RESUMEN
As one of the most common iron-chelating agents, deferoxamine (DFO) rapidly chelates iron in the body. Moreover, it does not compete for the iron characteristic of hemoglobin in the blood cells, which is common in the clinical treatment of iron poisoning. Iron is a trace element necessary to maintain organism normal life activities. Iron deficiency can lead to anemia, whereas iron overload can cause elevated levels of cellular oxidative stress and cell damage. As a consequence, detection of the iron content in tissues and blood is of great significance. The traditional techniques for detecting the iron content include inductively coupled plasma-mass spectrometry and atomic absorption spectrometry, which cannot be used for imaging purposes. Laser ablation-ICP-MS and synchrotron radiation micro-X-ray fluorescence can map the concentration and distribution of iron in tissues. However, these methods can only be used to measure the total iron levels in blood or tissues. In recent years, due to the deepening understanding of iron metabolism, diseases related to iron overload have attracted increasing attention. Therefore, we took advantage of the properties of DFO in terms of chelating iron and investigated different sampling times following DFO injection in the tail vein of mice. We used mass spectrometry imaging (MSI) technology to detect the DFO and ferrioxamine content in the blood and different tissues to indirectly characterize the non-heme iron content.
Asunto(s)
Deferoxamina , Hierro , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Hierro/metabolismo , Hierro/análisis , Ratones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Inyecciones Intravenosas , Quelantes del Hierro , Masculino , Distribución TisularRESUMEN
BACKGROUD: New-onset atrial fibrillation (NOAF) is a common complication of sepsis and linked to higher death rates in affected patients. The lack of effective predictive tools hampers early risk assessment for the development of NOAF. This study aims to develop practical and effective predictive tools for identifying the risk of NOAF. METHODS: This case-control study retrospectively analyzed patients with sepsis admitted to the emergency department of Xinhua Hospital, Shanghai Jiao Tong University School of Medicine from September 2017 to January 2023. Based on electrocardiographic reports and electrocardiogram monitoring records, patients were categorized into NOAF and non-NOAF groups. Laboratory tests, including myeloperoxidase (MPO) and hypochlorous acid (HOCl), were collected, along with demographic data and comorbidities. Least absolute shrinkage and selection operator regression and multivariate logistic regression analyses were employed to identify predictors. The area under the curve (AUC) was used to evaluate the predictive model's performance in identifying NOAF. RESULTS: A total of 389 patients with sepsis were included in the study, of which 63 developed NOAF. MPO and HOCl levels were significantly higher in the NOAF group compared to the non-NOAF group. Multivariate logistic regression analysis identified MPO, HOCl, tumor necrosis factor-α (TNF-α), white blood cells (WBC), and the Acute Physiology and Chronic Health Evaluation II (APACHE II) score as independent risk factors for NOAF in sepsis. Additionally, a nomogram model developed using these independent risk factors achieved an AUC of 0.897. CONCLUSION: The combination of MPO and its derivative HOCl with clinical indicators improves the prediction of NOAF in sepsis. The nomogram model can serve as a practical predictive tool for the early identification of NOAF in patients with sepsis.
Asunto(s)
Fibrilación Atrial , Biomarcadores , Ácido Hipocloroso , Peroxidasa , Valor Predictivo de las Pruebas , Sepsis , Humanos , Peroxidasa/sangre , Masculino , Femenino , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/sangre , Estudios Retrospectivos , Sepsis/diagnóstico , Sepsis/sangre , Persona de Mediana Edad , Anciano , Biomarcadores/sangre , Medición de Riesgo , Factores de Riesgo , China/epidemiología , Pronóstico , Anciano de 80 o más Años , Estudios de Casos y ControlesRESUMEN
Four new lycoctonine-type C19-diterpenoid alkaloids kamaonensines H-K (1-4) have been isolated from the whole plants of Delphinium kamaonense, together with 12 known compounds (5-16). Interestingly, kamaonensines 1-3 contained a rare nitrone (immine N-oxide) moiety, respectively. Their structures were established by spectroscopic analyses. The active evaluation of compounds (1-16) by LPS induced RAW 264.7 macrophages showed that compounds 4 and 8 displayed strong anti-inflammatory activities. While compounds 11 and 12 also showed strong cytotoxicities by the RAW 264.7 cell viability assay.
RESUMEN
Pain elicits the desire for a reward to alleviate the unpleasant sensation. This may be a consequence of facilitated neural activities in the reward circuit. However, the temporal modulation of pain on reward processing remains unclear. We addressed this issue by recording electroencephalogram when participants received win or loss feedback in a simple gambling task. Pain treatment was conducted on 33 participants with topical capsaicin cream and on 33 participants with hand cream as a control. Results showed that pain generally increased the P300 amplitude for both types of feedback but did not affect feedback-related negativity (FRN). A significant interaction effect of treatment (painful, non-painful) and outcome (win, loss) was observed on delta oscillation as pain only enhanced the power of win feedback. In addition, the FRN and theta oscillation responded more to loss feedback, but this effect was unaffected by pain. These findings indicate that pain may enhance secondary value representation and evaluation processes of rewards, but does not influence primary distinction of reward or reward expectation. The temporal unfolding of how pain affects reward-related neural activities highlights the prominent impact of pain on high-level cognitive processes associated with reward.
Asunto(s)
Potenciales Evocados , Juego de Azar , Humanos , Electroencefalografía , Recompensa , Juego de Azar/psicología , Dolor , Retroalimentación PsicológicaRESUMEN
Four monoterpenoid indole alkaloid dimers (MIADs), axidimins A-D (1-4), which possesses unprecedented apidosperma-aspidosperma-type skeletons, along with twelve known MIAs were isolated from Melodinus axillaris. Their structures were established by comprehensive analysis of the HRESIMS, NMR, ECD calculation and DP4 + analysis. A possible biosynthetic pathway for axidimins A-D was proposed. In vitro, axidimins C and D exhibited significant cytotoxicities against HCT116 cells with IC50 values of 5.3 µM and 3.9 µM, respectively. The results obtained from flow cytometry and Western blot analysis clearly demonstrated that axidimins C and D significantly induced a reverse G2/M phase arrest and apoptosis of HCT116 cells. The potential mechanism of axidimins C and D on HCT116 cells were thoroughly discussed through the utilization of network pharmacology and molecular docking research. Subsequently, the selected targets were validated using Western blot and CETSA analysis, confirming that axidimins C and D exert its cytotoxic effects through the activation of the p38 MAPK pathway, ultimately leading to HCT116 cells death. This study provides evidence indicating that axidimins C and D have the potential to induce cell cycle arrest and apoptosis in HCT116 cells by modulating the p38 MAPK signaling pathway. These findings offer a novel perspective for the development of anti-colorectal cancer drugs.
Asunto(s)
Apocynaceae , Alcaloides de Triptamina Secologanina , Humanos , Células HCT116 , Simulación del Acoplamiento Molecular , Apoptosis , Puntos de Control del Ciclo Celular , Alcaloides Indólicos , Mitosis , Monoterpenos/farmacología , PolímerosRESUMEN
Homeostasis of cellular fluxes of inorganic phosphate (Pi) supervises its structural roles in bones and teeth, its pervasive regulation of cellular metabolism, and its functionalization of numerous organic compounds. Cellular Pi efflux is heavily reliant on Xenotropic and Polytropic Retrovirus Receptor 1 (XPR1), regulation of which is largely unknown. We demonstrate specificity of XPR1 regulation by a comparatively uncharacterized member of the inositol pyrophosphate (PP-InsP) signaling family: 1,5-bis-diphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8). XPR1-mediated Pi efflux was inhibited by reducing cellular InsP8 synthesis, either genetically (knockout [KO] of diphosphoinositol pentakisphosphate kinases [PPIP5Ks] that synthesize InsP8) or pharmacologically [cell treatment with 2.5 µM dietary flavonoid or 10 µM N2-(m-trifluorobenzyl), N6-(p-nitrobenzyl) purine], to inhibit inositol hexakisphosphate kinases upstream of PPIP5Ks. Attenuated Pi efflux from PPIP5K KO cells was quantitatively phenocopied by KO of XPR1 itself. Moreover, Pi efflux from PPIP5K KO cells was rescued by restoration of InsP8 levels through transfection of wild-type PPIP5K1; transfection of kinase-dead PPIP5K1 was ineffective. Pi efflux was also rescued in a dose-dependent manner by liposomal delivery of a metabolically resistant methylene bisphosphonate (PCP) analog of InsP8; PCP analogs of other PP-InsP signaling molecules were ineffective. High-affinity binding of InsP8 to the XPR1 N-terminus (Kd = 180 nM) was demonstrated by isothermal titration calorimetry. To derive a cellular biology perspective, we studied biomineralization in the Soas-2 osteosarcoma cell line. KO of PPIP5Ks or XPR1 strongly reduced Pi efflux and accelerated differentiation to the mineralization end point. We propose that catalytically compromising PPIP5K mutations might extend an epistatic repertoire for XPR1 dysregulation, with pathological consequences for bone maintenance and ectopic calcification.
Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Virales/metabolismo , Transporte Biológico , Células HEK293 , Humanos , Fosfatos/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Virales/genética , Transducción de Señal , Receptor de Retrovirus Xenotrópico y PolitrópicoRESUMEN
Regulation of enzymatic 5' decapping of messenger RNA (mRNA), which normally commits transcripts to their destruction, has the capacity to dynamically reshape the transcriptome. For example, protection from 5' decapping promotes accumulation of mRNAs into processing (P) bodies-membraneless, biomolecular condensates. Such compartmentalization of mRNAs temporarily removes them from the translatable pool; these repressed transcripts are stabilized and stored until P-body dissolution permits transcript reentry into the cytosol. Here, we describe regulation of mRNA stability and P-body dynamics by the inositol pyrophosphate signaling molecule 5-InsP7 (5-diphosphoinositol pentakisphosphate). First, we demonstrate 5-InsP7 inhibits decapping by recombinant NUDT3 (Nudix [nucleoside diphosphate linked moiety X]-type hydrolase 3) in vitro. Next, in intact HEK293 and HCT116 cells, we monitored the stability of a cadre of NUDT3 mRNA substrates following CRISPR-Cas9 knockout of PPIP5Ks (diphosphoinositol pentakisphosphate 5-kinases type 1 and 2, i.e., PPIP5K KO), which elevates cellular 5-InsP7 levels by two- to threefold (i.e., within the physiological rheostatic range). The PPIP5K KO cells exhibited elevated levels of NUDT3 mRNA substrates and increased P-body abundance. Pharmacological and genetic attenuation of 5-InsP7 synthesis in the KO background reverted both NUDT3 mRNA substrate levels and P-body counts to those of wild-type cells. Furthermore, liposomal delivery of a metabolically resistant 5-InsP7 analog into wild-type cells elevated levels of NUDT3 mRNA substrates and raised P-body abundance. In the context that cellular 5-InsP7 levels normally fluctuate in response to changes in the bioenergetic environment, regulation of mRNA structure by this inositol pyrophosphate represents an epitranscriptomic control process. The associated impact on P-body dynamics has relevance to regulation of stem cell differentiation, stress responses, and, potentially, amelioration of neurodegenerative diseases and aging.
Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Fosfatos de Inositol/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Ácido Anhídrido Hidrolasas/genética , Células HEK293 , Humanos , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Caperuzas de ARN/genética , Estabilidad del ARN , ARN Mensajero/genéticaRESUMEN
Through a phytochemical investigation of Abrus mollis Hance, a folk medicinal plant in China, we isolated and identified three undescribed compounds, including two flavonoids and one amides alkaloid, along with nine known from this plant. Their structures were elucidated by analyses of 1D, 2D NMR, HR-ESI-MS, ECD, and DP4+ analysis. Furthermore, we evaluated the hepatoprotective effects of all twelve compounds on D-GalN-induced Brl-3â A cells. According to the results, at a concentration of 25â µM, the cell survival rates were observed to be 71.92±0.34 %, 70.03±1.29 %, and 69.11±1.90 % for compound 2, 4, and 11, respectively. Further experimental studies showed that compound 2 (EC50 5.76±0.37â µM) showed more significant protective activity than the bicyclol.
Asunto(s)
Abrus , Alcaloides , Flavonoides/química , Extractos Vegetales/química , Abrus/química , Amidas/farmacología , Alcaloides/farmacologíaRESUMEN
In the investigation of Meehania fargesii, eighteen triterpenoids were isolated and identified, including a previously unknown compound with an 13,27-cycloursane skeleton, using techniques like 1D and 2D NMR, and HR-MS. Furthermore, the cytotoxicity of these compounds were evaluated against HCT116, MCF-7, and AGS cell lines using the CCK-8 method to examine their structure-activity relationship. Remarkably, compounds 13 and 16 exhibited higher cytotoxicity across all three cell lines compared to the positive drug. Western blot analysis revealed that these compounds activated apoptosis in HCT116 cells by promoting the Bax protein and inhibiting the Bcl-2 protein. This suggests that compounds 13 and 16 have potential as apoptosis-inducing agents in HCT116 cells.
RESUMEN
The response to UV irradiation is important for a cell to maintain its genetic integrity when challenged by environmental genotoxins. An immediate early response to UV irradiation is the rapid induction of activating transcription factor 3 (ATF3) expression. Although emerging evidence has linked ATF3 to stress pathways regulated by the tumor suppressor p53 and the histone acetyltransferase Tip60, the role of ATF3 in the UV response remains largely unclear. Here, we report that ATF3 mediated dichotomous UV responses. Although UV irradiation enhanced the binding of ATF3 to Tip60, knockdown of ATF3 expression decreased Tip60 stability, thereby impairing Tip60 induction by UV irradiation. In line with the role of Tip60 in mediating UV-induced apoptosis, ATF3 promoted the death of p53-defective cells in response to UV irradiation. However, ATF3 could also activate p53 and promote p53-mediated DNA repair, mainly through altering histone modifications that could facilitate recruitment of DNA repair proteins (such as DDB2) to damaged DNA sites. As a result, ATF3 rather protected the p53 wild-type cells from UV-induced apoptosis. Our results thus indicate that ATF3 regulates cell fates upon UV irradiation in a p53-dependent manner.
Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Apoptosis/efectos de la radiación , Reparación del ADN/efectos de la radiación , Histona Acetiltransferasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Rayos Ultravioleta/efectos adversos , Factor de Transcripción Activador 3/genética , Apoptosis/genética , Línea Celular Tumoral , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Estabilidad de Enzimas/genética , Estabilidad de Enzimas/efectos de la radiación , Técnicas de Silenciamiento del Gen , Histona Acetiltransferasas/genética , Humanos , Lisina Acetiltransferasa 5 , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Obesity has been associated with osteoarthritis (OA) due to increased mass and metabolic factors which are independent of the biomechanical contribution to joint load. Resveratrol, a natural polyphenolic compound, exerts protective effects on OA through its anti-inflammatory property. However, the mechanism of resveratrol on obesity-related OA is unclear. To investigate the effect and possible mechanism of oral resveratrol on obesity-related OA, we fed C57BL/6J mice with a high-fat diet (HFD) for 16 weeks to establish obesity-related OA model; then two doses (22.5 mg/kg and 45 mg/kg) of resveratrol were given by gavage for additional 12 weeks. Mice with HFD significantly increased body weights compared to the control mice, while resveratrol treatment did not cause obvious weight loss. Histological assessments showed that resveratrol at 45 mg/kg significantly improved OA symptoms. Levels of serum IL-1ß and leptin were decreased by resveratrol treatment and positively correlated with Mankin scores. Moreover, resveratrol significantly inhibited the expression of TLR4 and TRAF6 in cartilage. These results suggest that HFD induced obesity can lead to the occurrence of OA, and resveratrol may alleviate OA pathology by decreasing the levels of systematic inflammation and/or inhibiting TLR4 signaling pathway in cartilage. Thus, resveratrol might be a promising therapeutic treatment for obesity-related OA.
Asunto(s)
Osteoartritis/tratamiento farmacológico , Estilbenos/uso terapéutico , Administración Oral , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/uso terapéutico , Western Blotting , Dieta Alta en Grasa/efectos adversos , Ensayo de Inmunoadsorción Enzimática , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Osteoartritis/metabolismo , Resveratrol , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Estilbenos/administración & dosificaciónRESUMEN
BACKGROUND: Dysregulation of the common stress responsive transcription factor ATF3 has been causally linked to many important human diseases such as cancer, atherosclerosis, infections, and hypospadias. Although it is believed that the ATF3 transcription activity is central to its cellular functions, how ATF3 regulates gene expression remains largely unknown. Here, we employed ATF3 wild-type and knockout isogenic cell lines to carry out the first comprehensive analysis of global ATF3-binding profiles in the human genome under basal and stressed (DNA damage) conditions. RESULTS: Although expressed at a low basal level, ATF3 was found to bind a large number of genomic sites that are often associated with genes involved in cellular stress responses. Interestingly, ATF3 appears to bind a large portion of genomic sites distal to transcription start sites and enriched with p300 and H3K27ac. Global gene expression profiling analysis indicates that genes proximal to these genomic sites were often regulated by ATF3. While DNA damage elicited by camptothecin dramatically altered the ATF3 binding profile, most of the genes regulated by ATF3 upon DNA damage were pre-bound by ATF3 before the stress. Moreover, we demonstrated that ATF3 was co-localized with the major stress responder p53 at genomic sites, thereby collaborating with p53 to regulate p53 target gene expression upon DNA damage. CONCLUSIONS: These results suggest that ATF3 likely bookmarks genomic sites and interacts with other transcription regulators to control gene expression.
Asunto(s)
Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , ADN/metabolismo , Histonas/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Factor de Transcripción Activador 3/química , Sitios de Unión/efectos de los fármacos , Camptotecina/farmacología , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Células HCT116 , Células HEK293 , Humanos , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
A series of ß-carbolines possessing the aryl group at C-1 position has been synthesized from tryptophan. The newly synthesized compounds were screened for their in vitro anticancer activity against various human cancer cell lines by MTT assay. Some of them exhibited anticancer activity with IC50 values lower than 10µM outdistanced the cisplatin level. Structure-activity relationship reveals that the alcohol substituents at C-3 position played an important role in inhibition activity.
Asunto(s)
Antineoplásicos/farmacología , Carbolinas/farmacología , Neoplasias/patología , Antineoplásicos/síntesis química , Antineoplásicos/química , Carbolinas/síntesis química , Carbolinas/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HL-60 , Humanos , Concentración 50 Inhibidora , Células MCF-7 , Estructura Molecular , Relación Estructura-ActividadRESUMEN
Tussilagone (TSL) and its allied sesquiterpenoids were considered as the main active principles of the flower buds of Tussilago farfara, which has been widely used in China as an antitussive herbal medicine. Six new bisabolane-type sesquiterpenoids, tussfararins A-F (1-6), along with 12 known sesquiterpenoids, were isolated from the flower buds of T. farfara. Structures of the new compounds were elucidated by extensive spectroscopic analysis. The biological analysis showed that compounds 1, 3, 6, and 7 inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells with IC50 values of 13.6-24.4 µM.
Asunto(s)
Antitusígenos/aislamiento & purificación , Medicamentos Herbarios Chinos/aislamiento & purificación , Lipopolisacáridos/efectos adversos , Óxido Nítrico/metabolismo , Sesquiterpenos/aislamiento & purificación , Tussilago/química , Animales , Antitusígenos/química , Antitusígenos/farmacología , Línea Celular Tumoral , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Flores/química , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Ratones , Estructura Molecular , Plantas Medicinales , Sesquiterpenos/química , Sesquiterpenos/farmacologíaRESUMEN
The inositol pyrophosphates (PP-IPs) are specialized members of the wider inositol phosphate signaling family that possess functionally significant diphosphate groups. The PP-IPs exhibit remarkable functionally versatility throughout the eukaryotic kingdoms. However, a quantitatively minor PP-IP - 1,5 bisdiphosphoinositol tetrakisphosphate (1,5-IP8) - has received considerably less attention from the cell signalling community. The main purpose of this review is to summarize recently-published data which have now brought 1,5-IP8 into the spotlight, by expanding insight into the molecular mechanisms by which this polyphosphate regulates many fundamental biological processes.
Asunto(s)
Difosfatos , Fosfatos de Inositol , Humanos , Transducción de Señal/fisiologíaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Sepsis-associated encephalopathy (SAE) is a common and serious complication during the acute phase of and after recovery from sepsis that seriously affects the quality of life of patients. Traditional Chinese medicine (TCM) has been widely used in modern medicine for neurological anomalies and has become a therapeutic tool for the treatment of SAE due to its multitargeting effects and low toxicity and side effects. AIMS OF THE STUDY: This review provides insights into the pathogenesis and treatments of SAE, focusing on the clinical and experimental impacts of TCM formulations and their single components. METHODS: Several known databases such as PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others were extensively explored with keywords and phrases such as "sepsis-associated encephalopathy", "traditional Chinese medicine", "herbs", "SAE", "sepsis", "cerebral" or other relevant terms to obtain literature between 2018 and 2024. RESULTS: Extensive evidence indicated that TCM could decrease mortality and normalize neurological function in patients with sepsis; these effects might be associated with factors such as reduced oxidative stress and downregulated expression of inflammatory factors. CONCLUSIONS: TCM shows notable efficacy in treating SAE, warranting deeper mechanistic studies to optimize its clinical application.
Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Encefalopatía Asociada a la Sepsis , Humanos , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Medicina Tradicional China/métodos , Medicamentos Herbarios Chinos/uso terapéutico , Animales , Sepsis/tratamiento farmacológico , Sepsis/complicacionesRESUMEN
Phosphate (Pi) serves countless metabolic pathways and is involved in macromolecule synthesis, energy storage, cellular signaling, and bone maintenance. Herein, we describe the coordination of Pi uptake and efflux pathways to maintain mammalian cell Pi homeostasis. We discover that XPR1, the presumed Pi efflux transporter, separately supervises rates of Pi uptake. This direct, regulatory interplay arises from XPR1 being a binding partner for the Pi uptake transporter PiT1, involving a predicted transmembrane helix/extramembrane loop in XPR1, and its hitherto unknown localization in a subset of intracellular LAMP1-positive puncta (named "XLPVs"). A pharmacological mimic of Pi homeostatic challenge is sensed by the inositol pyrophosphate IP8, which functionalizes XPR1 to respond in a temporally hierarchal manner, initially adjusting the rate of Pi efflux, followed subsequently by independent modulation of PiT1 turnover to reset the rate of Pi uptake. These observations generate a unifying model of mammalian cellular Pi homeostasis, expanding opportunities for therapeutic intervention.
Asunto(s)
Homeostasis , Fosfatos de Inositol , Humanos , Animales , Fosfatos de Inositol/metabolismo , Receptor de Retrovirus Xenotrópico y Politrópico , Células HEK293 , Orgánulos/metabolismo , Transporte Biológico , Fosfatos/metabolismo , RatonesRESUMEN
Five new vobasinyl-ibogan-type bisindole alkaloids, tabernaricatines A-E (1-5), two new monomers, tabernaricatines F and G (6 and 7), and 24 known indole alkaloids were isolated from the aerial parts of Tabernaemontana divaricata. Alkaloids 1 and 2 are the first vobasinyl-ibogan-type alkaloids possessing a six-membered ring via an ether linkage between C-17 and C-21. All compounds except for 3 were evaluated for their cytotoxicity against five human cancer cell lines; conophylline showed significant bioactivity against HL-60, SMMC-7721, A-549, MCF-7, and SW480 cells with IC50 values of 0.17, 0.35, 0.21, 1.02, and 1.49 µM, respectively.
Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Medicamentos Herbarios Chinos/aislamiento & purificación , Medicamentos Herbarios Chinos/farmacología , Alcaloides Indólicos/aislamiento & purificación , Alcaloides Indólicos/farmacología , Tabernaemontana/química , Antineoplásicos Fitogénicos/química , Ensayos de Selección de Medicamentos Antitumorales , Medicamentos Herbarios Chinos/química , Femenino , Células HL-60 , Humanos , Alcaloides Indólicos/química , Concentración 50 Inhibidora , Estructura MolecularRESUMEN
Five new isopimarane diterpenoids, fokihodgins A-E (1-5), four new labdane diterpenoids, fokihodgins F-I (6-9), and one new icetexane diterpenoid, fokihodgin J (10), as well as 18 known diterpenoids were isolated from Fokienia hodginsii. The structures of the new compounds were determined on the basis of their spectroscopic analysis, and the absolute configurations of 1 and 6 were established by X-ray crystallographic analysis. Compound 9 showed moderate cytotoxicity against HL-60 and SMMC-7721 cell lines, with IC50 values of 9.10 and 7.50 µM, respectively.
Asunto(s)
Antineoplásicos Fitogénicos/aislamiento & purificación , Cupressaceae/química , Diterpenos/aislamiento & purificación , Medicamentos Herbarios Chinos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Cristalografía por Rayos X , Diterpenos/química , Diterpenos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Células HL-60 , Humanos , Concentración 50 Inhibidora , Conformación Molecular , Estructura Molecular , Hojas de la Planta/química , Tallos de la Planta/químicaRESUMEN
Three new triterpenoids, kadcotriones A-C (1-3), together with the biogenetically related lanostane-type triterpenoid (4), were isolated from Kadsura coccinea. Compound 1 features a 12,14ß-dimethyl 6/6/6-fused tricyclic skeleton, while 2 and 3 are characterized by a 6/6/5-ring system. Their structures were determined by NMR and electronic circular dichroism spectroscopic methods. Compounds 2 and 4 exhibited anti-HIV-1 activities with EC50 values of 30.29 and 54.81 µM, respectively.