Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 610(7933): 656-660, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36289385

RESUMEN

Proposed mechanisms for the production of calcium in the first stars (population III stars)-primordial stars that formed out of the matter of the Big Bang-are at odds with observations1. Advanced nuclear burning and supernovae were thought to be the dominant source of the calcium production seen in all stars2. Here we suggest a qualitatively different path to calcium production through breakout from the 'warm' carbon-nitrogen-oxygen (CNO) cycle through a direct experimental measurement of the 19F(p, γ)20Ne breakout reaction down to a very low energy point of 186 kiloelectronvolts, reporting a key resonance at 225 kiloelectronvolts. In the domain of astrophysical interest2, at around 0.1 gigakelvin, this thermonuclear 19F(p, γ)20Ne rate is up to a factor of 7.4 larger than the previous recommended rate3. Our stellar models show a stronger breakout during stellar hydrogen burning than previously thought1,4,5, and may reveal the nature of calcium production in population III stars imprinted on the oldest known ultra-iron-poor star, SMSS0313-67086. Our experimental result was obtained in the China JinPing Underground Laboratory7, which offers an environment with an extremely low cosmic-ray-induced background8. Our rate showcases the effect that faint population III star supernovae can have on the nucleosynthesis observed in the oldest known stars and first galaxies, which are key mission targets of the James Webb Space Telescope9.

2.
Nat Methods ; 21(1): 92-101, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37749214

RESUMEN

Natural proteins are composed of 20 proteinogenic amino acids and their post-translational modifications (PTMs). However, due to the lack of a suitable nanopore sensor that can simultaneously discriminate between all 20 amino acids and their PTMs, direct sequencing of protein with nanopores has not yet been realized. Here, we present an engineered hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore containing a sole Ni2+ modification. It enables full discrimination of all 20 proteinogenic amino acids and 4 representative modified amino acids, Nω,N'ω-dimethyl-arginine (Me-R), O-acetyl-threonine (Ac-T), N4-(ß-N-acetyl-D-glucosaminyl)-asparagine (GlcNAc-N) and O-phosphoserine (P-S). Assisted by machine learning, an accuracy of 98.6% was achieved. Amino acid supplement tablets and peptidase-digested amino acids from peptides were also analyzed using this strategy. This capacity for simultaneous discrimination of all 20 proteinogenic amino acids and their PTMs suggests the potential to achieve protein sequencing using this nanopore-based strategy.


Asunto(s)
Nanoporos , Aminoácidos/química , Proteínas/metabolismo , Porinas/química , Porinas/metabolismo , Péptidos/química
3.
Hepatology ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985984

RESUMEN

BACKGROUND AIMS: Imbalance in lipid metabolism is the main cause of nonalcoholic fatty liver disease (NAFLD). While the pathogenesis of lipid accumulation mediated by extrahepatic regulators has been extensively studied, the intrahepatic regulators modulating lipid homeostasis remain unclear. Previous studies have shown that systemic administration of interleukin-22 (IL-22) protects against NAFLD; however, the role of IL-22/IL22RA1 signaling in modulating hepatic lipid metabolism remains uncertain. APPROACH RESULTS: This study shows hepatic IL22RA1 is vital in hepatic lipid regulation. IL22RA1 is downregulated in palmitic acid-treated mouse primary hepatocytes, as well as in the livers of NAFLD model mice and patients. Hepatocyte-specific Il22ra1 knockout (HKO) mice display diet-induced hepatic steatosis, insulin resistance, impaired glucose tolerance, increased inflammation, and fibrosis compared with flox/flox mice. This is attributed to increased lipogenesis mediated by the accumulation of hepatic oxysterols, particularly, 3 beta-hydroxy-5-cholestenoic acid (3ß HCA). Mechanistically, hepatic IL22RA1 deficiency facilitates 3ß HCA deposition via the activating transcription factor 3 (ATF3)/oxysterol 7 alpha-hydroxylase (CYP7B1) axis. Notably, 3ß HCA facilitates lipogenesis in MPHs and human liver organoids (HLOs) by activating LXR-alpha signaling, but IL-22 treatment attenuates this effect. Additionally, restoring CYP7B1 or silencing hepatic ATF3 reduces both hepatic 3ß HCA and lipid contents in HKO mice. CONCLUSIONS: These findings indicate that IL22RA1 plays a crucial role in maintaining hepatic lipid homeostasis in an ATF3/CYP7B1-dependent manner, and establish a link between 3ß HCA and hepatic lipid homeostasis.

4.
Plant Physiol ; 194(3): 1577-1592, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38006319

RESUMEN

The improvement of fruit quality, in particular sugar content, has been a major goal of plant breeding programmes for many years. Here, 2 varieties of the Ussurian pear (Pyrus ussuriensis), Nanguo, and its high-sucrose accumulation bud sport, Nanhong, were used to study the molecular mechanisms regulating sucrose transport in fruits. Comparative transcriptome analysis showed that in Nanhong fruit, an MYB transcription factor, PuMYB12, and a sucrose transporter protein, PuSUT4-like, were expressed at higher levels, while a paclobutrazol resistance transcription factor, PuPRE6, and a histone deacetylase (HDAC), PuHDAC9-like, were expressed at lower levels in Nanguo fruit. PuSUT4-like silencing and overexpression experiments in Nanguo pear showed that PuSUT4-like is essential for sucrose transportation. PuPRE6 and PuMYB12 act as antagonistic complexes to regulate PuSUT4-like transcription and sucrose accumulation. The histone deacetylation levels of the PuMYB12 and PuSUT4-like promoters were higher in Nanguo fruit than in Nanhong fruit, and Y1H assays showed that HDAC PuHDAC9-like bound directly to the promoters of PuMYB12 and PuSUT4-like. Our results uncovered transcription regulation and epigenetic mechanisms underlying sucrose accumulation in pears.


Asunto(s)
Pyrus , Factores de Transcripción , Pyrus/genética , Fitomejoramiento , Histona Desacetilasas/genética , Sacarosa
5.
J Biol Chem ; 299(4): 103017, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36791912

RESUMEN

Tight coordination of growth regulatory signaling is required for intestinal epithelial homeostasis. Protein kinase C α (PKCα) and transforming growth factor ß (TGFß) are negative regulators of proliferation with tumor suppressor properties in the intestine. Here, we identify novel crosstalk between PKCα and TGFß signaling. RNA-Seq analysis of nontransformed intestinal crypt-like cells and colorectal cancer cells identified TGFß receptor 1 (TGFßR1) as a target of PKCα signaling. RT-PCR and immunoblot analysis confirmed that PKCα positively regulates TGFßR1 mRNA and protein expression in these cells. Effects on TGFßR1 were dependent on Ras-extracellular signal-regulated kinase 1/2 (ERK) signaling. Nascent RNA and promoter-reporter analysis indicated that PKCα induces TGFßR1 transcription, and Runx2 was identified as an essential mediator of the effect. PKCα promoted ERK-mediated activating phosphorylation of Runx2, which preceded transcriptional activation of the TGFßR1 gene and induction of Runx2 expression. Thus, we have identified a novel PKCα→ERK→Runx2→TGFßR1 signaling axis. In further support of a link between PKCα and TGFß signaling, PKCα knockdown reduced the ability of TGFß to induce SMAD2 phosphorylation and cell cycle arrest, and inhibition of TGFßR1 decreased PKCα-induced upregulation of p21Cip1 and p27Kip1 in intestinal cells. The physiological relevance of these findings is also supported by The Cancer Genome Atlas data showing correlation between PKCα, Runx2, and TGFßR1 mRNA expression in human colorectal cancer. PKCα also regulated TGFßR1 in endometrial cancer cells, and PKCα, Runx2, and TGFßR1 expression correlates in uterine tumors, indicating that crosstalk between PKCα and TGFß signaling may be a common mechanism in diverse epithelial tissues.


Asunto(s)
Neoplasias Colorrectales , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Proteína Quinasa C-alfa , Receptor Tipo I de Factor de Crecimiento Transformador beta , Humanos , Neoplasias Colorrectales/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Células Epiteliales/metabolismo , Intestinos , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , ARN Mensajero/genética , Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo
6.
Infect Immun ; 92(4): e0000124, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38415639

RESUMEN

Attaching/effacing (A/E) pathogens induce DNA damage and colorectal cancer by injecting effector proteins into host cells via the type III secretion system (T3SS). EspF is one of the T3SS-dependent effector proteins exclusive to A/E pathogens, which include enterohemorrhagic Escherichia coli. The role of EspF in the induction of double-strand breaks (DSBs) and the phosphorylation of the repair protein SMC1 has been demonstrated previously. However, the process of damage accumulation and DSB formation has remained enigmatic, and the damage response is not well understood. Here, we first showed a compensatory increase in the mismatch repair proteins MutS homolog 2 (MSH2) and MSH6, as well as poly(ADP-ribose) polymerase 1, followed by a dramatic decrease, threatening cell survival in the presence of EspF. Flow cytometry revealed that EspF arrested the cell cycle at the G2/M phase to facilitate DNA repair. Subsequently, 8-oxoguanine (8-oxoG) lesions, a marker of oxidative damage, were assayed by ELISA and immunofluorescence, which revealed the accumulation of 8-oxoG from the cytosol to the nucleus. Furthermore, the status of single-stranded DNA (ssDNA) and DSBs was confirmed. We observed that EspF accelerated the course of DNA lesions, including 8-oxoG and unrepaired ssDNA, which were converted into DSBs; this was accompanied by the phosphorylation of replication protein A 32 in repair-defective cells. Collectively, these findings reveal that EspF triggers various types of oxidative DNA lesions with impairment of the DNA damage response and may result in genomic instability and cell death, offering novel insight into the tumorigenic potential of EspF.IMPORTANCEOxidative DNA lesions play causative roles in colitis-associated colon cancer. Accumulating evidence shows strong links between attaching/effacing (A/E) pathogens and colorectal cancer (CRC). EspF is one of many effector proteins exclusive to A/E pathogens with defined roles in the induction of oxidative stress, double-strand breaks (DSBs), and repair dysregulation. Here, we found that EspF promotes reactive oxygen species generation and 8-oxoguanine (8-oxoG) lesions when the repair system is activated, contributing to sustained cell survival. However, infected cells exposed to EspF presented 8-oxoG, which results in DSBs and ssDNA accumulation when the cell cycle is arrested at the G2/M phase and the repair system is defective or saturated by DNA lesions. In addition, we found that EspF could intensify the accumulation of nuclear DNA lesions through oxidative and replication stress. Overall, our work highlights the involvement of EspF in DNA lesions and DNA damage response, providing a novel avenue by which A/E pathogens may contribute to CRC.


Asunto(s)
Neoplasias Colorrectales , Escherichia coli Enterohemorrágica , Humanos , Células Epiteliales , Reparación del ADN , Daño del ADN , Estrés Oxidativo
7.
BMC Plant Biol ; 24(1): 647, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977968

RESUMEN

BACKGROUND: The ginseng endophyte Paenibacillus polymyxa Pp-7250 (Pp-7250) has multifaceted roles such as preventing ginseng diseases, promoting growth, increasing ginsenoside accumulation, and degrading pesticide residues, however, these effects still have room for improvements. Composite fungicides are an effective means to improve the biocontrol effect of fungicides, but the effect of Pp-7250 in combination with its symbiotic bacteria on ginseng needs to be further investigated, and its mechanism of action has not been elucidated. In this study, a series of experiments was conducted to elucidate the effect of Paenibacillus polymyxa and Bacillus cereus co-bacterial agent on the yield and quality of understory ginseng, and to investigate their mechanism of action. RESULTS: The results indicated that P. polymyxa and B. cereus co-bacterial agent (PB) treatment improved ginseng yield, ginsenoside accumulation, disease prevention, and pesticide degradation. The mechanism is that PB treatment increased the abundance of beneficial microorganisms, including Rhodanobacter, Pseudolabrys, Gemmatimonas, Bacillus, Paenibacillus, Cortinarius, Russula, Paecilomyces, and Trechispora, and decreased the abundance of pathogenic microorganisms, including Ellin6067, Acidibacter, Fusarium, Tetracladium, Alternaria, and Ilyonectria in ginseng rhizosphere soil. PB co-bacterial agents enhanced the function of microbial metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics, biosynthesis of amino acids, carbon fixation pathways in prokaryotes, DNA replication, and terpenoid backbone biosynthesis, and decreased the function of microbial plant pathogens and animal pathogens. CONCLUSION: The combination of P. polymyxa and B. cereus may be a potential biocontrol agent to promote the resistance of ginseng to disease and improve the yield, quality, and pesticide degradation.


Asunto(s)
Ginsenósidos , Paenibacillus polymyxa , Panax , Enfermedades de las Plantas , Rizosfera , Panax/microbiología , Panax/crecimiento & desarrollo , Panax/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Bacillus cereus/efectos de los fármacos , Bacillus cereus/crecimiento & desarrollo , Microbiología del Suelo , Endófitos/fisiología , Endófitos/efectos de los fármacos , Microbiota/efectos de los fármacos
8.
J Pharmacol Exp Ther ; 388(1): 190-200, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37863485

RESUMEN

This study aimed to evaluate the effects of cytochrome P450 3A4 (CYP3A4) gene polymorphism and drug interaction on the metabolism of blonanserin. Human recombinant CYP3A4 was prepared using the Bac-to-Bac baculovirus expression system. A microsomal enzyme reaction system was established, and drug-drug interactions were evaluated using Sprague-Dawley rats. Ultra-performance liquid chromatography-tandem mass spectrometry was used to detect the concentrations of blonanserin and its metabolite. Compared with wild type CYP34A, the relative clearance of blonanserin by CYP3A4.29 significantly increased to 251.3%, while it decreased notably with CYP3A4.4, 5, 7, 8, 9, 10, 12, 13, 14, 16, 17, 18, 23, 24, 28, 31, 33, and 34, ranging from 6.09% to 63.34%. Among 153 tested drugs, nimodipine, felodipine, and amlodipine were found to potently inhibit the metabolism of blonanserin. Moreover, the inhibitory potency of nimodipine, felodipine, and amlodipine varied with different CYP3A4 variants. The half-maximal inhibitory concentration and enzymatic kinetics assay demonstrated that the metabolism of blonanserin was noncompetitively inhibited by nimodipine in rat liver microsomes and was inhibited in a mixed manner by felodipine and amlodipine in both rat liver microsomes and human liver microsomes. When nimodipine and felodipine were coadministered with blonanserin, the area under the blood concentration-time curve (AUC)(0-t), AUC(0-∞), and C max of blonanserin increased. When amlodipine and blonanserin were combined, the C max of blonanserin C increased remarkably. The vast majority of CYP3A4 variants have a low ability to catalyze blonanserin. With combined administration of nimodipine, felodipine, and amlodipine, the elimination of blonanserin was inhibited. This study provides the basis for individualized clinical use of blonanserin. SIGNIFICANCE STATEMENT: The enzyme kinetics of novel CYP3A4 enzymes for metabolizing blonanserin were investigated. Clearance of blonanserin by CYP3A4.4, 5, 7-10, 12-14, 16-18, 23-24, 28, 31, 33, and 34 decreased notably, but increased with CYP3A4.29. Additionally, we established a drug interaction spectrum for blonanserin, in which nimodipine, felodipine, and amlodipine kinetics exhibited mixed inhibition. Moreover, their inhibitory potencies decreased with CYP3A4.4 and 5 compared to CYP3A4.1. This study provides essential data for personalized clinical use of blonanserin.


Asunto(s)
Citocromo P-450 CYP3A , Nimodipina , Humanos , Ratas , Animales , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Nimodipina/metabolismo , Nimodipina/farmacología , Felodipino/metabolismo , Felodipino/farmacología , Ratas Sprague-Dawley , Interacciones Farmacológicas , Amlodipino/metabolismo , Amlodipino/farmacología , Microsomas Hepáticos/metabolismo , Metaboloma
9.
Planta ; 260(1): 26, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861179

RESUMEN

MAIN CONCLUSION: CaTPS2 and CaTPS3 were significantly expressed in flowers of Curcuma alismatifolia 'Shadow' and demonstrated bifunctional enzyme activity, CaTPS2 generated linalool and nerolidol as products, and CaTPS3 catalyzed ß-myrcene and ß-farnesene formation. This study presents the discovery and functional characterization of floral terpene synthase (TPS) genes in Curcuma alismatifolia 'Shadow', a cultivar renowned for its unique fragrance. Addressing the gap in understanding the genetic basis of floral scent in this species, we identified eight TPS genes through comprehensive transcriptome sequencing. Among these, CaTPS2 and CaTPS3 were significantly expressed in floral tissues and demonstrated bifunctional enzyme activity corresponding to the major volatile compounds detected in 'Shadow'. Functional analyses, including in vitro assays complemented with rigorous controls and alternative identification methods, elucidated the roles of these TPS genes in terpenoid biosynthesis. In vitro studies were conducted via heterologous expression in E. coli, followed by purification of the recombinant protein using affinity chromatography, enzyme assays were performed with GPP/FPP as the substrate, and volatile products were inserted into the GC-MS for analysis. Partially purified recombinant protein of CaTPS2 catalyzed GPP and FPP to produce linalool and nerolidol, respectively, while partially purified recombinant protein of CaTPS3 generated ß-myrcene and ß-farnesene with GPP and FPP as substrates, respectively. Real-time quantitative PCR further validated the expression patterns of these genes, correlating with terpenoid accumulation in different plant tissues. Our findings illuminate the molecular mechanisms underpinning floral fragrance in C. alismatifolia and provide a foundation for future genetic enhancements of floral scent in ornamental plants. This study, therefore, contributes to the broader understanding of terpenoid biosynthesis in plant fragrances, paving the way for biotechnological applications in horticulture plant breeding.


Asunto(s)
Monoterpenos Acíclicos , Transferasas Alquil y Aril , Curcuma , Flores , Sesquiterpenos , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Flores/genética , Flores/enzimología , Flores/metabolismo , Sesquiterpenos/metabolismo , Monoterpenos Acíclicos/metabolismo , Curcuma/genética , Curcuma/enzimología , Curcuma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Terpenos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Filogenia , Odorantes
10.
Toxicol Appl Pharmacol ; 489: 117016, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925514

RESUMEN

To elucidate the impact of CYP3A4 activity inhibition and genetic polymorphism on the metabolism of crizotinib. Enzymatic incubation systems for crizotinib were established, and Sprague-Dawley rats were utilized for in vivo experiments. Analytes were quantified using LC-MS/MS. Upon screening 122 drugs and natural compounds, proanthocyanidins emerged as inhibitor of crizotinib metabolism, exhibiting a relative inhibition rate of 93.7%. The IC50 values were 24.53 ± 0.32 µM in rat liver microsomes and 18.24 ± 0.12 µM in human liver microsomes. In vivo studies revealed that proanthocyanidins markedly affected the pharmacokinetic parameters of crizotinib. Co-administration led to a significant reduction in the AUC(0-t), Cmax of PF-06260182 (the primary metabolite of crizotinib), and the urinary metabolic ratio. This interaction is attributed to the mixed-type inhibition of liver microsome activity by proanthocyanidins. CYP3A4, being the principal metabolic enzyme for crizotinib, has its genetic polymorphisms significantly influencing crizotinib's pharmacokinetics. Kinetic data showed that the relative metabolic rates of crizotinib across 26 CYP3A4 variants ranged from 13.14% (CYP3A4.12, 13) to 188.57% (CYP3A4.33) when compared to the wild-type CYP3A4.1. Additionally, the inhibitory effects of proanthocyanidins varied between CYP3A4.12 and CYP3A4.33, when compared to the wild type. Our findings indicate that proanthocyanidins coadministration and CYP3A4 genetic polymorphism can significantly influence crizotinib metabolism.


Asunto(s)
Crizotinib , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Microsomas Hepáticos , Polimorfismo Genético , Ratas Sprague-Dawley , Crizotinib/farmacocinética , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Animales , Humanos , Masculino , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/efectos de los fármacos , Ratas , Piridinas/farmacocinética , Pirazoles/farmacocinética , Pirazoles/farmacología
11.
Reproduction ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38995729

RESUMEN

Insufficient trophoblast migration and impaired uterine spiral artery remodeling are implicated in the pathogenesis of preeclampsia, contributing to inadequate placentation. However, the molecular mechanism underlying this process remains unclear. Aerobic glycolysis, which produces substantial lactate, is crucial for establishing a favorable microenvironment for early uterine preparation and supporting embryo implantation and trophoblast migration. In the present study, we have demonstrated that SORBS2, an RNA-binding protein, regulated aerobic glycolysis and significantly improved trophoblast migration in vitro. Our results showed that SORBS2 expression was significantly reduced in human PE placentas and in trophoblasts during hypoxia. Overexpression of SORBS2 enhanced cell proliferation and migration, whereas knockdown of SORBS2 decreased these functions in HTR-8/SVneo cells. Mechanistic studies have demonstrated that SORBS2 directly interacts with the 3' untranslated regions (UTRs) of key glycolysis-related genes, specifically HK2. This interaction results in enhanced stability of HK2 and activation of glycolysis. Moreover, silencing HK2 abrogated the enhancement of proliferation and migration of HTR-8/SVneo cells induced by SORBS2. In conclusion, our findings suggest that the downregulation of SORBS2 may contribute to the pathogenesis of preeclampsia by regulating mRNA stability and inhibiting trophoblast migration during placentation.

12.
Anal Biochem ; 687: 115444, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38141797

RESUMEN

Norovirus is a leading cause of acute gastroenteritis in humans. This paper presents the development of a novel dual-mode aptasensor for detecting norovirus using colorimetry and electrochemical methods. The initial colorimetric method utilizes gold nanoparticles (AuNPs) and sodium chloride to establish a positive correlation between the concentration of norovirus in a solution and the absorbance ratio A650/A520. The naked eye can detect concentrations as low as 0.1 µg/mL, corresponding to a Ct value of 33 (2.2 copies/µL, CT = 34.102-3.2185·lgX), allowing for qualitative and semi-quantitative analysis. For more accurate trace analysis, a gold electrode is modified with a thiol-modified aptamer and closed with 6-Mercapto-1-hexanol. After incubation with norovirus, the virus specifically binds to the aptamer, causing changes in its spatial structure and distance from the electrode surface. These changes can then be detected using electrochemical square wave voltammetry (SWV). Under optimal reaction conditions, the peak current from SWV exhibits a strong linear relationship with the logarithm of norovirus concentrations between 10-9 µg/mL and 10-2 µg/mL. The regression equation Y = 14.76789 + 1.03983·lgX, with an R2 value of 0.987, accurately represents this relationship. The limit of detection was determined to be 1.365 × 10-10 µg/mL. Furthermore, the aptasensor demonstrated high specificity for norovirus in fecal samples, making it a promising tool for detecting norovirus in various sample types.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanopartículas del Metal , Norovirus , Humanos , Límite de Detección , Colorimetría/métodos , Oro/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos
13.
J Sleep Res ; 33(1): e13960, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37282765

RESUMEN

This study compared weekday and weekend actigraphy-measured and parent-reported sleep in relation to weight status among preschool-aged children. Participants were 3-6 years old preschoolers from the cross-sectional DAGIS-study with sleep data for ≥2 weekday and ≥2 weekend nights. Parents-reported sleep onset and wake-up times were gathered alongside 24 h hip-worn actigraphy. An unsupervised Hidden-Markov Model algorithm provided actigraphy-measured night time sleep without the guidance of reported sleep times. Waist-to-height ratio and age-and-sex-specific body mass index characterised weight status. Comparison of methods were assessed with consistency in quintile divisions and Spearman correlations. Associations between sleep and weight status were assessed with adjusted regression models. Participants included 638 children (49% girls) with a mean ± SD age of 4.76 ± 0.89. On weekdays, 98%-99% of actigraphy-measured and parent-reported sleep estimates were classified in the same or adjacent quintile and were strongly correlated (rs = 0.79-0.85, p < 0.001). On weekends, 84%-98% of actigraphy-measured and parent-reported sleep estimates were respectively classified and correlations were moderate to strong (rs = 0.62-0.86, p < 0.001). Compared with actigraphy-measured sleep, parent-reported sleep had consistently earlier onset, later wake-up, and greater duration. Earlier actigraphy-measured weekday sleep onset and midpoint were associated with a higher body mass index (respective ß-estimates: -0.63, p < 0.01 and -0.75, p < 0.01) and waist-to-height ratio (-0.004, p = 0.03 and -0.01, p = 0.02). Though the sleep estimation methods were consistent and correlated, actigraphy measures should be favoured as they are more objective and sensitive to identifying associations between sleep timing and weight status compared with parent reports.


Asunto(s)
Actigrafía , Sueño , Masculino , Femenino , Humanos , Preescolar , Niño , Actigrafía/métodos , Estudios Transversales , Índice de Masa Corporal , Algoritmos
14.
Environ Sci Technol ; 58(29): 12865-12874, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38995089

RESUMEN

Short-term exposure to PM2.5 or O3 can increase mortality risk; however, limited studies have evaluated their interaction. A multicity time series study was conducted to investigate the synergistic effect of PM2.5 and O3 on mortality in China, using mortality data and high-resolution pollutant predictions from 272 cities in 2013-2015. Generalized additive models were applied to estimate associations of PM2.5 and O3 with mortality. Modification and interaction effects were explored by stratified analyses and synergistic indexes. Deaths attributable to PM2.5 and O3 were evaluated with or without modification of the other pollutant. The risk of total nonaccidental mortality increased by 0.70% for each 10 µg/m3 increase in PM2.5 when O3 levels were high, compared to 0.12% at low O3 levels. The effect of O3 on total nonaccidental mortality at high PM2.5 levels (1.26%) was also significantly higher than that at low PM2.5 levels (0.59%). Similar patterns were observed for cardiovascular or respiratory diseases. The relative excess risk of interaction and synergy index of PM2.5 and O3 on nonaccidental mortality were 0.69% and 1.31 with statistical significance, respectively. Nonaccidental deaths attributable to short-term exposure of PM2.5 or O3 when considering modification of the other pollutant were 28% and 31% higher than those without considering modification, respectively. Our results found synergistic effects of short-term coexposure to PM2.5 and O3 on mortality and suggested underestimations of attributable risks without considering their synergistic effects.


Asunto(s)
Contaminantes Atmosféricos , Ciudades , Ozono , Material Particulado , China/epidemiología , Humanos , Contaminantes Atmosféricos/toxicidad , Exposición a Riesgos Ambientales , Mortalidad
15.
Environ Res ; 252(Pt 3): 119054, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38704007

RESUMEN

BACKGROUND: The connections between fine particulate matter (PM2.5) and coarse particulate matter (PM2.5-10) and daily mortality of viral pneumonia and bacterial pneumonia were unclear. OBJECTIVES: To distinguish the connections between PM2.5 and PM2.5-10 and daily mortality due to viral pneumonia and bacterial pneumonia. METHODS: Using a comprehensive national death registry encompassing all areas of mainland China, we conducted a case-crossover investigation from 2013 to 2019 at an individual level. Residential daily particle concentrations were evaluated using satellite-based models with a spatial resolution of 1 km. To analyze the data, we employed the conditional logistic regression model in conjunction with polynomial distributed lag models. RESULTS: We included 221,507 pneumonia deaths in China. Every interquartile range (IQR) elevation in concentrations of PM2.5 (lag 0-2 d, 37.6 µg/m3) was associated with higher magnitude of mortality for viral pneumonia (3.03%) than bacterial pneumonia (2.14%), whereas the difference was not significant (p-value for difference = 0.38). An IQR increase in concentrations of PM2.5-10 (lag 0-2 d, 28.4 µg/m3) was also linked to higher magnitude of mortality from viral pneumonia (3.06%) compared to bacterial pneumonia (2.31%), whereas the difference was not significant (p-value for difference = 0.52). After controlling for gaseous pollutants, their effects were all stable; however, with mutual adjustment, the associations of PM2.5 remained, and those of PM2.5-10 were no longer statistically significant. Greater magnitude of associations was noted in individuals aged 75 years and above, as well as during the cold season. CONCLUSION: This nationwide study presents compelling evidence that both PM2.5 and PM2.5-10 exposures could increase pneumonia mortality of viral and bacterial causes, highlighting the more robust effects of PM2.5 and somewhat higher sensitivity of viral pneumonia.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Estudios Cruzados , Material Particulado , Material Particulado/análisis , Material Particulado/efectos adversos , Humanos , China/epidemiología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Neumonía Bacteriana/mortalidad , Neumonía/mortalidad , Neumonía/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Anciano de 80 o más Años , Tamaño de la Partícula , Neumonía Viral/mortalidad , Adulto
16.
J Sep Sci ; 47(13): e2400154, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38948935

RESUMEN

Glycosylation and phosphorylation rank as paramount post-translational modifications, and their analysis heavily relies on enrichment techniques. In this work, a facile approach was developed for the one-step simultaneous enrichment and stepwise elution of glycoproteins and phosphoproteins. The core of this approach was the application of the novel titanium (IV) ion immobilized poly(glycidyl methacrylate) microparticles functionalized with dendrimer polyethylenimine and phytic acid. The microparticles possessed dual enrichment capabilities due to their abundant titanium ions and hydroxyl groups on the surface. They demonstrate rapid adsorption equilibrium (within 30 min) and exceptional adsorption capacity for ß-casein (1107.7 mg/g) and horseradish peroxidase (438.6 mg/g), surpassing that of bovine serum albumin (91.7 mg/g). Furthermore, sodium dodecyl sulfate-polyacrylamide gel electrophoresis was conducted to validate the enrichment capability. Experimental results across various biological samples, including standard protein mixtures, non-fat milk, and human serum, demonstrated the remarkable ability of these microparticles to enrich low-abundance glycoproteins and phosphoproteins from biological samples.


Asunto(s)
Dendrímeros , Glicoproteínas , Fosfoproteínas , Polietileneimina , Ácidos Polimetacrílicos , Titanio , Glicoproteínas/química , Fosfoproteínas/química , Polietileneimina/química , Dendrímeros/química , Humanos , Titanio/química , Ácidos Polimetacrílicos/química , Interacciones Hidrofóbicas e Hidrofílicas , Propiedades de Superficie , Animales , Tamaño de la Partícula , Adsorción , Bovinos
17.
Mar Drugs ; 22(2)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38393065

RESUMEN

It is important to improve the production of bioactive secondary products for drug development. The Escherichia coli-Streptomyces shuttle vector pSET152 and its derived vector pIB139 containing a strong constitutive promoter ermEp* are commonly used as integrative vectors in actinomycetes. Four new integrative vectors carrying the strong constitutive promoter kasOp*, hrdBp, SCO5768p, and SP44, respectively, were constructed and proven to be functional in different mangrove-derived Streptomyces host strains by using kanamycin resistance gene neo as a reporter. Some biosynthetic genes of elaiophylins, azalomycin Fs, and armeniaspirols were selected and inserted into these vectors to overexpress in their producers including Streptomyces sp. 219807, Streptomyces sp. 211726, and S. armeniacus DSM 43125, resulting in an approximately 1.1-1.4-fold enhancement of the antibiotic yields.


Asunto(s)
Actinobacteria , Streptomyces , Streptomyces/genética , Antibacterianos , Regiones Promotoras Genéticas/genética , Vectores Genéticos , Actinobacteria/genética , Plásmidos
18.
Ecotoxicol Environ Saf ; 272: 116050, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325272

RESUMEN

Silica nanoparticles (SiNPs) are widely used in the biomedical field and can enter the central nervous system through the blood-brain barrier, causing damage to hippocampal neurons. However, the specific mechanism remains unclear. In this experiment, HT22 cells were selected as the experimental model in vitro, and the survival rate of cells under the action of SiNPs was detected by MTT method, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and adenosine triphosphate (ATP) were tested by the kit, the ultrastructure of the cells was observed by transmission electron microscope, membrane potential (MMP), calcium ion (Ca2+) and apoptosis rate were measured by flow cytometry, and the expressions of mitochondrial functional protein, mitochondrial dynein, mitochondrial autophagy protein as well as apoptosis related protein were detected by Western blot. The results showed that cell survival rate, SOD, CAT, GSH-Px, ATP and MMP gradually decreased with the increase of SiNPs concentration, while intracellular ROS, Ca2+, LDH and apoptosis rate increased with the increase of SiNPs concentration. In total cellular proteins,the expressions of mitochondrial functional proteins VDAC and UCP2 gradually increased, the expression of mitochondrial dynamic related protein DRP1 increased while the expressions of OPA1 and Mfn2 decreased. The expressions of mitophagy related proteins PINK1, Parkin and LC3Ⅱ/LC3Ⅰ increased and P62 gradually decreased, as well as the expressions of apoptosis related proteins Apaf-1, Cleaved-Caspase-3, Caspase-3, Caspase-9, Bax and Cyt-C. In mitochondrial proteins, the expressions of mitochondrial dynamic related proteins DRP1 and p-DRP1 were increased, while the expressions of OPA1 and Mfn2 were decreased. Expressions of mitochondrial autophagy associated proteins PINK1, Parkin, LC3II/LC3I increased, P62 decreased gradually, as well as the expressions of apoptosis related proteins Cleaved-Caspase-3, Caspase-3, and Caspase-9 increased, and Cyt-C expressions decreased. To further demonstrate the role of ROS and DRP1 in HT22 cell apoptosis induced by SiNPs, we selected the ROS inhibitor N-Acetylcysteine (NAC) and Dynamin-related protein 1 (DRP1) inhibitor Mdivi-1. The experimental results indicated that the above effects were remarkably improved after the use of inhibitors, further confirming that SiNPs induce the production of ROS in cells, activate DRP1, cause excessive mitochondrial division, induce mitophagy, destroy mitochondrial function and eventually lead to apoptosis.


Asunto(s)
Dinaminas , Mitofagia , Nanopartículas , Dióxido de Silicio , Adenosina Trifosfato , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Dinaminas/metabolismo , Nanopartículas/toxicidad , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Dióxido de Silicio/farmacología , Superóxido Dismutasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Ratones , Línea Celular Tumoral
19.
Ecotoxicol Environ Saf ; 274: 116212, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489900

RESUMEN

Evidence of the potential causal links between long-term exposure to particulate matters (PM, i.e., PM1, PM2.5, and PM1-2.5) and T2DM mortality based on large cohorts is limited. In contrast, the existing evidence usually suffers from inherent bias with the traditional association assessment. A prospective cohort of 580,757 participants in the southern region of China were recruited during 2009 and 2015 and followed up through December 2020. PM exposure at each residential address was estimated by linking to the well-established high-resolution simulation dataset. Hazard ratios (HRs) were calculated using time-varying marginal structural Cox models, an established causal inference approach, after adjusting for potential confounders. During follow-up, a total of 717 subjects died from T2DM. For every 1 µg/m3 increase in PM2.5, the adjusted HRs and 95% confidence interval (CI) for T2DM mortality was 1.036 (1.019-1.053). Similarly, for every 1 µg/m3 increase in PM1 and PM1-2.5, the adjusted HRs and 95% CIs were 1.032 (1.003-1.062) and 1.085 (1.054-1.116), respectively. Additionally, we observed a generally more pronounced impact among individuals with lower levels of education or lower residential greenness which as measured by the Normalized Difference Vegetation Index (NDVI). We identified substantial interactions between NDVI and PM1 (P-interaction = 0.003), NDVI and PM2.5 (P-interaction = 0.019), as well as education levels and PM1 (P-interaction = 0.049). The study emphasizes the need to consider environmental and socio-economic factors in strategies to reduce T2DM mortality. We found that PM1, PM2.5, and PM1-2.5 heighten the peril of T2DM mortality, with education and green space exposure roles in modifying it.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Diabetes Mellitus Tipo 2 , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Diabetes Mellitus Tipo 2/epidemiología , Estudios Prospectivos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , China/epidemiología , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos
20.
J Asian Nat Prod Res ; 26(3): 293-301, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37162445

RESUMEN

Four new iridoid glycosides (1-4), rehmaglutosides L-O, were isolated from the air-dried roots of Rehmannia glutinosa. Their structures were established from the spectroscopic data obtained and by chemical evidence. The known mellittoside (5) and ajugol (6) were also obtained in the current investigation, and the structure of mellittoside was unequivocally defined using X-ray diffraction data. Compounds 1-6 were tested for their cytotoxicity against five human tumor cell lines and proliferation effects on Lactobacillus Reuteri.


Asunto(s)
Glicósidos , Rehmannia , Humanos , Glicósidos/farmacología , Glicósidos/química , Rehmannia/química , Glicósidos Iridoides/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA