Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Genomics ; 25(1): 638, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926812

RESUMEN

BACKGROUND: The breeding of layers emphasizes the continual selection of egg-related traits, such as egg production, egg quality and eggshell, which enhance their productivity and meet the demand of market. As the breeding process continued, the genomic homozygosity of layers gradually increased, resulting in the emergence of runs of homozygosity (ROH). Therefore, ROH analysis can be used in conjunction with other methods to detect selection signatures and identify candidate genes associated with various important traits in layer breeding. RESULTS: In this study, we generated whole-genome sequencing data from 686 hens in a Rhode Island Red population that had undergone fifteen consecutive generations of intensive artificial selection. We performed a genome-wide ROH analysis and utilized multiple methods to detect signatures of selection. A total of 141,720 ROH segments were discovered in whole population, and most of them (97.35%) were less than 3 Mb in length. Twenty-three ROH islands were identified, and they overlapped with some regions bearing selection signatures, which were detected by the De-correlated composite of multiple signals methods (DCMS). Sixty genes were discovered and functional annotation analysis revealed the possible roles of them in growth, development, immunity and signaling in layers. Additionally, two-tailed analyses including DCMS and ROH for 44 phenotypes of layers were conducted to find out the genomic differences between subgroups of top and bottom 10% phenotype of individuals. Combining the results of GWAS, we observed that regions significantly associated with traits also exhibited selection signatures between the high and low subgroups. We identified a region significantly associated with egg weight near the 25 Mb region of GGA 1, which exhibited selection signatures and has higher genomic homozygosity in the low egg weight subpopulation. This suggests that the region may be play a role in the decline in egg weight. CONCLUSIONS: In summary, through the combined analysis of ROH, selection signatures, and GWAS, we identified several genomic regions that associated with the production traits of layers, providing reference for the study of layer genome.


Asunto(s)
Pollos , Homocigoto , Selección Genética , Animales , Pollos/genética , Genómica/métodos , Cruzamiento , Fenotipo , Polimorfismo de Nucleótido Simple , Femenino , Secuenciación Completa del Genoma , Genoma , Estudio de Asociación del Genoma Completo
2.
Mol Biol Evol ; 39(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35325213

RESUMEN

The gene numbers and evolutionary rates of birds were assumed to be much lower than those of mammals, which is in sharp contrast to the huge species number and morphological diversity of birds. It is, therefore, necessary to construct a complete avian genome and analyze its evolution. We constructed a chicken pan-genome from 20 de novo assembled genomes with high sequencing depth, and identified 1,335 protein-coding genes and 3,011 long noncoding RNAs not found in GRCg6a. The majority of these novel genes were detected across most individuals of the examined transcriptomes but were seldomly measured in each of the DNA sequencing data regardless of Illumina or PacBio technology. Furthermore, different from previous pan-genome models, most of these novel genes were overrepresented on chromosomal subtelomeric regions and microchromosomes, surrounded by extremely high proportions of tandem repeats, which strongly blocks DNA sequencing. These hidden genes were proved to be shared by all chicken genomes, included many housekeeping genes, and enriched in immune pathways. Comparative genomics revealed the novel genes had 3-fold elevated substitution rates than known ones, updating the knowledge about evolutionary rates in birds. Our study provides a framework for constructing a better chicken genome, which will contribute toward the understanding of avian evolution and the improvement of poultry breeding.


Asunto(s)
Pollos , Genoma , Animales , Pollos/genética , Genómica , Mamíferos/genética , Análisis de Secuencia de ADN
3.
Appl Microbiol Biotechnol ; 107(24): 7601-7620, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37792060

RESUMEN

Blood biochemical indicators play a crucial role in assessing an individual's overall health status and metabolic function. In this study, we measured five blood biochemical indicators, including total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL-CH), triglycerides (TG), high-density lipoprotein cholesterol (HDL-CH), and blood glucose (BG), as well as 19 growth traits of 206 male chickens. By integrating host whole-genome information and 16S rRNA sequencing of the duodenum, jejunum, ileum, cecum, and feces microbiota, we assessed the contributions of host genetics and gut microbiota to blood biochemical indicators and their interrelationships. Our results demonstrated significant negative phenotypic and genetic correlations (r = - 0.20 ~ - 0.67) between CHOL and LDL-CH with growth traits such as body weight, abdominal fat content, muscle content, and shin circumference. The results of heritability and microbiability indicated that blood biochemical indicators were jointly regulated by host genetics and gut microbiota. Notably, the heritability of HDL-CH was estimated to be 0.24, while the jejunal microbiability for BG and TG reached 0.45 and 0.23. Furthermore, by conducting genome-wide association study (GWAS) with the single-nucleotide polymorphism (SNPs), insertion/deletion (indels), and structural variation (SV), we identified RAP2C, member of the RAS oncogene family (RAP2C), dedicator of cytokinesis 11 (DOCK11), neurotensin (NTS) and BOP1 ribosomal biogenesis factor (BOP1) as regulators of HDL-CH, and glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5), dihydrodiol dehydrogenase (DHDH), and potassium voltage-gated channel interacting protein 1 (KCNIP1) as candidate genes of BG. Moreover, our findings suggest that cecal RF39 and Clostridia_UCG_014 may be linked to the regulation of CHOL, and jejunal Streptococcaceae may be involved in the regulation of TG. Additionally, microbial GWAS results indicated that the presence of gut microbiota was under host genetic regulation. Our findings provide valuable insights into the complex interaction between host genetics and microbiota in shaping the blood biochemical profile of chickens. KEY POINTS: • Multiple candidate genes were identified for the regulation of CHOL, HDL-CH, and BG. • RF39, Clostridia_UCG_014, and Streptococcaceae were implicated in CHOL and TG modulation. • The composition of gut microbiota is influenced by host genetics.


Asunto(s)
Microbioma Gastrointestinal , Masculino , Animales , Pollos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Estudio de Asociación del Genoma Completo , Triglicéridos/metabolismo , Colesterol/metabolismo
4.
Technol Cult ; 60(2S): S129-S160, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231075

RESUMEN

This article considers machine methods used in the collection, processing, and application of vocal recordings for speaker identification and speech recognition between 1908 and 1970. The first phonographic archives featured collections of "vocal portraits" that prompted international investigations into the essential features of human voices for individual identification. Visual records of speech later found the same applications, but as "voiceprint identification" via sound spectrography began to achieve legal and commercial success in the 1960s, the procedure attracted more widespread scientific attention, which ultimately discredited both its accuracy and its rationale. At the same time, spectrogram collections spurred a new application-speech recognition by machine. The changing status of the speech spectrogram, from a record of unique features of individual voices to a model of fundamental invariants in speech sounds, was rooted in the demands of automated processing and a corresponding shift from the sound archive to the acoustic database.


Asunto(s)
Ciencias Forenses/historia , Espectrografía del Sonido/historia , Percepción del Habla , Voz , Historia del Siglo XX , Humanos , Fonética , Habla , Acústica del Lenguaje
5.
Genes (Basel) ; 15(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38927626

RESUMEN

Genomic prediction plays an increasingly important role in modern animal breeding, with predictive accuracy being a crucial aspect. The classical linear mixed model is gradually unable to accommodate the growing number of target traits and the increasingly intricate genetic regulatory patterns. Hence, novel approaches are necessary for future genomic prediction. In this study, we used an illumina 50K SNP chip to genotype 4190 egg-type female Rhode Island Red chickens. Machine learning (ML) and classical bioinformatics methods were integrated to fit genotypes with 10 economic traits in chickens. We evaluated the effectiveness of ML methods using Pearson correlation coefficients and the RMSE between predicted and actual phenotypic values and compared them with rrBLUP and BayesA. Our results indicated that ML algorithms exhibit significantly superior performance to rrBLUP and BayesA in predicting body weight and eggshell strength traits. Conversely, rrBLUP and BayesA demonstrated 2-58% higher predictive accuracy in predicting egg numbers. Additionally, the incorporation of suggestively significant SNPs obtained through the GWAS into the ML models resulted in an increase in the predictive accuracy of 0.1-27% across nearly all traits. These findings suggest the potential of combining classical bioinformatics methods with ML techniques to improve genomic prediction in the future.


Asunto(s)
Pollos , Biología Computacional , Genómica , Aprendizaje Automático , Polimorfismo de Nucleótido Simple , Animales , Pollos/genética , Genómica/métodos , Biología Computacional/métodos , Femenino , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Genotipo , Cruzamiento/métodos , Sitios de Carácter Cuantitativo
6.
Poult Sci ; 103(4): 103458, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350384

RESUMEN

The industry of egg-type chicken has shown a trend of extending the rearing period, with the goal of breeding chicken breeds capable of producing 500 qualified eggs by 700 d of age. However, the rapid decline in eggshell quality during the late laying period is one of the major challenges. In this study, a total of 3,261 Rhode Island Red chickens were used to measure eggshell quality traits including eggshell strength (ESS), eggshell thickness (EST), eggshell color (ESC) and eggshell gloss (ESG) at seven age points ranging from 36 to 90 wk of age. Phenotypic variations increased with the aging process, especially during the late laying period (> 55 wk), and the heritability during this period decreased by 22.7 to 81.4% compared to the initial and peak laying periods. Then we performed genome-wide association study (GWAS) to identify the genomic variants that associated with eggshell quality, with a custom Illumina 50K BeadChip, named PhenoixChip-I. The results indicated that 2 genomic regions on GGA1(23.24-25.15Mb; 175.95-176.05 Mb) were significantly (P < 4.48E-06) or suggestively (P < 8.97E-05) associated with ESS, which can explain 9.59% and 0.48% of the phenotypic variations of ESS46 and ESS36, respectively. Three genes, FRY, PCNX2, and ENSGALG00000052468, were considered to be the candidate genes for ESS. For other traits, the genome-wide suggestive SNPs were identified at each age point, exhibiting a certain trend with aging process. Additionally, SNP enrichment analysis and functional annotation of cross-tissue regulatory elements to ESS36 revealed a high concentration of enhancer elements specific to shell gland and kidney tissues. This study, deepened our knowledge of eggshells and laying a valued scientific foundation for chicken molecular breeding.


Asunto(s)
Pollos , Estudio de Asociación del Genoma Completo , Animales , Estudio de Asociación del Genoma Completo/veterinaria , Pollos/genética , Cáscara de Huevo , Óvulo , Fenotipo
7.
Poult Sci ; 102(4): 102393, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36805401

RESUMEN

Improving feed efficiency is an important target for poultry breeding. Feed efficiency is affected by host genetics and the gut microbiota, but many of the mechanisms remain elusive in laying hens, especially in the late laying period. In this study, we measured feed intake, body weight, and egg mass of 714 hens from a pedigreed line from 69 to 72 wk of age and calculated the residual feed intake (RFI) and feed conversion ratio (FCR). In addition, fecal samples were also collected for 16S ribosomal RNA gene sequencing (V4 region). Genetic analysis was then conducted in DMU packages by using AI-REML with animal model. Moderate heritability estimates for FCR (h2 = 0.31) and RFI (h2 = 0.52) were observed, suggesting that proper selection programs can directly improve feed efficiency. Genetically, RFI was less correlated with body weight and egg mass than that of FCR. The phenotypic variance explained by gut microbial variance is defined as the microbiability (m2). The microbiability estimates for FCR (m2 = 0.03) and RFI (m2 = 0.16) suggested the gut microbiota was also involved in the regulation of feed efficiency. In addition, our results showed that the effect of host genetics on fecal microbiota was minor in three aspects: 1) microbial diversity indexes had low heritability estimates, and genera with heritability estimates more than 0.1 accounted for only 1.07% of the tested fecal microbiota; 2) the genetic relationship correlations between host genetics and different microbial distance were very weak, ranging from -0.0057 to -0.0003; 3) the microbial distance between different kinships showed no significant difference. Since the RFI has the highest microbiability, we further screened out three genera, including Anaerosporobacter, Candidatus Stoquefichus, and Fournierella, which were negatively correlated with RFI and played positive roles in improving the feed efficiency. These findings contribute to a great understanding of the genetic background and microbial influences on feed efficiency.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Femenino , Pollos/genética , Peso Corporal/genética , Ingestión de Alimentos/genética , Alimentación Animal/análisis
8.
Materials (Basel) ; 15(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36143683

RESUMEN

The talus-like rock mass is a special kind of geomaterial widely distributed in southwestern China, which has induced serious engineering disasters for tunneling engineering. However, the mechanical behavior of the talus-like rock mass remains unclear as the previous studies mainly focused on similar geomaterials such as the soil-rock mixtures. In this paper, we have carried out both experimental and discrete element method (DEM)-based numerical analyses to investigate the shearing characteristics of the talus-like rock mass collected from a real project site. Large-scale direct shear tests reveal that the strength parameters increase with the block content, which is different from the traditional soil-rock mixture. A dependence has been discovered in that the specimen dilation becomes more obvious under lower normal stress and larger block content. It is also observed that higher normal stress is beneficial for crushing blocks. The force chains obtained in the DEM simulations show that distinct internal structures are generated in the rock samples with different block contents. The distribution of coordination number establishes the dependence of fabric stability on block content during shearing. Bond-break evolution reveals the tendencies of crushed particles were consistent with those of experimental tests. The findings provide a more in-depth understanding about the mechanical behavior of the talus-like rock mass, which helps to uncover the cause of the collapse of the real tunnel project.

9.
Materials (Basel) ; 15(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36556754

RESUMEN

Due to the complexity of the talus-like rock mass with different values of volumetric block proportion (VPB), it is thus crucial to explore the VBP effect on the excavation-induced ground responses. We conduct a series of 2D DEM (discrete element method) simulations on a common circular tunnel excavation in the talus-like rock mass with different VBPs (0%, 15%, 50%, 85% and 100%). For each VBP, two support scenarios, i.e., unsupported and supported by a rigid lining, are considered. The micro characteristics of the excavation-induced ground responses, including the contact force, force chain, coordination number and shear-slip contact, and the stress distribution and ground settlement are elaborated in detail. Accordingly, three types of talus-like rock masses are identified as soil-, hybrid- and rock-types, corresponding to VBP = 0-15%, 50%, and 85-100%, respectively. It is found that the lining support is essential for maintaining the ground stability of a tunnel excavation in the soil- and hybrid-type talus-like rock masses while the backbones formed by rock blocks in the rock-type talus-like rock mass can provide a certain support for the surrounding ground. Our findings have important implications for optimizing the construction scheme of tunnel excavation in different types of talus-like rock masses.

10.
ChemSusChem ; 14(17): 3553-3560, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-33913608

RESUMEN

The remarkable advance of all-polymer solar cells (all-PSCs) achieved in the past decades is primarily powered by the innovation of polymer acceptors. However, most of high-performance all-PSCs are dominantly fabricated with halogenated solvents, which are detrimental to human bodies and the environment. Herein, eco-friendly solvent-processed all-PSCs were developed, based on wide-bandgap polymer poly[4,8-bis(5-(2-ethylhexylthio)thiophen-2-yl)-benzo-[1,2-b;4,5-b']dithiophene-alt-2,5-di(butyloctylthiophen-2-yl) -thiazolo[5,4-d]thiazole] (PSTZ) as donor and newly synthesized narrow-bandgap polymer 5,6-dicyano-2,1,3-benzothiadiazole indacenodithiophene (DCNBT-IDT) as acceptor. When processed with o-xylene and THF, PSTZ : DCNBT-IDT-based all-PSCs yielded remarkable power conversion efficiencies of 7.23 and 8.77 % with high short-circuit currents of 12.94 and 14.12 mA cm-2 , respectively. The results indicated that the utilization of an all-polymer blend based on narrow polymer acceptor and compatible polymer donor is an effective strategy for advancing eco-friendly solvent-processed all-PSCs.

11.
Poult Sci ; 100(7): 101104, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34051407

RESUMEN

The microbiota of female reproductive tract have attracted considerable attention in recent years due to their effects on host fitness. However, the microbiota throughout the chicken oviduct and its symbiotic relationships with the host have not been well characterized. Here, we characterized the microbial composition of six segments of the reproductive tract, including the infundibulum, magnum, isthmus, uterus, vagina and cloaca, in pedigreed laying hens with phenotypes of egg quality and quantity. We found that the microbial diversity gradually increased along the reproductive tract from the infundibulum to the cloaca, and the microbial communities were distinct among the cloaca, vagina and four other oviductal segments. The magnum exhibited the lowest diversity, given that the lysozyme and other antimicrobial proteins are secreted at this location. The results of correlation estimated showed that the relationship between host genetic kinship and microbial distance was negligible. Additionally, the genetically related pairwise individuals did not exhibit a more similar microbial community than unrelated pairs. Although the egg might be directly contaminated with potential pathogenic bacteria during egg formation and oviposition, some microorganisms provide long-term benefits to the host. Among these, we observed that increased abundance of vaginal Staphylococcus and Ralstonia was significantly associated with darker eggshells. Meanwhile, vaginal Romboutsia could be used as a predictor for egg number. These findings provide insight into the nature of the chicken reproductive tract microbiota and highlight the effect of oviductal bacteria on the process of egg formation.


Asunto(s)
Pollos , Microbiota , Animales , Trompas Uterinas , Femenino , Oviductos , Oviposición
12.
Front Vet Sci ; 8: 712226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527716

RESUMEN

The gut microbiota of chickens plays an important role in host physiology. However, the colonization and prevalence of gut microbiota have not been well-characterized. Here, we performed 16S rRNA gene sequencing on the duodenal, cecal and fecal microbiota of broilers at 1, 7, 21, and 35 days of age and characterized the dynamic succession of microbiota across the intestinal tract. Our results showed that Firmicutes was the most abundant phylum detected in each gut site at various ages, while the microbial diversity and composition varied among the duodenum, cecum, and feces at different ages. The microbial diversity and complexity of the cecal microbiota increased with age, gradually achieving stability at 21 days of age. As a specific genus in the cecum, Clostridium_sensu_stricto_1 accounted for 83.50% of the total abundance at 1 day of age, but its relative abundance diminished with age. Regarding the feces, the highest alpha diversity was observed at 1 day of age, significantly separated from the alpha diversity of other ages. In addition, no significant differences were observed in the alpha diversity of duodenal samples among 7, 21, and 35 days of age. The predominant bacterium, Lactobacillus, was relatively low (0.68-6.04%) in the intestinal tract of 1-day-old chicks, whereas its abundance increased substantially at 7 days of age and was higher in the duodenum and feces. Escherichia-Shigella, another predominant bacterium in the chicken intestinal tract, was also found to be highly abundant in fecal samples, and the age-associated dynamic trend coincided with that of Lactobacillus. In addition, several genera, including Blautia, Ruminiclostridium_5, Ruminococcaceae_UCG-014, and [Ruminococcus]_torques_group, which are related to the production of short-chain fatty acids, were identified as biomarker bacteria of the cecum after 21 days of age. These findings shed direct light on the temporal and spatial dynamics of intestinal microbiota and provide new opportunities for the improvement of poultry health and production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA