RESUMEN
Circular RNAs (circRNAs) are involved in various biological roles, including viral infection and antiviral immune responses. To identify influenza A virus (IAV) infection-related circRNAs, we compared the circRNA profiles of A549 cells upon IAV infection. We found that circVAMP3 is substantially upregulated after IAV infection or interferon (IFN) stimulation. Furthermore, IAV and IFN-ß induced the expression of QKI-5, which promoted the biogenesis of circVAMP3. Overexpression of circVAMP3 inhibited IAV replication, while circVAMP3 knockdown promoted viral replication, suggesting that circVAMP3 restricts IAV replication. We verified the effect of circVAMP3 on viral infection in mice and found that circVAMP3 restricted IAV replication and pathogenesis in vivo. We also found that circVAMP3 functions as a decoy to the viral proteins nucleoprotein (NP) and nonstructural protein 1 (NS1). Mechanistically, circVAMP3 interfered with viral ribonucleoprotein complex activity by reducing the interaction of NP with polymerase basic 1, polymerase basic 2, or vRNA and restored the activation of IFN-ß by alleviating the inhibitory effect of NS1 to RIG-I or TRIM25. Our study provides new insights into the roles of circRNAs, both in directly inhibiting virus replication and in restoring innate immunity against IAV infection.
Asunto(s)
Gripe Humana , ARN Circular , Proteína 3 de Membrana Asociada a Vesículas , Animales , Humanos , Ratones , Gripe Humana/genética , Interferones , Nucleoproteínas , Nucleotidiltransferasas , ARN Circular/genética , Proteína 3 de Membrana Asociada a Vesículas/genéticaRESUMEN
BACKGROUND: Stem cell therapy is a promising therapeutic strategy. In a previous study, we evaluated tumorigenicity by the stereotactic transplantation of neural stem cells (NSCs) and embryonic stem cells (ESCs) from experimental mice. Twenty-eight days later, there was no evidence of tumor formation or long-term engraftment in the NSCs transplantation group. In contrast, the transplantation of ESCs caused tumor formation; this was due to their high proliferative capacity. Based on transcriptome sequencing, we found that a long intergenic non-coding RNA (named linc-NSC) with unknown structure and function was expressed at 1100-fold higher levels in NSCs than in ESCs. This finding suggested that linc-NSC is negatively correlated with stem cell pluripotency and tumor development, but positively correlated with neurogenesis. In the present study, we investigated the specific role of linc-NSC in NSCs/ESCs in tumor formation and neurogenesis. METHODS: Whole transcriptome profiling by RNA sequencing and bioinformatics was used to predict lncRNAs that are widely associated with enhanced tumorigenicity. The expression of linc-NSC was assessed by quantitative real-time PCR. We also performed a number of in vitro methods, including cell proliferation assays, differentiation assays, immunofluorescence assays, flow cytometry, along with in vivo survival and immunofluorescence assays to investigate the impacts of linc-NSC on tumor formation and neurogenesis in NSCs and ESCs. RESULTS: Following the knockdown of linc-NSC in NSCs, NSCs cultured in vitro and those transplanted into the cortex of mice showed stronger survival ability (P < 0.0001), enhanced proliferation(P < 0.001), and reduced apoptosis (P < 0.05); the opposite results were observed when linc-NSC was overexpressed in ESCs. Furthermore, the overexpression of linc-NSC in ECSs induced enhanced apoptosis (P < 0.001) and differentiation (P < 0.01), inhibited tumorigenesis (P < 0.05) in vivo, and led to a reduction in tumor weight (P < 0.0001). CONCLUSIONS: Our analyses demonstrated that linc-NSC, a promising gene-edited target, may promote the differentiation of mouse NSCs and inhibit tumorigenesis in mouse ESCs. The knockdown of linc-NSC inhibited the apoptosis in NSCs both in vitro and in vivo, and prevented tumor formation, revealing a new dimension into the effect of lncRNA on low survival NSCs and providing a prospective gene manipulation target prior to transplantation. In parallel, the overexpression of linc-NSC induced apoptosis in ESCs both in vitro and in vivo and attenuated the tumorigenicity of ESCs in vivo, but did not completely prevent tumor formation.
Asunto(s)
Células Madre Embrionarias , Células-Madre Neurales , Animales , Ratones , Estudios Prospectivos , Diferenciación Celular/genética , Carcinogénesis/genética , Transformación Celular Neoplásica , Apoptosis/genética , Proliferación Celular/genéticaRESUMEN
The solubility of thiamine nitrate in {(methanol, acetone, isopropanol) + water} solvents will provide essential support for crystallization design and further theoretical studies. In this study, the solubility was experimentally measured over temperatures ranging from 278.15 to 313.15 K under atmospheric pressure using a dynamic method. The solubility increased with increasing temperature at a constant solvent composition. The dissolving capacity of thiamine nitrate in the three binary solvent mixtures at constant temperature in the low ratio of water ranked as water + methanol > water + acetone > water + isopropanol generally. Interestingly, in the high ratio of water systems, especially when the molar concentration of water was greater than 0.6, the dissolving capacity ranked as water + acetone > water + methanol > water + isopropanol. Additionally, the modified Apelblat equation, λh equation, van't Hoff equation and NRTL model were used to correlate the solubility data in binary mixtures. It turned out that all the selected thermodynamic models could give satisfactory results. Furthermore, the thermodynamic properties of the dissolution process of thiamine nitrate were also calculated based on the modified van't Hoff equation. The results indicate that the dissolution process of the thiamine nitrate in the selected solvents is all endothermic.
Asunto(s)
Metanol , Nitratos , Solventes/química , Metanol/química , Solubilidad , 2-Propanol/química , Acetona , Tiamina , Termodinámica , Agua/química , TemperaturaRESUMEN
The inkjet technique has the capability of generating droplets in the picoliter volume range, firing thousands of times in a few seconds and printing in the noncontact manner. Since its emergence, inkjet technology has been widely utilized in the publishing industry for printing of text and pictures. As the technology developed, its applications have been expanded from two-dimensional (2D) to three-dimensional (3D) and even used to fabricate components of electronic devices. At the end of the twentieth century, researchers were aware of the potential value of this technology in life sciences and tissue engineering because its picoliter-level printing unit is suitable for depositing biological components. Currently inkjet technology has been becoming a practical tool in modern medicine serving for drug development, scaffold building, and cell depositing. In this article, we first review the history, principles and different methods of developing this technology. Next, we focus on the recent achievements of inkjet printing in the biological field. Inkjet bioprinting of generic biomaterials, biomacromolecules, DNAs, and cells and their major applications are introduced in order of increasing complexity. The current limitations/challenges and corresponding solutions of this technology are also discussed. A new concept, biopixels, is put forward with a combination of the key characteristics of inkjet printing and basic biological units to bring a comprehensive view on inkjet-based bioprinting. Finally, a roadmap of the entire 3D bioprinting is depicted at the end of this review article, clearly demonstrating the past, present, and future of 3D bioprinting and our current progress in this field.
Asunto(s)
Materiales Biocompatibles/química , Bioimpresión , Impresión Tridimensional , Ingeniería de Tejidos , HumanosRESUMEN
Previously, we identified a set of long noncoding RNAs (lncRNAs) that were differentially expressed in influenza A virus (IAV)-infected cells. In this study, we focused on lnc-MxA, which is upregulated during IAV infection. We found that the overexpression of lnc-MxA facilitates the replication of IAV, while the knockdown of lnc-MxA inhibits viral replication. Further studies demonstrated that lnc-MxA is an interferon-stimulated gene. However, lnc-MxA inhibits the Sendai virus (SeV)- and IAV-induced activation of beta interferon (IFN-ß). A luciferase assay indicated that lnc-MxA inhibits the activation of the IFN-ß reporter upon stimulation with RIG-I, MAVS, TBK1, or active IRF3 (IRF3-5D). These data indicated that lnc-MxA negatively regulates the RIG-I-mediated antiviral immune response. A chromatin immunoprecipitation (ChIP) assay showed that the enrichment of IRF3 and p65 at the IFN-ß promoter in lnc-MxA-overexpressing cells was significantly lower than that in control cells, indicating that lnc-MxA interfered with the binding of IRF3 and p65 to the IFN-ß promoter. Chromatin isolation by RNA purification (ChIRP), triplex pulldown, and biolayer interferometry assays indicated that lnc-MxA can bind to the IFN-ß promoter. Furthermore, an electrophoretic mobility shift assay (EMSA) showed that lnc-MxA can form complexes with the IFN-ß promoter fragment. These results demonstrated that lnc-MxA can form a triplex with the IFN-ß promoter to interfere with the activation of IFN-ß transcription. Using a vesicular stomatitis virus (VSV) infection assay, we confirmed that lnc-MxA can repress the RIG-I-like receptor (RLR)-mediated antiviral immune response and influence the antiviral status of cells. In conclusion, we revealed that lnc-MxA is an interferon-stimulated gene (ISG) that negatively regulates the transcription of IFN-ß by forming an RNA-DNA triplex.IMPORTANCE IAV can be recognized as a nonself molecular pattern by host immune systems and can cause immune responses. However, the intense immune response induced by influenza virus, known as a "cytokine storm," can also cause widespread tissue damage (X. Z. J. Guo and P. G. Thomas, Semin Immunopathol 39:541-550, 2017, https://doi.org/10.1007/s00281-017-0636-y; S. Yokota, Nihon Rinsho 61:1953-1958, 2003; I. A. Clark, Immunol Cell Biol 85:271-273, 2007). Meanwhile, the detailed mechanisms involved in the balancing of immune responses in host cells are not well understood. Our studies reveal that, as an IFN-inducible gene, lnc-MxA functions as a negative regulator of the antiviral immune response. We uncovered the mechanism by which lnc-MxA inhibits the activation of IFN-ß transcription. Our findings demonstrate that, as an ISG, lnc-MxA plays an important role in the negative-feedback loop involved in maintaining immune homeostasis.
Asunto(s)
Interferón beta/genética , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Transcripción Genética , Células A549 , Sitios de Unión , Expresión Génica , Células HEK293 , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Proteínas de Resistencia a Mixovirus/genética , ARN Largo no Codificante/genética , Factor de Transcripción ReIA/metabolismo , Virosis/inmunología , Virosis/virología , Replicación Viral , Virus/clasificación , Virus/inmunologíaRESUMEN
The aim of this study was to investigate the effect of three-dimensional (3D) bio-printed constructs consisting of human umbilical-derived mesenchymal stem cells (HUMSCs) on cell viability, proliferation and differentiation in vitro. Functional 3D bio-printed microspheres consisting of HUMSCs were constructed using electrostatic inkjet technique. The parameters used for the synthesis of 3D bio-printed tissue constructs were first optimized. The viability, proliferation and differentiation of 3D cultured HUMSCs were assessed. The results of scanning electron microscopy (SEM) showed that isolated HUMSCs exhibited fibroblast-like spindle adherent growth. The optimized printing parameters were 6 kV voltage, 10 mL/h flow, 15 cm receiving height, and alginate: water ratio of 1:1 mixed at 37 °C. Compared with 2D cultured HUMSCs, the 3D cultured HUMSCs have better viability, proliferation and differentiation ability. The results obtained in this study indicate that 3D bio-printed tissue constructs promote HUMSC viability, proliferation, and neural differentiation in vitro.
Asunto(s)
Bioimpresión , Diferenciación Celular , Células Madre Mesenquimatosas/citología , Impresión Tridimensional , Cordón Umbilical/citología , Proliferación Celular , Forma de la Célula , Supervivencia Celular , Células Cultivadas , Galactosilceramidasa/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Inmunofenotipificación , Células Madre Mesenquimatosas/ultraestructura , Proteínas Asociadas a Microtúbulos/metabolismoRESUMEN
Long noncoding RNAs (lncRNAs) are involved in many aspects of cellular processes, including the antiviral immune response. To identify influenza A virus (IAV)-related lncRNAs, we performed RNA deep sequencing to compare the profiles of lncRNAs in A549 and HEK293T cells with or without IAV infection. We identified an IAV-upregulated lncRNA named lnc-ISG20 because it shares most of its sequence with ISG20. We found that lnc-ISG20 is an interferon-stimulated gene similar to ISG20. Overexpression of lnc-ISG20 inhibited IAV replication, while lnc-ISG20 knockdown favored viral replication, suggesting that lnc-ISG20 is inhibitory to IAV replication. Further study indicated that overexpression of lnc-ISG20 enhances ISG20 protein levels, while knockdown of lnc-ISG20 reduces ISG20 protein levels in A549 cells induced with poly(I·C) and Sendai virus. We demonstrated that lnc-ISG20 inhibits IAV replication in an ISG20-dependent manner. As lnc-ISG20 did not affect the mRNA level of ISG20, we postulated that lnc-ISG20 may function as endogenous RNA competing with ISG20 to enhance its translation. Indeed, we identified that microRNA 326 (miR-326) is a mutual microRNA for both ISG20 and lnc-ISG20 that targets the 3' untranslated region of ISG20 mRNA to inhibit its translation. We confirmed that lnc-ISG20 can bind miR-326, which in turn decreased the amount of miR-326 bound to ISG20 mRNA. In conclusion, we identified that the IAV-upregulated lnc-ISG20 is a novel interferon-stimulated gene that elicits its inhibitory effect on IAV replication by enhancing ISG20 expression. We demonstrated that lnc-ISG20 functions as a competitive endogenous RNA to bind miR-326 to reduce its inhibition of ISG20 translation. Our results revealed the mechanism by which lnc-ISG20 inhibits IAV replication.IMPORTANCE The replication of influenza A virus is regulated by host factors. However, the mechanisms by which lncRNAs regulate IAV infection are not well understood. We identified that lnc-ISG20 is upregulated during IAV infection and is also an interferon-stimulated gene. We demonstrated that lnc-ISG20 can enhance ISG20 expression, which in turn inhibits IAV replication. Our studies indicate that lnc-ISG20 functions as a competing endogenous RNA that binds miR-326 and reduces its inhibitory effect on ISG20. Taken together, our findings reveal the mechanistic details of lnc-ISG20 negatively regulating IAV replication. These findings indicate that lnc-ISG20 plays an important role during the host antiviral immune response.
Asunto(s)
Exonucleasas/biosíntesis , Expresión Génica , Virus de la Influenza A/inmunología , Virus de la Influenza A/fisiología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Replicación Viral , Células A549 , Exorribonucleasas , Células HEK293 , HumanosRESUMEN
Recent studies have indicated that a number of long noncoding RNAs (lncRNAs) are dysregulated in hepatocellular carcinoma, while their aberrant expressions are associated with tumorigenesis and poor prognosis. To identify hepatitis B virus (HBV)-related lncRNAs, we used RNA deep sequencing to quantify the abundances of lncRNAs in HepG2 cells and HBV transgenic HepG2-4D14 cells. Here, we demonstrate that lnc-HUR1 is significantly upregulated in HepG2-4D14 cells. We found that HBV-encoded hepatitis B x protein can enhance the transcription of lnc-HUR1. Overexpression of lnc-HUR1 promotes cell proliferation, whereas knockdown of lnc-HUR1 inhibits cell growth. We identified that lnc-HUR1 can interact with p53 and inhibit its transcriptional regulation on downstream genes, such as p21 and B cell lymphoma 2-associated X protein. We generated lnc-HUR1 transgenic mice and performed the partial hepatectomy (PHx) to examine liver regeneration. The data showed that the ratio of liver weight to body weight in lnc-HUR1 transgenic mice is higher than that in wild-type (WT) littermates at day 2 and day 3 following hepatectomy. Consistently, the results of bromodeoxyuridine staining on liver sections following hepatectomy indicate that the ratio of bromodeoxyuridine-positive cells in lnc-HUR1 transgenic mice is significantly higher than that in WT mice, suggesting that lnc-HUR1 promotes cell proliferation during liver regeneration. Next, we performed the experiment of diethylnitrosamine-induced tumorigenesis. The data demonstrate that tumor number in lnc-HUR1 transgenic mice is higher compared with control mice, indicating that lnc-HUR1 enhances diethylnitrosamine-induced tumorigenesis. Conclusion: We reveal that HBV-upregulated lnc-HUR1 promotes cell proliferation and tumorigenesis by interacting with p53 to block downstream gene transcription. Our findings suggest that lnc-HUR1 plays an important role in HBV-related hepatocellular carcinoma development and may serve as a therapeutic marker for hepatocellular carcinoma. (Hepatology 2018; 00:000-000).
Asunto(s)
Carcinogénesis , Hepatitis B/metabolismo , ARN Largo no Codificante/metabolismo , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinoma Hepatocelular/virología , Proliferación Celular , Femenino , Regulación de la Expresión Génica , Células HEK293 , Células Hep G2 , Virus de la Hepatitis B/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias Hepáticas Experimentales/virología , Regeneración Hepática , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Proteínas Reguladoras y Accesorias ViralesRESUMEN
Polyampholyte hydrogels (PAHs) constitute a class of physical gels with cross-linking originating from inter- and intrachain ionic cross-linking between countercharged functional groups. In our previous report, we have shown that PAH has the potential to be a gel electrolyte in electrochemical energy storage devices. In this work, we further our understanding of charge-balanced PAH as a host material for gel electrolytes by studying the effect of dialysis on the mechanical properties and ionic conductivities of PAHs, whereas these properties are compared with those of poly(vinyl alcohol) (PVA)-based gel electrolytes. Here, various electrolyte solutions were investigated as dialyzing agents. The ionic species in the electrolytes form ion pairs with countercharged functional groups in PAH, whereas such interactions govern the ionic conductivity and mechanical strength of PAH in various electrolytes. For anions, the trend in ionic interactions follows the Hofmeister series in an exact manner, whereas some anomaly is observed among cations. We anticipate that our study provides a design criterion for fabricating gel electrolytes. In a broader context, this work can shed light on understanding the behavior of PAHs in various operational environments, such as under physiological conditions and in antifouling coatings for biomedical and maritime applications, respectively.
RESUMEN
Three-dimensional (3D) bioprinting has become a flexible tool in regenerative medicine with potential for various applications. Further development of the new 3D bioprinting field lies in suitable bioink materials with satisfied printability, mechanical integrity, and biocompatibility. Natural polymers from marine resources have been attracting increasing attention in recent years, as they are biologically active and abundant when comparing to polymers from other resources. This review focuses on research and applications of marine biomaterials for 3D bioprinting. Special attention is paid to the mechanisms, material requirements, and applications of commonly used 3D bioprinting technologies based on marine-derived resources. Commonly used marine materials for 3D bioprinting including alginate, carrageenan, chitosan, hyaluronic acid, collagen, and gelatin are also discussed, especially in regards to their advantages and applications.
Asunto(s)
Organismos Acuáticos/química , Materiales Biocompatibles/química , Biopolímeros/química , Bioimpresión , Impresión Tridimensional , Gelatina/química , Humanos , Polisacáridos/química , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
Cancer stem cells (CSCs), being tumor-initiating with self-renewal capacity and heterogeneity, are most likely the cause of tumor resistance, reoccurrence and metastasis. To further investigate the role of CSCs in tumor biology, there is a need to develop an effective culture system to grow, maintain and enrich CSCs. Three-dimensional (3D) cell culture model has been widely used in tumor research and drug screening. Recently, researchers have begun to utilize 3D models to culture cancer cells for CSCs enrichment. In this study, glioma cell line was cultured with 3D porous chitosan (CS) scaffolds or chitosan-hyaluronic acid (CS-HA) scaffolds to explore the possibility of glioma stem cells (GSCs)-like cells enrichment, to study the morphology, gene expression, and in vivo tumorigenicity of 3D scaffolds cells, and to compare results to 2D controls. Results showed that glioma cells on both CS and CS-HA scaffolds could form tumor cell spheroids and increased the expression of GSCs biomarkers compared to conventional 2D monolayers. Furthermore, cells in CS-HA scaffolds had higher expression levels of epithelial-to-mesenchymal transition (EMT)-related gene. Specifically, the in vivo tumorigenicity capability of CS-HA scaffold cultured cells was greater than 2D cells or CS scaffold cultured cells. It is indicated that the chemical composition of scaffold plays an important role in the enrichment of CSCs. Our results suggest that CS-HA scaffolds have a better capability to enrich GSCs-like cells and can serve as a simple and effective way to cultivate and enrich CSCs in vitro to support the study of CSCs biology and development of novel anti-cancer therapies.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Glioma/patología , Células Madre Neoplásicas/patología , Esferoides Celulares/patología , Andamios del Tejido/química , Línea Celular Tumoral , Quitosano/farmacología , Transición Epitelial-Mesenquimal/genética , Matriz Extracelular , Humanos , Ácido Hialurónico/farmacología , Esferoides Celulares/químicaRESUMEN
Alternatively activated macrophages (AAMs) play essential roles in the promotion of tissue remodeling, vasculogenesis, and tumor progression; however, the detailed mechanisms underlying the activation of AAMs remain largely unknown. Here, by using quantitative proteomic analysis, we identified 62 proteins that were up-regulated in IL-4-induced macrophages. Among these, Caspase-6 was increased significantly. Caspase-6 is important in the apoptotic signaling pathway; however, its role in non-apoptosis is also reported. Here, we first examined the non-apoptotic role of Caspase-6 in the alternative activation of macrophages after administration of IL-4, 4T1 tumor conditional medium, or co-culture with 4T1 cells. Both treatments promoted alternative activation of RAW264.7 cells and primary macrophages, whereas disruption of caspase-6 expression and activity could markedly suppress the biomarker levels of AAMs. Overexpression of Caspase-6 could significantly promote the activation of AAMs. Importantly, we further present evidence that caspase-6 could regulate breast cancer cell invasion by modulating MMP-2 and MMP-9 expression in 4T1 tumor-associated macrophages, as ablation of protein levels or activity of caspase-6 suppressed tumor cell invasion in vitro In conclusion, the observed results markedly expanded our views of the dynamic changes in protein composition during alternative activation of macrophages, and they revealed a critical new role of caspase-6 in regulating this cellular biological process, which suggested that caspase-6 might be a key nod molecule to regulate immunological steady-state and be a therapeutic candidate for tumor immunotherapy.
Asunto(s)
Caspasa 6/inmunología , Regulación Enzimológica de la Expresión Génica/inmunología , Activación de Macrófagos , Macrófagos Peritoneales/inmunología , Animales , Femenino , Humanos , Interleucina-4/inmunología , Macrófagos Peritoneales/patología , Neoplasias Mamarias Animales/inmunología , Neoplasias Mamarias Animales/patología , Metaloproteinasa 2 de la Matriz/inmunología , Metaloproteinasa 9 de la Matriz/inmunología , Ratones , Células RAW 264.7RESUMEN
Poly(glycerol sebacate) (PGS) and its derivatives make up an attractive class of biomaterial owing to their tunable mechanical properties with programmable biodegradability. In practice, however, the application of PGS is often hampered by frequent inconsistency in reproducing process conditions. The inconsistency stems from the volatile nature of glycerol during the esterification process. In this study, we suggest that the degree of esterification (DE) can be used to predict precisely the physical status, the mechanical properties, and the degradation of the PGS materials. Young's modulus is shown to linearly increase with DE, which is in agreement with an entropic spring theory of rubbers. To provide a processing guideline for researchers, we also provide a physical status map as a function of curing temperature and time. The amount of glycerol loss, obtainable by monitoring the evolution of the total mass loss and the DE during synthesis, is shown to make the predictions even more precise. We expect that these strategies can be applicable to different categories of polymers that involve condensation polymerization with the volatility of the reactants. In addition, we demonstrate that microwave-assisted prepolymerization is a time- and energy-efficient pathway to obtain PGS. For example, 15 min of microwave time is shown to be as efficient as prepolymerization in nitrogen atmosphere for 6 h at 130 °C. The quick synthesis method, however, causes a severe evaporation of glycerol, resulting in a large distortion in the monomer ratio between glycerol and sebacic acid. Consequently, more rigid PGS is produced under a similar curing condition compared to the conventional prepolymerization method. Finally, we demonstrate that the addition of molecularly rigid cross-linking agents and network-structured inorganic nanoparticles are also effective in enhancing the mechanical properties of the PGS-derived materials.
Asunto(s)
Materiales Biocompatibles/síntesis química , Decanoatos/síntesis química , Glicerol/análogos & derivados , Polímeros/síntesis química , Materiales Biocompatibles/química , Plásticos Biodegradables/síntesis química , Plásticos Biodegradables/química , Decanoatos/química , Glicerol/síntesis química , Glicerol/química , Ensayo de Materiales , Fenómenos Mecánicos , Polímeros/química , Resistencia a la TracciónRESUMEN
Reconstruction of sufficient buccal peri-implant keratinised mucosa width (PIKM-W) is reported to reduce the symptoms of peri-implantitis. In order to reduce the drawbacks of autogenous graft harvesting, we investigated a novel porcine dermal matrix (XDM, mucoderm®) using a modified surgical technique for augmentation of PIKM-W. Twenty-four patients were recruited with insufficient (<2 mm) PIKM-W. After split thickness flap preparation, the XDM was trimmed, rehydrated and tightly attached to the recipient periosteal bed using modified internal/external horizontal periosteal mattress sutures via secondary wound healing. Change of the PIKM-W and dimension of the graft remodelling were evaluated at 6 and 12 months postoperatively. The mean PIKM-W changed from 0.42 ± 0.47 to 3.17 ± 1.21 mm at 6 M and to 2.36 ± 1.34 mm at 12 M in the maxilla and from 0.29 ± 0.45 mm to 1.58 ± 1.44 mm at 6 M and to 1.08 ± 1.07 mm at 12 M in the mandible. Graft dimensions decreased by 67.7 ± 11.8% and 81.6 ± 16.6% at 6 M, and continued to 75.9 ± 13.9% and 87.4 ± 12.3% at 12 M, in the maxilla and mandible, respectively. Clinical parameters showed statistically significant intra- and intergroup differences between the baseline and 6 and 12 months (p < 0.05). The present technique using the XDM was safe and successfully reconstructed PIKM-W in both arches. The XDM alone seems to be a suitable alternative to autograft for PIKM-W augmentation in the maxilla.
RESUMEN
Introduction: Elymus nutans holds ecological and pastoral significance due to its adaptability and nutritional value, the Qinghai-Tibet Plateau (QTP) is a key hub for its genetic diversity. To conserve and harness its genetic resources in highland ecosystems, a thorough assessment is vital. However, a comprehensive phylogeographic exploration of E. nutans is lacking. The objective of this study was to unravel the genetic diversity, adaptation, and phylogenetics of E. nutans populations. Methods: Encompassing 361 individuals across 35 populations, the species' genetic landscape and dynamic responses to diverse environments were decoded by using four chloroplast DNA (cpDNA) sequences and nine microsatellite markers derived from the transcriptome. Results and discussion: This study unveiled a notable degree of genetic diversity in E. nutans populations at nuclear (I = 0.46, He = 0.32) and plastid DNA levels (Hd = 0.805, π = 0.67). Analysis via AMOVA highlighted genetic variation predominantly within populations. Despite limited isolation by distance (IBD), the Mekong-Salween Divide (MSD) emerged as a significant factor influencing genetic differentiation and conserving diversity. Furthermore, correlations were established between external environmental factors and effective alleles of three EST-SSRs (EN5, EN57 and EN80), potentially linked to glutathione S-transferases T1 or hypothetical proteins, affecting adaptation. This study deepens the understanding of the intricate relationship between genetic diversity, adaptation, and environmental factors within E. nutans populations on the QTP. The findings shed light on the species' evolutionary responses to diverse ecological conditions and contribute to a broader comprehension of plant adaptation mechanisms.
RESUMEN
Tuberculosis (TB) remains one of the infectious diseases with high incidence and high mortality. About a quarter of the population has been latently infected with Mycobacterium tuberculosis. At present, the available TB treatment strategies have the disadvantages of too long treatment duration and serious adverse reactions. The sustained inflammatory response leads to permanent tissue damage. Unfortunately, the current selection of treatment regimens does not consider the immunomodulatory effects of various drugs. In this study, we preliminarily evaluated the effects of commonly used anti-tuberculosis drugs on innate immunity at the cellular level. The results showed that clofazimine (CFZ) has a significant innate immunosuppressive effect. CFZ significantly inhibited cytokines and type I interferons (IFNα and IFNß) expression under both lipopolysaccharide stimulation and CFZ-resistant strain infection. In further mechanistic studies, CFZ strongly inhibited the phosphorylation of nuclear factor kappa B (NF-κB) p65 and had no significant effect on the phosphorylation of p38. In conclusion, our study found that CFZ suppresses innate immunity against Mycobacterium tuberculosis by NF-κB, which should be considered in future regimen development. IMPORTANCE: The complete elimination of Mycobacterium tuberculosis (Mtb), the etiologic agent of TB, from TB patients is a complicated process that takes a long time. The excessive immune inflammatory response of the host for a long time causes irreversible organic damage to the lungs and liver. Current antibiotic-based treatment options involve multiple complex drug combinations, often targeting different physiological processes of Mtb. Given the high incidence of post-tuberculosis lung disease, we should also consider the immunomodulatory properties of other drugs when selecting drug combinations.
Asunto(s)
Clofazimina , Inmunidad Innata , Mycobacterium tuberculosis , FN-kappa B , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/inmunología , Clofazimina/farmacología , Inmunidad Innata/efectos de los fármacos , FN-kappa B/inmunología , FN-kappa B/metabolismo , Humanos , Antituberculosos/farmacología , Animales , Ratones , Citocinas/metabolismo , Tuberculosis/inmunología , Tuberculosis/microbiología , Tuberculosis/tratamiento farmacológico , Factor de Transcripción ReIA/metabolismoRESUMEN
Spinal cord injury (SCI) can cause permanent impairment to motor or sensory functions. Pre-cultured neural stem cell (NSC) hydrogel scaffolds have emerged as a promising approach to treat SCI by promoting anti-inflammatory effects, axon regrowth, and motor function restoration. Here, in this study, we performed a coaxial extrusion process to fabricate a core-shell hydrogel microfiber with high NSC density in the core portion. Oxidized hyaluronic acid, carboxymethyl chitosan, and matrigel blend were used as a matrix for NSC growth and to facilitate the fabrication process. During thein vitrodifferentiation culture, it was found that NSC microfibers could differentiate into neurons and astrocytes with higher efficiency compared to NSC cultured in petri dishes. Furthermore, duringin vivotransplantation, NSC microfibers were coated with polylactic acid nanosheets by electrospinning for reinforcement. The coated NSC nanofibers exhibited higher anti-inflammatory effect and lesion cavity filling rate compared with the control group. Meanwhile, more neuron- and oligodendrocyte-like cells were visualized at the lesion epicenter. Finally, axon regrowth across the whole lesion site was observed, demonstrating that the microfiber could guide renascent axon regrowth. Experiment results indicate that the NSC microfiber is a promising bioactive treatment for complete SCI treatment with superior outcomes.
Asunto(s)
Axones , Diferenciación Celular , Células-Madre Neurales , Neuronas , Traumatismos de la Médula Espinal , Andamios del Tejido , Animales , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Axones/efectos de los fármacos , Axones/fisiología , Axones/metabolismo , Diferenciación Celular/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Andamios del Tejido/química , Ratas Sprague-Dawley , Hidrogeles/química , Hidrogeles/farmacología , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Células Cultivadas , Regeneración Nerviosa/efectos de los fármacos , Nanofibras/química , Ratas , FemeninoRESUMEN
The recurrence of glioma after treatment has remained an intractable problem for many years. Recently, numerous studies have explored the pivotal role of the mouse double minute 2 (MDM2)/p53 pathway in cancer treatment. Lysine phosphate phosphohistidine inorganic pyrophosphate phosphatase (LHPP), a newly discovered tumor suppressor, has been confirmed in numerous studies on tumors, but its role in glioma remains poorly understood. Expression matrices in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases were analyzed using gene set enrichment analysis (GSEA), revealing significant alterations in the p53 pathway among glioma patients with high LHPP expression. The overexpression of LHPP in glioma cells resulted in a reduction in cell proliferation, migration, and invasive ability, as well as an increase in apoptosis and alterations to the cell cycle. The present study has identified a novel inhibitory mechanism of LHPP against glioma, both in vivo and in vitro. The results demonstrate that LHPP exerts anti-glioma effects via the MDM2/p53 pathway. These findings may offer a new perspective for the treatment of glioma in the clinic.
RESUMEN
Biopolymer microbeads present substantial benefits for cell expansion, tissue engineering, and drug release applications. However, a fabrication system capable of producing homogeneous microspheres with high precision and controllability for cell proliferation, passaging, harvesting and downstream application is limited. Therefore, we developed a co-flow microfluidics-based system for the generation of uniform and size-controllable gelatin-based microcarriers (GMs) for mesenchymal stromal cells (MSCs) expansion and tissue engineering. Our evaluation of GMs revealed superior homogeneity and efficiency of cellular attachment, expansion and harvest, and MSCs expanded on GMs exhibited high viability while retaining differentiation multipotency. Optimization of passaging and harvesting protocols was achieved through the addition of blank GMs and treatment with collagenase, respectively. Furthermore, we demonstrated that MSC-loaded GMs were printable and could serve as building blocks for tissue regeneration scaffolds. These results suggested that our platform held promise for the fabrication of uniform GMs with downstream application of MSC culture, expansion and tissue engineering.
RESUMEN
Purpose: Dry eye disease (DED) is a multifactorial disease that is associated with inflammation. Excessive DNA is present in the tear fluid of patients with DED. Absent in melanoma 2 (AIM2) is a key DNA sensor. This study aimed to investigate the role of AIM2 in the pathogenesis of DED. Methods: DED was induced by injection of scopolamine (SCOP). Aberrant DNA was detected by cell-free DNA (cfDNA) ELISA and immunostaining. Corneal epithelial defects were assessed by corneal fluorescein staining, zonula occludens-1 immunostaining and TUNEL. Tear production was analyzed by phenol red thread test. Lacrimal gland (LG) histology was evaluated by hematoxylin and eosin staining, and transmission electron microscopy examination. Macrophage infiltration in LG was detected by immunohistochemistry for the macrophage marker F4/80. Gene expression was analyzed by RT-qPCR. Protein production was examined by immunoblot analysis or ELISA. Results: Aim2-/- mice displayed a normal structure and function of LG and cornea under normal conditions. In SCOP-induced DED, wild type (WT) mice showed increased cfDNA in tear fluid, and aberrant accumulations of dsDNA accompanied by increased AIM2 expression in the LG. In SCOP-induced DED, WT mice displayed damaged structures of LG, reduced tear production, and severe corneal epithelium defects, whereas Aim2-/- mice had a better preserved LG structure, less decreased tear production, and improved clinical signs of dry eye. Furthermore, genetic deletion of Aim2 suppressed the increased infiltration of macrophages and inhibited N-GSDMD and IL18 production in the LG of SCOP-induced DED. Conclusions: Aim2 deficiency alleviates ocular surface damage and LG inflammation in SCOP-induced DED.