Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(23): 5028-5040.e14, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37852257

RESUMEN

Wnt proteins are enzymatically lipidated by Porcupine (PORCN) in the ER and bind to Wntless (WLS) for intracellular transport and secretion. Mechanisms governing the transfer of these low-solubility Wnts from the ER to the extracellular space remain unclear. Through structural and functional analyses of Wnt7a, a crucial Wnt involved in central nervous system angiogenesis and blood-brain barrier maintenance, we have elucidated the principles of Wnt biogenesis and Wnt7-specific signaling. The Wnt7a-WLS complex binds to calreticulin (CALR), revealing that CALR functions as a chaperone to facilitate Wnt transfer from PORCN to WLS during Wnt biogenesis. Our structures, functional analyses, and molecular dynamics simulations demonstrate that a phospholipid in the core of Wnt-bound WLS regulates the association and dissociation between Wnt and WLS, suggesting a lipid-mediated Wnt secretion mechanism. Finally, the structure of Wnt7a bound to RECK, a cell-surface Wnt7 co-receptor, reveals how RECKCC4 engages the N-terminal domain of Wnt7a to activate Wnt7-specific signaling.


Asunto(s)
Receptores Acoplados a Proteínas G , Proteínas Wnt , Vía de Señalización Wnt , Barrera Hematoencefálica/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Proteínas Wnt/química , Proteínas Wnt/metabolismo
2.
Cell ; 186(12): 2644-2655.e16, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37224812

RESUMEN

Sphingosine-1-phosphate (S1P) is an important signaling sphingolipid that regulates the immune system, angiogenesis, auditory function, and epithelial and endothelial barrier integrity. Spinster homolog 2 (Spns2) is an S1P transporter that exports S1P to initiate lipid signaling cascades. Modulating Spns2 activity can be beneficial in treatments of cancer, inflammation, and immune diseases. However, the transport mechanism of Spns2 and its inhibition remain unclear. Here, we present six cryo-EM structures of human Spns2 in lipid nanodiscs, including two functionally relevant intermediate conformations that link the inward- and outward-facing states, to reveal the structural basis of the S1P transport cycle. Functional analyses suggest that Spns2 exports S1P via facilitated diffusion, a mechanism distinct from other MFS lipid transporters. Finally, we show that the Spns2 inhibitor 16d attenuates the transport activity by locking Spns2 in the inward-facing state. Our work sheds light on Spns2-mediated S1P transport and aids the development of advanced Spns2 inhibitors.


Asunto(s)
Inflamación , Lisofosfolípidos , Humanos , Esfingosina , Proteínas de Transporte de Anión/fisiología
3.
Cell ; 185(20): 3739-3752.e18, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36113465

RESUMEN

Lysosomal amino acid efflux by proton-driven transporters is essential for lysosomal homeostasis, amino acid recycling, mTOR signaling, and maintaining lysosomal pH. To unravel the mechanisms of these transporters, we focus on cystinosin, a prototypical lysosomal amino acid transporter that exports cystine to the cytosol, where its reduction to cysteine supplies this limiting amino acid for diverse fundamental processes and controlling nutrient adaptation. Cystinosin mutations cause cystinosis, a devastating lysosomal storage disease. Here, we present structures of human cystinosin in lumen-open, cytosol-open, and cystine-bound states, which uncover the cystine recognition mechanism and capture the key conformational states of the transport cycle. Our structures, along with functional studies and double electron-electron resonance spectroscopic investigations, reveal the molecular basis for the transporter's conformational transitions and protonation switch, show conformation-dependent Ragulator-Rag complex engagement, and demonstrate an unexpected activation mechanism. These findings provide molecular insights into lysosomal amino acid efflux and a potential therapeutic strategy.


Asunto(s)
Cistina , Protones , Sistemas de Transporte de Aminoácidos/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Humanos , Lisosomas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
4.
Nature ; 607(7920): 816-822, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35831507

RESUMEN

Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis1-3, and aberrant Wnt signalling is frequently associated with cancers4. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine5-7 (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling8,9. Here we report four cryo-electron microscopy structures of human PORCN: the complex with the palmitoleoyl-coenzyme A (palmitoleoyl-CoA) substrate; the complex with the PORCN inhibitor LGK974, an anti-cancer drug currently in clinical trials10; the complex with LGK974 and WNT3A hairpin 2 (WNT3Ap); and the complex with a synthetic palmitoleoylated WNT3Ap analogue. The structures reveal that hairpin 2 of WNT3A, which is well conserved in all Wnt ligands, inserts into PORCN from the lumenal side, and the palmitoleoyl-CoA accesses the enzyme from the cytosolic side. The catalytic histidine triggers the transfer of the unsaturated palmitoleoyl group to the target serine on the Wnt hairpin 2, facilitated by the proximity of the two substrates. The inhibitor-bound structure shows that LGK974 occupies the palmitoleoyl-CoA binding site to prevent the reaction. Thus, this work provides a mechanism for Wnt acylation and advances the development of PORCN inhibitors for cancer treatment.


Asunto(s)
Aciltransferasas , Proteínas de la Membrana , Vía de Señalización Wnt , Acilación/efectos de los fármacos , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Antineoplásicos , Sitios de Unión , Coenzima A/metabolismo , Microscopía por Crioelectrón , Histidina , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Palmitoil Coenzima A , Pirazinas/farmacología , Piridinas/farmacología , Serina , Especificidad por Sustrato , Vía de Señalización Wnt/efectos de los fármacos , Proteína Wnt3A
5.
Immunol Rev ; 317(1): 187-202, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36928841

RESUMEN

Neutrophil recruitment from circulation to sites of inflammation is guided by multiple chemoattractant cues emanating from tissue cells, immune cells, and platelets. Here, we focus on the function of one G-protein coupled receptor, GPR35, in neutrophil recruitment. GPR35 has been challenging to study due the description of multiple ligands and G-protein couplings. Recently, we found that GPR35-expressing hematopoietic cells respond to the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA). We discuss distinct response profiles of GPR35 to 5-HIAA compared to other ligands. To place the functions of 5-HIAA in context, we summarize the actions of serotonin in vascular biology and leukocyte recruitment. Important sources of serotonin and 5-HIAA are platelets and mast cells. We discuss the dynamics of cell migration into inflamed tissues and how multiple platelet and mast cell-derived mediators, including 5-HIAA, cooperate to promote neutrophil recruitment. Additional actions of GPR35 in tissue physiology are reviewed. Finally, we discuss how clinically approved drugs that modulate serotonin uptake and metabolism may influence 5-HIAA-GPR35 function, and we speculate about broader influences of the GPR35 ligand-receptor system in immunity and disease.


Asunto(s)
Mastocitos , Neutrófilos , Humanos , Plaquetas , Ligandos , Serotonina/metabolismo , Ácido Hidroxiindolacético/metabolismo , Inflamación , Movimiento Celular , Infiltración Neutrófila , Receptores Acoplados a Proteínas G/metabolismo
6.
Nature ; 581(7808): 339-343, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32433613

RESUMEN

Cholesterol is an essential component of mammalian cell membranes, constituting up to 50% of plasma membrane lipids. By contrast, it accounts for only 5% of lipids in the endoplasmic reticulum (ER)1. The ER enzyme sterol O-acyltransferase 1 (also named acyl-coenzyme A:cholesterol acyltransferase, ACAT1) transfers a long-chain fatty acid to cholesterol to form cholesteryl esters that coalesce into cytosolic lipid droplets. Under conditions of cholesterol overload, ACAT1 maintains the low cholesterol concentration of the ER and thereby has an essential role in cholesterol homeostasis2,3. ACAT1 has also been implicated in Alzheimer's disease4, atherosclerosis5 and cancers6. Here we report a cryo-electron microscopy structure of human ACAT1 in complex with nevanimibe7, an inhibitor that is in clinical trials for the treatment of congenital adrenal hyperplasia. The ACAT1 holoenzyme is a tetramer that consists of two homodimers. Each monomer contains nine transmembrane helices (TMs), six of which (TM4-TM9) form a cavity that accommodates nevanimibe and an endogenous acyl-coenzyme A. This cavity also contains a histidine that has previously been identified as essential for catalytic activity8. Our structural data and biochemical analyses provide a physical model to explain the process of cholesterol esterification, as well as details of the interaction between nevanimibe and ACAT1, which may help to accelerate the development of ACAT1 inhibitors to treat related diseases.


Asunto(s)
Microscopía por Crioelectrón , Esterol O-Aciltransferasa/química , Esterol O-Aciltransferasa/ultraestructura , Urea/análogos & derivados , Colesterol/química , Colesterol/metabolismo , Histidina/química , Histidina/metabolismo , Holoenzimas/química , Holoenzimas/ultraestructura , Humanos , Ligandos , Modelos Moleculares , Multimerización de Proteína , Electricidad Estática , Urea/química
7.
Nature ; 571(7764): 279-283, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31168089

RESUMEN

The oncoprotein Smoothened (SMO), a G-protein-coupled receptor (GPCR) of the Frizzled-class (class-F), transduces the Hedgehog signal from the tumour suppressor Patched-1 (PTCH1) to the glioma-associated-oncogene (GLI) transcription factors, which activates the Hedgehog signalling pathway1,2. It has remained unknown how PTCH1 modulates SMO, how SMO is stimulated to form a complex with heterotrimeric G proteins and whether G-protein coupling contributes to the activation of GLI proteins3. Here we show that 24,25-epoxycholesterol, which we identify as an endogenous ligand of PTCH1, can stimulate Hedgehog signalling in cells and can trigger G-protein signalling via human SMO in vitro. We present a cryo-electron microscopy structure of human SMO bound to 24(S),25-epoxycholesterol and coupled to a heterotrimeric Gi protein. The structure reveals a ligand-binding site for 24(S),25-epoxycholesterol in the 7-transmembrane region, as well as a Gi-coupled activation mechanism of human SMO. Notably, the Gi protein presents a different arrangement from that of class-A GPCR-Gi complexes. Our work provides molecular insights into Hedgehog signal transduction and the activation of a class-F GPCR.


Asunto(s)
Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/ultraestructura , Oxiesteroles/química , Receptor Smoothened/química , Receptor Smoothened/ultraestructura , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Ligandos , Modelos Moleculares , Oxiesteroles/metabolismo , Receptor Patched-1/metabolismo , Conformación Proteica , Transducción de Señal , Receptor Smoothened/metabolismo , Alcaloides de Veratrum/química
8.
Trends Biochem Sci ; 45(5): 397-410, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32311334

RESUMEN

Cell differentiation and proliferation require Hedgehog (HH) signaling and aberrant HH signaling causes birth defects or cancers. In this signaling pathway, the N-terminally palmitoylated and C-terminally cholesterylated HH ligand is secreted into the extracellular space with help of the Dispatched-1 (DISP1) and Scube2 proteins. The Patched-1 (PTCH1) protein releases its inhibition of the oncoprotein Smoothened (SMO) after binding the HH ligand, triggering downstream signaling events. In this review, we discuss the recent structural and biochemical studies on four major components of the HH pathway: the HH ligand, DISP1, PTCH1, and SMO. This research provides mechanistic insights into how HH signaling is generated and transduced from the cell surface into the intercellular space and will aid in facilitating the treatment of HH-related diseases.


Asunto(s)
Proteínas Hedgehog/metabolismo , Transducción de Señal , Animales , Ligandos
9.
Circulation ; 147(2): 142-153, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36382596

RESUMEN

BACKGROUND: Identifying genetic variants that affect the level of cell cycle reentry and establishing the degree of cell cycle progression in those variants could help guide development of therapeutic interventions aimed at effecting cardiac regeneration. We observed that C57Bl6/NCR (B6N) mice have a marked increase in cardiomyocyte S-phase activity after permanent coronary artery ligation compared with infarcted DBA/2J (D2J) mice. METHODS: Cardiomyocyte cell cycle activity after infarction was monitored in D2J, (D2J×B6N)-F1, and (D2J×B6N)-F1×D2J backcross mice by means of bromodeoxyuridine or 5-ethynyl-2'-deoxyuridine incorporation using a nuclear-localized transgenic reporter to identify cardiomyocyte nuclei. Genome-wide quantitative trait locus analysis, fine scale genetic mapping, whole exome sequencing, and RNA sequencing analyses of the backcross mice were performed to identify the gene responsible for the elevated cardiomyocyte S-phase phenotype. RESULTS: (D2J×B6N)-F1 mice exhibited a 14-fold increase in cardiomyocyte S-phase activity in ventricular regions remote from infarct scar compared with D2J mice (0.798±0.09% versus 0.056±0.004%; P<0.001). Quantitative trait locus analysis of (D2J×B6N)-F1×D2J backcross mice revealed that the gene responsible for differential S-phase activity was located on the distal arm of chromosome 3 (logarithm of the odds score=6.38; P<0.001). Additional genetic and molecular analyses identified 3 potential candidates. Of these, Tnni3k (troponin I-interacting kinase) is expressed in B6N hearts but not in D2J hearts. Transgenic expression of TNNI3K in a D2J genetic background results in elevated cardiomyocyte S-phase activity after injury. Cardiomyocyte S-phase activity in both Tnni3k-expressing and Tnni3k-nonexpressing mice results in the formation of polyploid nuclei. CONCLUSIONS: These data indicate that Tnni3k expression increases the level of cardiomyocyte S-phase activity after injury.


Asunto(s)
Miocitos Cardíacos , Troponina I , Ratones , Animales , Troponina I/metabolismo , Ratones Endogámicos DBA , Miocitos Cardíacos/metabolismo , Ciclo Celular , Proliferación Celular , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
10.
Chemphyschem ; : e202400414, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896533

RESUMEN

We systematically investigated the stable configurations and catalytic activity in the Oxygen Reduction Reaction (ORR) of graphene co-doped with boron and nitrogen (B-N) using first-principles methods. Compared to single B/N doping, co-doping with BN is energetically favored. We found that intermediate species of ORR process adsorb on boron atoms, which act as catalytic sites. The presence of neighboring nitrogen atoms around boron plays a crucial role in modulating the catalytic activity of boron. For the same adsorption configuration, the adsorption energy of the adsorbate increases with the number of neighboring nitrogen atoms around boron and generally correlates positively with the number of electrons gained by the adsorbate. Regarding the catalytic activity of ORR, excessively strong adsorption of adsorbates impedes their hydrogenation. The best substrates for ORR catalytic activity are B-N-graphene and N-B2-graphene, with the rate-determining step being the hydrogenation of *OO and overpotentials of 0.49 V and 0.54 V, respectively.

11.
Nephrol Dial Transplant ; 39(2): 264-276, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37468453

RESUMEN

BACKGROUND: 25-hydroxyvitamin D can undergo C-3 epimerization to produce 3-epi-25(OH)D3. 3-epi-25(OH)D3 levels decline in chronic kidney disease (CKD), but its role in regulating the cardiovascular system is unknown. Herein, we examined the relationship between 3-epi-25(OH)D3, and cardiovascular functional and structural endpoints in patients with CKD. METHODS: We examined n = 165 patients with advanced CKD from the Cardiopulmonary Exercise Testing in Renal Failure and After Kidney Transplantation (CAPER) study cohort, including those who underwent kidney transplant (KTR, n = 76) and waitlisted patients who did not (NTWC, n = 89). All patients underwent cardiopulmonary exercise testing and echocardiography at baseline, 2 months and 12 months. Serum 3-epi-25(OH)D3 was analyzed by liquid chromatography-tandem mass spectrometry. RESULTS: Patients were stratified into quartiles of baseline 3-epi-25(OH)D3 (Q1: <0.4 ng/mL, n = 51; Q2: 0.4 ng/mL, n = 26; Q3: 0.5-0.7 ng/mL, n = 47; Q4: ≥0.8 ng/mL, n = 41). Patients in Q1 exhibited lower peak oxygen uptake [VO2Peak = 18.4 (16.2-20.8) mL/min/kg] compared with Q4 [20.8 (18.6-23.2) mL/min/kg; P = .009]. Linear mixed regression model showed that 3-epi-25(OH)D3 levels increased in KTR [from 0.47 (0.30) ng/mL to 0.90 (0.45) ng/mL] and declined in NTWC [from 0.61 (0.32) ng/mL to 0.45 (0.29) ng/mL; P < .001]. Serum 3-epi-25(OH)D3 was associated with VO2Peak longitudinally in both groups [KTR: ß (standard error) = 2.53 (0.56), P < .001; NTWC: 2.73 (0.70), P < .001], but was not with left ventricular mass or arterial stiffness. Non-epimeric 25(OH)D3, 24,25(OH)2D3 and the 25(OH)D3:24,25(OH)2D3 ratio were not associated with any cardiovascular outcome (all P > .05). CONCLUSIONS: Changes in 3-epi-25(OH)D3 levels may regulate cardiovascular functional capacity in patients with advanced CKD.


Asunto(s)
Sistema Cardiovascular , Trasplante de Riñón , Insuficiencia Renal Crónica , Humanos , Vitamina D , Vitaminas , Insuficiencia Renal Crónica/cirugía
12.
Ann Emerg Med ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691067

RESUMEN

OBJECTIVE: We assessed the concordance of patient-reported race and ethnicity for emergency department (ED) patients compared with what was recorded in the electronic health record. METHODS: We conducted a single-center, prospective, observational study of 744 ED patients (English- and/or Spanish-speaking), asking them to describe their race and ethnicity. We compared the distributions of ethnicity and race between patient-reported and electronic health record data using McNemar's test. We calculated percent agreement and Cohen's kappa, with 95% confidence intervals (CI), for the concordance of patient-reported race and ethnicity with electronic health record data. RESULTS: Of 744 ED patients, 731 participants who completed the survey reported their ethnicity, resulting in 98.2% of electronic health records obtained ethnicities matched self-reported data (kappa = 0.95; 95% CI: 0.92 to 0.98). For those who self-reported as Hispanic, only 92.3% agreement was observed between the self-reported and electronic health record values. For all patients who had race recorded, 85.4% agreement was observed (kappa = 0.75; 95% CI 0.71 to 0.79). High rates of agreement were observed for Black or African American patients (98.7%) and White patients (96.6%), with low rates for those who identified as "More than one race" (22.9%) or "Other" race (1.8%). In the subset of Hispanic patients, low rates of agreement (25.0%) were observed for race (kappa = 0.10; 95% CI 0.01 to 0.19). CONCLUSIONS: Documentation discordance regarding race and ethnicity exists between electronic health records and self-reported data for our ED patients, particularly for ethnically Hispanic and Latino/a patients. Future efforts should focus on ensuring that demographic information in the electronic health record is accurately collected.

13.
Nature ; 560(7716): 128-132, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29995851

RESUMEN

Hedgehog (HH) signalling governs embryogenesis and adult tissue homeostasis in mammals and other multicellular organisms1-3. Whereas deficient HH signalling leads to birth defects, unrestrained HH signalling is implicated in human cancers2,4-6. N-terminally palmitoylated HH releases the repression of Patched to the oncoprotein smoothened (SMO); however, the mechanism by which HH recognizes Patched is unclear. Here we report cryo-electron microscopy structures of human patched 1 (PTCH1) alone and in complex with the N-terminal domain of 'native' sonic hedgehog (native SHH-N has both a C-terminal cholesterol and an N-terminal fatty-acid modification), at resolutions of 3.5 Å and 3.8 Å, respectively. The structure of PTCH1 has internal two-fold pseudosymmetry in the transmembrane core, which features a sterol-sensing domain and two homologous extracellular domains, resembling the architecture of Niemann-Pick C1 (NPC1) protein7. The palmitoylated N terminus of SHH-N inserts into a cavity between the extracellular domains of PTCH1 and dominates the PTCH1-SHH-N interface, which is distinct from that reported for SHH-N co-receptors8. Our biochemical assays show that SHH-N may use another interface, one that is required for its co-receptor binding, to recruit PTCH1 in the absence of a covalently attached palmitate. Our work provides atomic insights into the recognition of the N-terminal domain of HH (HH-N) by PTCH1, offers a structural basis for cooperative binding of HH-N to various receptors and serves as a molecular framework for HH signalling and its malfunction in disease.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Hedgehog/química , Proteínas Hedgehog/ultraestructura , Lipoilación , Ácido Palmítico/metabolismo , Receptor Patched-1/química , Receptor Patched-1/ultraestructura , Sitios de Unión , Colesterol/metabolismo , Ácidos Grasos/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Ligandos , Modelos Moleculares , Dominios Proteicos
14.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34404721

RESUMEN

The ABCG1 homodimer (G1) and ABCG5-ABCG8 heterodimer (G5G8), two members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter G family, are required for maintenance of cellular cholesterol levels. G5G8 mediates secretion of neutral sterols into bile and the gut lumen, whereas G1 transports cholesterol from macrophages to high-density lipoproteins (HDLs). The mechanisms used by G5G8 and G1 to recognize and export sterols remain unclear. Here, we report cryoelectron microscopy (cryo-EM) structures of human G5G8 in sterol-bound and human G1 in cholesterol- and ATP-bound states. Both transporters have a sterol-binding site that is accessible from the cytosolic leaflet. A second site is present midway through the transmembrane domains of G5G8. The Walker A motif of G8 adopts a unique conformation that accounts for the marked asymmetry in ATPase activities between the two nucleotide-binding sites of G5G8. These structures, along with functional validation studies, provide a mechanistic framework for understanding cholesterol efflux via ABC transporters.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/metabolismo , Adenosina Trifosfato/metabolismo , Colesterol/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/química , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/genética , Sitios de Unión , Transporte Biológico , Microscopía por Crioelectrón , Humanos , Conformación Proteica
15.
Opt Lett ; 48(20): 5213-5216, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37831830

RESUMEN

In this Letter, we report the application of planar liquid crystal (LC) devices in axial focus shaping, proving that LC diffractive optical elements (DOEs) can achieve continuous adjustment of a symmetrical axial light field by changing the ellipticity of the incident light and can flexibly and quickly achieve various axial light field designs through an axial iterative Fourier transform algorithm. The LC DOE achieves a quasi-continuous phase and an extremely high transmittance (98.6% at 1030 nm), which makes the focusing efficiency of the LC DOE with two segments of uniform focal depths as high as 84%. The experimental results demonstrate the accurate optical field shaping effect and the axial intensity adjustable ability of LC DOE, indicating potential applications in optical tomography and precision manufacturing, among others.

16.
Analyst ; 148(4): 735-741, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36533656

RESUMEN

Herein, a smartphone-based portable reader with integrated optics for standard microtiter plates (96 wells) has been designed and demonstrated for high-throughput quantitation of validated biomarkers in serum. The customized optical attachment was simply constructed with a convex lens and a light source, by which the transmitted light through a 96-well microtiter plate was converged for imaging with a smartphone, so that accurate and wide-range reading of the plate can be achieved. More importantly, relying on the digitized colorimetric analysis of the obtained images, concentrations of various biomarkers can be determined directly using the customized mobile app. A set of validated biomarkers for inflammation and infection, C-reactive protein (CRP), serum amyloid A (SAA), and procalcitonin (PCT) have been quantitated with this new system; both the response ranges and limits of detection meet the requirement of clinical tests. The consistency with the results obtained using a commercial microplate reader proves its reliability and precision, augments its potential as a point-of-care diagnostic device for on-site testing or resource-limited settings.


Asunto(s)
Aplicaciones Móviles , Teléfono Inteligente , Reproducibilidad de los Resultados , Colorimetría/métodos , Sistemas de Atención de Punto
17.
Nature ; 550(7676): 366-370, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29019983

RESUMEN

Transient receptor potential mucolipin 1 (TRPML1) is a Ca2+-releasing cation channel that mediates the calcium signalling and homeostasis of lysosomes. Mutations in TRPML1 lead to mucolipidosis type IV, a severe lysosomal storage disorder. Here we report two electron cryo-microscopy structures of full-length human TRPML1: a 3.72-Å apo structure at pH 7.0 in the closed state, and a 3.49-Å agonist-bound structure at pH 6.0 in an open state. Several aromatic and hydrophobic residues in pore helix 1, helices S5 and S6, and helix S6 of a neighbouring subunit, form a hydrophobic cavity to house the agonist, suggesting a distinct agonist-binding site from that found in TRPV1, a TRP channel from a different subfamily. The opening of TRPML1 is associated with distinct dilations of its lower gate together with a slight structural movement of pore helix 1. Our work reveals the regulatory mechanism of TRPML channels, facilitates better understanding of TRP channel activation, and provides insights into the molecular basis of mucolipidosis type IV pathogenesis.


Asunto(s)
Microscopía por Crioelectrón , Canales de Potencial de Receptor Transitorio/química , Canales de Potencial de Receptor Transitorio/ultraestructura , Apoproteínas/química , Apoproteínas/ultraestructura , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Mucolipidosis/metabolismo , Conformación Proteica , Canales de Potencial de Receptor Transitorio/agonistas
18.
BMC Ophthalmol ; 23(1): 149, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041488

RESUMEN

BACKGROUND: To explore the efficacy and safety of laser peripheral iridoplasty (LPIp) with different energy levels and locations in the treatment of primary angle closure disease (PACD) assessed by swept-source anterior segment optical coherence tomography (AS-OCT). METHODS: We enrolled patients with PACD following best-corrected visual acuity (BCVA), intraocular pressure (IOP), anterior chamber gonioscopy, ultrasound biomicroscopy(UBM), optic disc OCT, and visual field examinations. After Pentacam and AS-OCT measurements, the patients were randomly divided into four treatment groups for LPIp with two different energy levels (high vs. low energy) and two locations (far from the periphery vs. near the periphery) and combined with laser peripheral iridotomy. BCVA, IOP, pupil diameter, central anterior chamber depth, anterior chamber volume, anterior opening distance (AOD)500, AOD750, trabecular iris angle (TIA)500, and TIA750 in four quadrants before and after laser treatment were compared. RESULTS: We followed up 32 patients (64 eyes; average age, 61.80 ± 9.79 years; 8 patients/16 eyes per group) for up to 2 years. The IOP of all enrolled patients was decreased after surgery compared to that before (t = 3.297, P = 0.002), the volume of the anterior chamber was increased (t=-2.047, P = 0.047), and AOD500, AOD750, TIA500, and TIA750 were increased (all P < 0.05). Within-group comparisons showed that BCVA in the low-energy/far-periphery group was improved after surgery (P < 0.05). After surgery, the IOP was decreased in the two high-energy groups, whereas the volume of the anterior chamber, AOD500, AOD750, TIA500, and TIA750 were increased in all groups (all P < 0.05). However, when comparing every two groups, the high-energy/far-periphery group showed a stronger effect on pupil dilation than the low-energy/near-periphery group (P = 0.045). The anterior chamber volume in the high-energy/near-periphery group was larger than that in the high-energy/far-periphery group (P = 0.038). The change in TIA500 was for 6 points smaller in the low-energy/near-periphery group than in the low-energy/far-periphery group (P = 0.038). Other parameters showed no significant group differences. CONCLUSION: LPIp combined with iridotomy can effectively reduce IOP, increase anterior chamber volume, increase chamber angle opening distance, and widen the trabecular iris angle. Intraoperatively, high-energy laser spots positioned one spot diameter from the scleral spur can obtain the best effect and safety. Swept-source AS-OCT can safely and effectively quantify the anterior chamber angle.


Asunto(s)
Glaucoma de Ángulo Cerrado , Tomografía de Coherencia Óptica , Humanos , Persona de Mediana Edad , Anciano , Tomografía de Coherencia Óptica/métodos , Iridectomía/métodos , Glaucoma de Ángulo Cerrado/cirugía , Iris/cirugía , Rayos Láser
19.
Exp Parasitol ; 248: 108504, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36914063

RESUMEN

Schistosomiasis is an important zoonotic disease affecting up to 40 kinds of animals and is responsible for ∼250 million human cases per year. Due to the extensive use of praziquantel for the treatment of parasitic diseases, drug resistance has been reported. Consequently, novel drugs and effective vaccines are urgently needed for sustained control of schistosomiasis. Targeting reproductive development of Schistosoma japonicum could contribute to the control of schistosomiasis. In this study, five highly expressed proteins (S. japonicum large subunit ribosomal protein L7e, S. japonicum glutathione S-transferase class-mu 26 kDa isozyme, S. japonicum UDP-galactose-4-epimerase and two hypothetical proteins SjCAX70849 and SjCAX72486) in 18, 21, 23, and 25-day mature female worms compared to single-sex infected female worms were selected based on our previous proteomic analysis. Quantitative real-time polymerase chain reaction analysis and long-term interference with small interfering RNA were performed to identify the biological functions of these five proteins. The transcriptional profiles suggested that all five proteins participated in the maturation of S. japonicum. RNA interference against these proteins resulted in morphological changes to S. japonicum. The results of an immunoprotection assay revealed that immunization of mice with recombinant SjUL-30 and SjCAX72486 upregulated production of immunoglobulin G-specific antibodies. Collectively, the results demonstrated that these five differentially expressed proteins were vital to reproduction of S. japonicum and, thus, are potential candidate antigens for immune protection against schistosomiasis.


Asunto(s)
Schistosoma japonicum , Esquistosomiasis Japónica , Esquistosomiasis , Minorías Sexuales y de Género , Femenino , Humanos , Animales , Ratones , Proteómica , Praziquantel/farmacología
20.
Handb Exp Pharmacol ; 278: 181-198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35879577

RESUMEN

This chapter explores the existing structural and functional studies on the endo-lysosomal channel TRPML1 and its analogs TRPML2, TRPML3. These channels represent the mucolipin subfamily of the TRP channel superfamily comprising important roles in sensory physiology, ion homeostasis, and signal transduction. Since 2016, numerous structures have been determined for all three members using either cryo-EM or X-ray crystallography. These studies along with recent functional analysis have considerably strengthened our knowledge on TRPML channels and its related endo-lysosomal function. This chapter, together with relevant reports in other chapters from this handbook, provides an informative and detailed tool to study the endo-lysosomal cation channels.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Humanos , Lisosomas/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA