver-specific SIX1 deficiency could ameliorate diet-induced NAFLD pathogenesis. CONCLUSION: Our findings suggest a detrimental function of SIX1 in the progression of NAFLD. The direct regulation of LXRα/ß and TGF-ß signalling by SIX1 provides a new regulatory mechanism in hepatic steatosis and fibrosis.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Lipogénesis/fisiología , Hígado/patología , Fibrosis , Inflamación/patología , Factor de Crecimiento Transformador beta/metabolismo , Ratones Endogámicos C57BL , Dieta Alta en Grasa
4.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6551-6571, 2023 Dec.
Artículo en Zh | MEDLINE | ID: mdl-38212016

RESUMEN

Perilla frutescens is a widely used medicinal and edible plant with a rich chemical composition throughout its whole plant. The Chinese Pharmacopoeia categorizes P. frutescens leaves(Perillae Folium), seeds(Perillae Fructus), and stems(Perillae Caulis) as three distinct medicinal parts due to the differences in types and content of active components. Over 350 different bioactive compounds have been reported so far, including volatile oils, flavonoids, phenolic acids, triterpenes, sterols, and fatty acids. Due to the complexity of its chemical composition, P. frutescens exhibits diverse pharmacological effects, including antibacterial, anti-inflammatory, anti-allergic, antidepressant, and antitumor activities. While scholars have conducted a substantial amount of research on different parts of P. frutescens, including analysis of their chemical components and pharmacological mechanisms of action, there has yet to be a systematic comparison and summary of chemical components, pharmacological effects, and mechanisms of action. Therefore, this study overviewed the chemical composition and structures of Perillae Folium, Perillae Fructus, and Perillae Caulis, and summarized the pharmacological effects and mechanisms of P. frutescens to provide a reference for better development and utilization of this valuable plant.


Asunto(s)
Aceites Volátiles , Perilla frutescens , Perilla frutescens/química , Extractos Vegetales/farmacología , Semillas/química , Frutas/química , Aceites Volátiles/farmacología , Aceites Volátiles/análisis , Hojas de la Planta/química
5.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35742819

RESUMEN

Peanut is one of the most important oil crops in the world, the growth and productivity of which are severely affected by salt stress. 24-epibrassinolide (EBL) plays an important role in stress resistances. However, the roles of exogenous EBL on the salt tolerance of peanut remain unclear. In this study, peanut seedlings treated with 150 mM NaCl and with or without EBL spray were performed to investigate the roles of EBL on salt resistance. Under 150 mM NaCl conditions, foliar application of 0.1 µM EBL increased the activity of catalase and thereby could eliminate reactive oxygen species (ROS). Similarly, EBL application promoted the accumulation of proline and soluble sugar, thus maintaining osmotic balance. Furthermore, foliar EBL spray enhanced the total chlorophyll content and high photosynthesis capacity. Transcriptome analysis showed that under NaCl stress, EBL treatment up-regulated expression levels of genes encoding peroxisomal nicotinamide adenine dinucleotide carrier (PMP34), probable sucrose-phosphate synthase 2 (SPS2) beta-fructofuranosidase (BFRUCT1) and Na+/H+ antiporters (NHX7 and NHX8), while down-regulated proline dehydrogenase 2 (PRODH). These findings provide valuable resources for salt resistance study in peanut and lay the foundation for using BR to enhance salt tolerance during peanut production.


Asunto(s)
Arachis , Esteroides Heterocíclicos , Arachis/genética , Arachis/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/farmacología , Plantones/metabolismo , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Esteroides Heterocíclicos/metabolismo , Esteroides Heterocíclicos/farmacología
6.
Circulation ; 139(9): 1185-1198, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30586715

RESUMEN

BACKGROUND: Inflammatory response after myocardial infarction (MI) is essential for cardiac healing, whereas excessive and prolonged inflammation extends the infarction and promotes adverse cardiac remodeling. Understanding the mechanistic insight of these tightly controlled inflammatory processes has a significant impact on post-MI recovery and therapy. Here, we uncover the critical role of small GTPase RhoE in post-MI recovery and its clinical implication. METHODS: Three genetic mouse lines are used: global RhoE knockout, cardiomyocyte-specific RhoE heterozygous, and cardiomyocyte-specific RhoE overexpression mice. A set of molecular signaling experiments, including bimolecular fluorescence complementation, immunoprecipitation, electrophoretic mobility shift assay, and mRNA microarray analysis, were conducted. Permanent ligation of the left anterior descending artery was performed, followed by the assessments of cardiac function, inflammation, and survival in the first week after MI. Finally, we examined the correlation of the expression levels of RhoE in MI patient heart and patient prognosis. RESULTS: RhoE deficiency turns on a group of proinflammatory gene expressions in mouse heart. Mice with cardiomyocyte-specific haploinsufficiency exhibit excessive inflammatory response with deleterious cardiac function after MI. A profound increase in nuclear factor-κB activity is detected in the mutant heart and the isolated cardiomyocytes. We further find that the expression of RhoE is upregulated in response to MI. Mechanistically, RhoE interacts with p65 and p50 individually in cytosol and blocks their nuclear translocation. RhoE also occupies the dimerization domain of p65 and subsequently disrupts the heterodimerization between p65 and p50. Cardiac RhoE overexpression inhibits nuclear factor-κB activity, restrains post-MI inflammation, and improves cardiac function and survival. Consistently, we find that the expression level of RhoE is elevated in the heart of patients with MI and that the patients with a higher expression level of RhoE exhibit a better prognosis in cardiac function recovery. CONCLUSIONS: The study uncovers RhoE as a new fine-tuning factor modulating MI-induced inflammation and promoting injured heart recovery. RhoE may serve as a new potential biomarker for the assessment of MI patient prognosis. Manipulation of RhoE could be as a potential therapeutic approach for MI and other inflammatory diseases.


Asunto(s)
Regulación de la Expresión Génica , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/metabolismo , Animales , Perfilación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Noqueados , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Unión al GTP rho/genética
7.
FASEB J ; 33(9): 9929-9944, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31180720

RESUMEN

Recently, Zika virus (ZIKV) has generated extraordinary concern because of its severe neurotoxicity. Disturbingly, there is no vaccine or specific drug to prevent or treat the diseases caused by ZIKV infection. Thus, it is extremely urgent to characterize the pathogenesis of ZIKV. It has been documented that ZIKV can evade antiviral responses of host cells. Here, we demonstrate that ZIKV strain SZ-WIV01 down-regulates the production of type I IFN and IFN-stimulated genes along with the expression of mitochondrial antiviral signaling protein (MAVS) and mediator of IFN regulatory factor 3 activation (MITA). In the mechanism, ZIKV nonstructural (NS) 3 and NS2B3 negatively regulate IFN-related retinoic acid-inducible gene I-like receptor signaling pathway by targeting MAVS and MITA, respectively. Overexpression of ZIKV NS3 and NS2B3 dramatically inhibits expression of IFN-ß. ZIKV NS3 interacts with MAVS, and NS2B3 interacts with MITA, which catalyzes K48-linked polyubiquitination of MAVS and MITA for degradation. Further investigations suggest that ZIKV NS2B3 impairs polyinosinic:polycytidylic acid-triggered K63-linked polyubiquitination of MITA, thereby subverting the activation of downstream sensors. Our study reveals an undiscovered mechanism for ZIKV to escape the innate immune response, providing new insights into clinical study of vaccines or effective drugs.-Li, W., Li, N., Dai, S., Hou, G., Guo, K., Chen, X., Yi, C., Liu, W., Deng, F., Wu, Y., Cao, X. Zika virus circumvents host innate immunity by targeting the adaptor proteins MAVS and MITA.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Inmunidad Innata/fisiología , Proteínas de la Membrana/fisiología , Virus Zika/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Regulación hacia Abajo , Regulación de la Expresión Génica , Humanos , Interferón beta/genética , Interferón beta/metabolismo , Dominios Proteicos , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Internalización del Virus
8.
FASEB J ; 33(2): 2770-2781, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30303742

RESUMEN

Preterm premature rupture of fetal membranes precedes 30-40% of preterm births. Activation of matrix metalloproteases (MMPs) is the one of the major causes of extracellular matrix (ECM) degradation in membrane rupture. Increased cortisol, regenerated by 11ß-hydroxysteroid dehydrogenase 1 in the amnion at parturition, is known to participate in a number of parturition-pertinent events. However, whether cortisol has a role in the regulation of MMPs in the membranes is not known. Here, we addressed this issue using human amnion tissue, the most tensile layer of the membranes. RNA-sequencing revealed that cortisol induced MMP7 expression dramatically in amnion fibroblasts, which was confirmed by real-time quantitative RT-PCR and Western blotting analysis in cortisol-treated amnion explants and fibroblasts. Measurement of collagen IV α5 chain (COL4A5), a substrate for MMP-7, showed that cortisol reduced its extracellular abundance, which was blocked by an antibody against MMP-7. Moreover, increased MMP-7 but decreased COL4A5 abundance was observed in the amnion tissue following labor-initiated spontaneous rupture of membranes. Mechanistic studies showed that cortisol increased the phosphorylation of c-Jun and the expression of c-Fos, the 2 major components of activated protein 1 (AP-1), respectively. The knocking down of c-Fos or c-Jun significantly attenuated the induction of MMP7 expression by cortisol. Chromatin immunoprecipitation assays showed that cortisol stimulated the enrichment of c-Fos and c-Jun at the AP-1 binding site in the MMP7 promoter. The data suggest that induction of MMP7 by cortisol via AP-1 may be a contributing factor to ECM degradation in membrane rupture at parturition.-Wang, L.-Y., Wang, W.-S., Wang, Y.-W., Lu, J.-W., Lu, Y., Zhang, C.-Y., Li, W.-J., Sun, K., Ying, H. Drastic induction of MMP-7 by cortisol in the human amnion: implications for membrane rupture at parturition.


Asunto(s)
Amnios/enzimología , Rotura Prematura de Membranas Fetales/patología , Fibroblastos/enzimología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hidrocortisona/efectos adversos , Metaloproteinasa 7 de la Matriz/metabolismo , Parto , Amnios/efectos de los fármacos , Antiinflamatorios/efectos adversos , Células Cultivadas , Activación Enzimática , Femenino , Rotura Prematura de Membranas Fetales/inducido químicamente , Rotura Prematura de Membranas Fetales/enzimología , Fibroblastos/efectos de los fármacos , Humanos , Embarazo
9.
Biochem Biophys Res Commun ; 516(2): 402-407, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31217075

RESUMEN

Gestational diabetes mellitus (GDM) is often accompanied by the development of hyperinsulinemia as an adaptation to increased insulin demand, but this subsequently causes insulin resistance. Loss of function in pancreatic ß-cells further aggravates the development of GDM. The level of serum platelet-derived growth factor (PDGF) reportedly increases in GDM patients. The present study investigated whether enhanced PDGF signaling directly causes ß-cell dysfunction during gestation. Serum PDGF levels were negatively correlated with ß-cell function in GDM patients. Administration of PDGF-BB disrupted glucose tolerance and ß-cell function without inducing apoptosis in gestational mice but had no similar effect in non-gestational mice. The ß-cell-specific genes encoding insulin synthesis proteins were decreased in the islets of PDGF-BB-treated gestational mice. In vitro experiments using INS1 insulinoma cells showed that PDGF-BB promoted cell proliferation, whereas it downregulated ß-cell-specific genes. Taken together, these findings suggested that PDGF reduces ß-cell function during gestation possibly through ß-cell dedifferentiation.


Asunto(s)
Diabetes Gestacional/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Adulto , Animales , Becaplermina/administración & dosificación , Becaplermina/farmacología , Desdiferenciación Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Diabetes Gestacional/sangre , Femenino , Prueba de Tolerancia a la Glucosa , Proteínas de Homeodominio/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Insulinoma/patología , Masculino , Ratones Endogámicos C57BL , Embarazo , Transporte de Proteínas/efectos de los fármacos , Ratas , Transactivadores/metabolismo
10.
BMC Plant Biol ; 19(1): 444, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31651252

RESUMEN

BACKGROUND: The plant-specific homeodomain-leucine zipper class IV (HD-ZIP IV) gene family has been involved in the regulation of epidermal development. RESULTS: Fifteen genes coding for HD-ZIP IV proteins were identified (NtHD-ZIP-IV-1 to NtHD-ZIP-IV-15) based on the genome of N. tabacum. Four major domains (HD, ZIP, SAD and START) were present in these proteins. Tissue expression pattern analysis indicated that NtHD-ZIP-IV-1, - 2, - 3, - 10, and - 12 may be associated with trichome development; NtHD-ZIP-IV-8 was expressed only in cotyledons; NtHD-ZIP-IV-9 only in the leaf and stem epidermis; NtHD-ZIP-IV-11 only in leaves; and NtHD-ZIP-IV-15 only in the root and stem epidermis. We found that jasmonates may induce the generation of glandular trichomes, and that NtHD-ZIP-IV-1, - 2, - 5, and - 7 were response to MeJA treatment. Dynamic expression under abiotic stress and after application of phytohormones indicated that most NtHD-ZIP IV genes were induced by heat, cold, salt and drought. Furthermore, most of these genes were induced by gibberellic acid, 6-benzylaminopurine, and salicylic acid, but were inhibited by abscisic acid. NtHD-ZIP IV genes were sensitive to heat, but insensitive to osmotic stress. CONCLUSION: NtHD-ZIP IV genes are implicated in a complex regulatory gene network controlling epidermal development and abiotic stress responses. The present study provides evidence to elucidate the gene functions of NtHD-ZIP IVs during epidermal development and stress response.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Nicotiana/genética , Proteínas de Plantas/metabolismo , Redes Reguladoras de Genes , Leucina Zippers , Proteínas de Plantas/genética , Estrés Fisiológico , Nicotiana/fisiología , Tricomas/genética , Tricomas/fisiología
11.
Clin Sci (Lond) ; 133(3): 515-530, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30683734

RESUMEN

The de novo synthesis of serum amyloid A1 (SAA1) is augmented in human fetal membranes at parturition. However, its role in parturition remains largely unknown. Here, we investigated whether SAA1 was involved in the rupture of fetal membranes, a crucial event in parturition accompanied with extensive degradation of collagens. Results showed that SAA1 decreased both intracellular and extracellular COL1A1 and COL1A2 abundance, the two subunits of collagen I, without affecting their mRNA levels in human amnion fibroblasts. These reductions were completely blocked only with inhibition of both matrix metalloproteases (MMPs) and autophagy. Consistently, SAA1 increased MMP-2/9 abundance and the markers for autophagic activation including autophagy related (ATG) 7 (ATG7) and the microtubule-associated protein light chain 3 ß (LC3B) II/I ratio with the formation of LC3 punctas and autophagic vacuoles in the fibroblasts. Moreover, the autophagic degradation of COL1A1/COL1A2 and activation of MMP-2/9 by SAA1 were blocked by inhibitors for the toll-like receptors 2/4 (TLR2/4) or NF-κB. Finally, reciprocal corresponding changes of SAA1 and collagen I were observed in the amnion following spontaneous rupture of membranes (ROM) at parturition. Conclusively, SAA1 may participate in membrane rupture at parturition by degradating collagen I via both autophagic and MMP pathways. These effects of SAA1 appear to be mediated by the TLR2/4 receptors and the NF-κB pathway.


Asunto(s)
Amnios/metabolismo , Colágeno Tipo I/metabolismo , Parto/metabolismo , Proteína Amiloide A Sérica/metabolismo , Autofagia , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Parto/genética , Proteolisis , Proteína Amiloide A Sérica/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
12.
J Biol Chem ; 292(18): 7578-7587, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28302719

RESUMEN

The expression of 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2), which acts as a placental glucocorticoid barrier, is silenced in cytotrophoblasts but substantially up-regulated during syncytialization. However, the repressive mechanism of 11ß-HSD2 expression before syncytialization and how this repression is lifted during syncytialization remain mostly unresolved. Here we found that enhancer of zeste homolog 2 (EZH2) accounts for the silence of 11ß-HSD2 expression via trimethylation of histone H3 lysine 27 at the promoter of the 11ß-HSD2 gene. Further studies revealed that, upon syncytialization, human chorionic gonadotropin reduced the phosphorylation of retinoblastoma protein (pRB) via activation of the cAMP/PKA pathway, which sequesters E2F transcription factor 1 (E2F1), the transcription factor for EZH2 expression. As a result of inactivation of the pRB-E2F1-EZH2 pathway, the repressive marker trimethylation of histone H3 lysine 27 at the 11ß-HSD2 promoter is removed, which leads to the robust expression of 11ß-HSD2 during syncytialization.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/biosíntesis , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Placenta/enzimología , Proteínas Gestacionales/metabolismo , Proteínas Represoras/metabolismo , Sistemas de Mensajero Secundario/fisiología , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/genética , Adulto , AMP Cíclico/genética , AMP Cíclico/metabolismo , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Femenino , Histonas/genética , Histonas/metabolismo , Humanos , Metilación , Embarazo , Proteínas Gestacionales/genética , Proteínas Represoras/genética , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo
13.
J Am Chem Soc ; 140(1): 74-77, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29220153

RESUMEN

The synthesis of "rim-differentiated" C5-symmetric pillar[5]arenes, whose two rims are decorated with different chemical functionalities, has remained a challenging task. This is due to the inherent statistical nature of the cyclization of 1,4-disubstituted alkoxybenzenes with different substituents, which leads to four constitutional isomers with only 1/16th being rim-differentiated. Herein, we report a "preoriented" synthetic protocol based on FeCl3-catalyzed cyclization of asymmetrically substituted 2,5-dialkoxybenzyl alcohols. This yields an unprecedented 55% selectivity of the C5-symmetric tiara-like pillar[5]arene isomer among four constitutional isomers. Based on this new method, a series of functionalizable tiara-pillar[5]arene derivatives with C5-symmetry was successfully synthesized, isolated, and fully characterized in the solid state.

14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 35(1): 38-44, 2018 02 25.
Artículo en Zh | MEDLINE | ID: mdl-29745598

RESUMEN

Aiming at comparing the pre-operative and post-operative gait characteristics and therefore establishing post-operative rehabilitation guidance for patients with end-stage knee osteoarthritis (KOA) merged with varus deformity, this study captured the level walking and sit-to-stand trials of 9 patients with 3-dimensional motion analysis system and after which musculoskeletal multi-body dynamic analysis was conducted. The study indicated that the average range of motion (ROM) of the proposed-surgical knee was 24.4°-57.6° and that of the non-surgical knee was 22.5°-71.5°. The knee ROM of control group during level walking was 7.2°-62.4°. When the unilateral KOA patients stood up from chair to complete the sit-to-stand movement, the ground reaction forces (GRFs) symmetry was 0.72-0.85, which means that the non-surgical limb bear the majority of body weight. The GRFs of the bilateral KOA patients were smallest during the sit-to-stand movement. The strategy that the non-surgical limb dominates in loading bearing taken by the unilateral KOA patients to cover most post-operative daily activities could increase the risk of KOA among non-surgical side joints as a result of long-term excessive loading-bearing. The study, on kinematics and biomechanical characteristics of patients with KOA merged with varus deformity, could help to understand the pathogenesis of KOA merged with varus deformity from the perspective of biomechanics and to provide strong clinic guidance for the pre-operative evaluation, prevention and post-operative recovery for patients.

15.
J Org Chem ; 82(5): 2472-2480, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28121150

RESUMEN

A general synthetic route to inherently luminescent and optically active 6-fold substituted C3-symmetric and asymmetric biphenyl-based trianglimines has been developed. The synthesis of these hexa-substituted triangular macrocycles takes advantage of a convenient method for the synthesis of symmetrically and asymmetrically difunctionalized biphenyl dialdehydes through a convergent two-step aromatic nucleophilic substitution-one-pot Suzuki-coupling reaction protocol. A modular [3+3] diamine-dialdehyde cyclocondensation reaction between both the symmetrically and asymmetrically difunctionalized-4,4'-biphenyldialdehydes with enantiomerically pure (1R,2R)-1,2-diaminocyclohexane was employed to construct the hexa-substituted triangular macrocycles. B97-D/6-311G(2d,p) density functional theory determined structures and X-ray crystallographic analysis reveal that the six substituents appended to the biphenyl legs of the trianglimine macrocycles adopt an alternating conformation not unlike the 1,3,5-alternate conformation observed for calix[6]arenes. Reduction of the imine bonds using NaBH4 afforded the corresponding 6-fold substituted trianglamine without the need to alkylate the amine nitrogen atoms which could hinder their later use as metal coordination sites and without having to introduce asymmetric carbons.

16.
J Biol Chem ; 290(43): 26051-8, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26363065

RESUMEN

Autophagy is a cellular process that controls and executes the turnover of dysfunctional organelles and misfolded or abnormally aggregated proteins. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) activates the initiation of autophagy. Autophagosomes migrate along acetylated microtubules to fuse with lysosomes to execute the degradation of the engulfed substrates that usually bind with sequestosome 1 (SQSTM1, p62). Microtubule-associated protein 1 light chain 3 (LC3) traces the autophagy process by converting from the LC3-I to the LC3-II isoform and serves as a major marker of autophagy flux. Potassium bisperoxo(1,10-phenanthroline)oxovanadate (bpV(phen)) is an insulin mimic and a PTEN inhibitor and has the potential to treat different diseases. Here we show that bpV(phen) enhances the ubiquitination of p62, reduces the stability of p62, disrupts the interaction between p62 and histone deacetylase 6 (HDAC6), activates the deacetylase activity of HDAC6 on α-tubulin, and impairs stable acetylated microtubules. Microtubular destabilization leads to the blockade of autophagosome-lysosome fusion and accumulation of autophagosomes. Autophagy defects lead to oxidative stress and lysosomal rupture, which trigger different types of cell death, including apoptosis and pyroptosis. The consistent results from multiple systems, including mouse and different types of mammalian cells, are different from the predicted function of bpV(phen) as a PTEN inhibitor to activate autophagy flux. In addition, levels of p62 are reduced but not elevated when autophagosomal degradation is blocked, revealing a novel function of p62 in autophagy regulation. Therefore, it is necessary to pay attention to the roles of bpV(phen) in autophagy, apoptosis, and pyroptosis when it is developed as a drug.


Asunto(s)
Apoptosis/efectos de los fármacos , Histona Desacetilasas/metabolismo , Microtúbulos/metabolismo , Orgánulos/efectos de los fármacos , Compuestos Organometálicos/farmacología , Fenantrolinas/farmacología , Piroptosis/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Acetilación , Autofagia , Células HeLa , Histona Desacetilasa 6 , Humanos , Orgánulos/metabolismo , Unión Proteica , Tubulina (Proteína)/metabolismo
17.
J Biol Chem ; 290(11): 7269-79, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25631043

RESUMEN

Tetherin has been characterized as a key factor that restricts viral particles such as HIV and hepatitis C virus on plasma membranes, acts as a ligand of the immunoglobulin-like transcript 7 (ILT7) receptor in tumor cells, and suppresses antiviral innate immune responses mediated by human plasmacytoid dendritic cells. However, the normal cellular function of Tetherin without viral infection is unknown. Here we show that Tetherin not only serves as a substrate of autophagy but itself regulates the initiation of autophagy. Tetherin interacts with the autophagy/mitophagy suppressor LRPPRC and prevents LRPPRC from forming a ternary complex with Beclin 1 and Bcl-2 so that Beclin 1 is released to bind with PI3KCIII (class III PI3K) to activate the initiation of autophagy. Suppression of Tetherin leads to impairment of autophagy, whereas overexpression of Tetherin causes activation of autophagy. Under mitophagic stress, Tetherin is concentrated on mitochondria engulfed in autophagosomes. Tetherin plays a general role in the degradation of autophagosomes containing not only the symbiotic mitochondria but also, possibly, the infected virus. Therefore, Tetherin may enhance autophagy and mitophagy to suppress tumorigenesis, enhance innate immune responses, or prevent T cell apoptosis or pyroptosis.


Asunto(s)
Antígenos CD/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Proteínas de la Membrana/metabolismo , Mitofagia , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Beclina-1 , Proteínas Ligadas a GPI/metabolismo , Células HeLa , Humanos , Fosfatidilinositol 3-Quinasas/metabolismo , Mapas de Interacción de Proteínas
19.
Biochem J ; 454(3): 447-57, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23822101

RESUMEN

The mitochondrion-associated protein LRPPRC (leucine-rich pentatricopeptide repeat-containing) interacts with one of the microtubule-associated protein family members MAP1S (microtubule-associated protein 1 small form), originally named C19ORF5 (chromosome 19 open reading frame 5), to form a complex. MAP1S interacts with LC3 (light chain 3), the mammalian homologue of yeast autophagy marker ATG8 and one of the most important autophagy markers in mammalian cells, and helps the attachment of autophagosomes with microtubules for trafficking and recruitment of substrate mitochondria into autophagosomes for degradation. MAP1S activates autophagosomal biogenesis and degradation to remove misfolded/aggregated proteins and dysfunctional organelles such as mitochondria and suppress oxidative stress-induced genomic instability and tumorigenesis. Previously, various studies have attributed LRPPRC nucleic acid-associated functions. Instead, in the present study, we show that LRPPRC associates with mitochondria, interacts with Beclin 1 and Bcl-2 and forms a ternary complex to maintain the stability of Bcl-2. Suppression of LRPPRC leads to reduction in mitochondrial potential and reduction in Bcl-2. Lower levels of Bcl-2 lead to release of more Beclin 1 to form the Beclin 1-PI3KCIII (class III phosphoinositide 3-kinase) complex to activate autophagy and accelerate the turnover of dysfunctional mitochondria through the PI3K (phosphoinositide 3-kinase)/Akt/mTOR (mammalian target of rapamycin) pathway. The activation of autophagy induced by LRPPRC suppression occurs upstream of the ATG5-ATG12 conjugate-mediated conversion of LC3-I into LC3-II and has been confirmed in multiple mammalian cell lines with multiple autophagy markers including the size of GFP-LC3 punctate foci, the intensity of LC3-II and p62 protein and the size of the vacuolar structure. The activated autophagy enhances the removal of mitochondria through lysosomes. LRPPRC therefore acts to suppress the initiation of basal levels of autophagy to clean up dysfunctional mitochondria and other cellular debris during the normal cell cycle.


Asunto(s)
Autofagia , Proteínas de Neoplasias/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Células HEK293 , Células HeLa , Humanos , Potencial de la Membrana Mitocondrial , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitofagia , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Estabilidad Proteica
20.
Int J Mol Sci ; 15(4): 6019-30, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24722573

RESUMEN

Anti-angiogenesis treatment has been a promising new form of cancer therapy. Endothelial cells are critical for vascular homeostasis and play important roles in angiogenesis, vascular and tissue remodeling. Vasostatin, the 180 amino acid N-terminal fragment of the calreticulin protein, is reported to be a potent endogenous inhibitor of angiogenesis, suppressing tumor growth. However, the mechanism of these effects has not been sufficiently investigated. This study was performed to investigate the possible mechanism of vasostatin effects on primary cultured human umbilical vein endothelial cells (HUVEC). We found that vasostatin could inhibit the cell viability of HUVEC and induce cell apoptosis through mitochondrial pathways via activation of caspase-3 under oxygen deprivation conditions. Meanwhile, vasostatin also inhibited vascular endothelial growth factor-induced proliferation and tube formation of HUVEC. The possible mechanism of vasostatin-inhibited proliferation of HUVEC could be through down-regulation of endothelial nitric oxide synthase. These findings suggest that vasostatin could regulate endothelial cell function and might be used in anti-angiogenesis treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Calreticulina/farmacología , Proliferación Celular/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Caspasa 3/metabolismo , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neovascularización Fisiológica/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA