Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35064087

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is associated with extensive dysregulation of the epigenome and epigenetic regulators, such as bromodomain and extraterminal motif (BET) proteins, have been suggested as potential targets for therapy. However, single-agent BET inhibition has shown poor efficacy in clinical trials, and no epigenetic approaches are currently used in PDAC. To circumvent the limitations of the current generation of BET inhibitors, we developed the compound XP-524 as an inhibitor of the BET protein BRD4 and the histone acetyltransferase EP300/CBP, both of which are ubiquitously expressed in PDAC tissues and cooperate to enhance tumorigenesis. XP-524 showed increased potency and superior tumoricidal activity than the benchmark BET inhibitor JQ-1 in vitro, with comparable efficacy to higher-dose JQ-1 combined with the EP300/CBP inhibitor SGC-CBP30. We determined that this is in part due to the epigenetic silencing of KRAS in vitro, with similar results observed using ex vivo slice cultures of human PDAC tumors. Accordingly, XP-524 prevented KRAS-induced, neoplastic transformation in vivo and extended survival in two transgenic mouse models of aggressive PDAC. In addition to the inhibition of KRAS/MAPK signaling, XP-524 also enhanced the presentation of self-peptide and tumor recruitment of cytotoxic T lymphocytes, though these lymphocytes remained refractory from full activation. We, therefore, combined XP-524 with an anti-PD-1 antibody in vivo, which reactivated the cytotoxic immune program and extended survival well beyond XP-524 in monotherapy. Pending a comprehensive safety evaluation, these results suggest that XP-524 may benefit PDAC patients and warrant further exploration, particularly in combination with immune checkpoint inhibition.


Asunto(s)
Antineoplásicos/farmacología , Proteína p300 Asociada a E1A/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Proteínas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Animales , Antineoplásicos/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Proteína p300 Asociada a E1A/química , Regulación de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Ratones , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/química , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
2.
J Am Chem Soc ; 146(3): 2122-2131, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38190443

RESUMEN

Bioconjugation chemistry has emerged as a powerful tool for the modification of diverse biomolecules under mild conditions. Tetrazole, initially proposed as a bioorthogonal photoclick handle for 1,3-dipolar cyclization with alkenes, was later demonstrated to possess broader photoreactivity with carboxylic acids, serving as a versatile bioconjugation and photoaffinity labeling probe. In this study, we unexpectedly discovered and validated the photoreactivity between tetrazole and primary amine to afford a new 1,2,4-triazole cyclization product. Given the significance of functionalized N-heterocycles in medicinal chemistry, we successfully harnessed the serendipitously discovered reaction to synthesize both pharmacologically relevant DNA-encoded chemical libraries (DELs) and small molecule compounds bearing 1,2,4-triazole scaffolds. Furthermore, the mild reaction conditions and stable 1,2,4-triazole linkage found broad application in photoinduced bioconjugation scenarios, spanning from intramolecular peptide macrocyclization and templated DNA reaction cross-linking to intermolecular photoaffinity labeling of proteins. Triazole cross-linking products on lysine side chains were identified in tetrazole-labeled proteins, refining the comprehensive understanding of the photo-cross-linking profiles of tetrazole-based probes. Altogether, this tetrazole-amine bioconjugation expands the current bioconjugation toolbox and creates new possibilities at the interface of medicinal chemistry and chemical biology.


Asunto(s)
Aminas , Proteínas , Aminas/química , Ciclización , Proteínas/química , Tetrazoles/química , ADN , Química Clic
3.
PLoS Pathog ; 17(2): e1009312, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33539432

RESUMEN

Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors have at least three distinctive mechanisms of action and lay the groundwork for future development of anti-filoviral agents. The three mechanisms identified here include: (1) direct binding to the internal fusion loop region of Ebola virus glycoprotein (GP); (2) the HR2 domain is likely the main binding site for Marburg virus GP inhibitors and a secondary binding site for some EBOV GP inhibitors; (3) lysosome trapping of GP inhibitors increases drug exposure in the lysosome and further improves the viral inhibition. Importantly, small molecules targeting different domains on GP are synergistic in inhibiting EBOV entry suggesting these two mechanisms of action are distinct. Our findings provide important mechanistic insights into filovirus entry and rational drug design for future antiviral development.


Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Glicoproteínas/metabolismo , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus/efectos de los fármacos , Células A549 , Animales , Chlorocebus aethiops , Ebolavirus/fisiología , Glicoproteínas/genética , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Interacciones Huésped-Patógeno , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/virología , Células Vero , Proteínas del Envoltorio Viral/genética
4.
J Org Chem ; 88(11): 6565-6572, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37213137

RESUMEN

The incorporation of N-containing heterocycles with potential bioactivity into DNA-encoded chemical libraries (DELs) represents an important approach to synthesizing medicinally useful compound collections for high-throughput screening. Herein, we reported a synthetic methodology to afford a benzotriazinone core as a drug-like scaffold in a DNA-compatible manner through aryl diazonium intermediates. Starting from DNA-conjugated amines, anthranilic acid or isatoic anhydride building blocks were coupled to form chemically diversified anthranilamides, which were subsequently transformed into 1,2,3-benzotriazin-4(3H)-one via tert-butyl nitrite-triggered cyclization. This methodology features DEL synthesis compatibility through a mild diazonium intermediate mechanism, allowing late-stage decoration of the bioactive benzotriazinone cap on DNA-conjugated amines. The broad substrate scope and high conversion render this methodology a promising approach to diversifying and decorating DNA-encoded combinatorial peptide-like libraries with medicinally relevant heterocyclic moieties.


Asunto(s)
Replicación del ADN , ADN , ADN/química , Aminas/química , Bibliotecas de Moléculas Pequeñas/química , Ciclización , Biblioteca de Péptidos
5.
Org Biomol Chem ; 21(10): 2162-2166, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36799438

RESUMEN

Viridicatin alkaloids as natural products have attracted great interest due to their unique core scaffold. To fully exploit their potential application in DNA-encoded chemical libraries that would facilitate drug discovery, we here describe an efficient on-DNA synthesis of viridicatin alkaloid-like scaffolds from isatins and DNA-tagged aldehydes. Promoted by benzenesulfonyl hydrazide, this reaction provided the corresponding DNA-conjugated viridicatin alkaloid-like products in moderate-to-excellent conversion yields, and DNA compatibility validated by enzymatic ligation and qPCR evaluation exhibited the feasible utility of this methodology in DEL synthesis. Cross substrate scope study, together with subsequent on-DNA chemical diversification, further showed the competence of this approach in focused natural product-like encoded library construction.


Asunto(s)
Alcaloides , Hidroxiquinolinas , Bibliotecas de Moléculas Pequeñas , ADN
6.
J Am Chem Soc ; 144(9): 3787-3792, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35225599

RESUMEN

The inorganic-organic interface between metal catalysts and their substrates greatly influences reaction processes, but few studies of this interface have been conducted for a detailed understanding of its structure. Herein, we describe the synthesis and structural determination of an arylthiolated Au25(F-Ph)18- nanocluster and characterize in detail the key roles of its ligands in photocatalyzed oxidative functionalization reactions. The most significant findings are that (i) interactions are established between ligands to avoid distortion of the geometric structure, limit the Jahn-Teller effect, and protect the nanocluster from oxidization and (ii) the low energy gap (HOMO-LUMO) of the synthetic clusters enables three types of photocatalytic oxidative functionalization reactions by near-infrared light (850 nm).

7.
Chembiochem ; 23(14): e202200025, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35352452

RESUMEN

DNA-encoded chemical libraries (DEL) have attracted substantial attention due to the infinite possibility for hit discovery in both pharmaceutical companies and academia. The encoding method is the initial step of DEL construction and one of the cornerstones of DEL applications. Classified by the DNA format, the existing DEL encoding strategies were categorized into single-stranded DNA-based strategies and double-stranded DNA-based strategies. The two DEL formats have their unique advantages but are usually incompatible with each other. To address this issue, we propose the concept of interconversion between double- and single-stranded DEL based on the "reversible covalent headpiece (RCHP)" design, which combines maximum robustness of synthesis with extraordinary flexibility of applications in distinct setups. Future opportunities in this field are also proposed to advance DEL technology to a comprehensive drug discovery platform.


Asunto(s)
ADN de Cadena Simple , Bibliotecas de Moléculas Pequeñas , ADN/genética , Descubrimiento de Drogas , Biblioteca de Genes
8.
Bioconjug Chem ; 33(1): 105-110, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34927428

RESUMEN

As a powerful platform in drug discovery, the DNA-encoded chemical library technique enables the generation of numerous chemical members with high structural diversity. Epoxides widely exist in a variety of approved drugs and clinical candidates, eliciting multiple pharmaceutical activities. Herein, we report a non-oxidative DNA-compatible synthesis of di-/trisubstituted α,ß-epoxyketones by implementing aldehydes and α-chlorinated ketones as abundant building blocks. This methodology was demonstrated to cover a broad substrate scope with medium-to-excellent conversions. Further structural diversification and transformation were also successfully explored to fully leverage α,ß-epoxyketone moiety.


Asunto(s)
Bibliotecas de Moléculas Pequeñas
9.
Mol Pharm ; 19(9): 3279-3287, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35875926

RESUMEN

Fabrication of self-delivery drug systems can surmount low drug bioavailability and achieve a precise therapeutic process. In this study, a hydrogen sulfide-responsive (H2S) small molecule prodrug was synthesized by linking two chemotherapy drugs, camptothecin (CPT) and gemcitabine (GT), using a reductive disulfide bond simultaneously with a lock GT strategy using a H2S-responsive azide group (denoted as N3-GT-CPT). The ingenious design endows the easy coprecipitation peculiarity of the prodrug with clinical indocyanine green (ICG) via a combined interaction force of hydrophobic, π-π stacking, and electrostatic interactions of anions and cations, thus producing a more stable and multifunctional therapeutic nanosystem. Considering the great photothermal and imaging ability of ICG, the obtained nanosystem showed an excellent therapeutic ability against colon tumors in vitro and in vivo with selective response to intercellular H2S, thus offering a good combination-based multiple therapy for treatment of tumors.


Asunto(s)
Antineoplásicos , Nanopartículas , Profármacos , Antineoplásicos/química , Azidas , Camptotecina/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Verde de Indocianina/química , Nanopartículas/química , Profármacos/química
10.
J Org Chem ; 87(5): 2551-2558, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35076247

RESUMEN

The incorporation of the isoindole core into the DNA-encoded chemical library is highly desirable for the great potential pharmacological characters exampled by molecules like lenalidomide. Herein, we reported a DNA-compatible protocol for the OPA-mediated transformation of amines into drug-like moieties represented by isoindolinone and thio-2-isoindole, respectively. The high conversion and wide substrate-scope property of our protocol render its feasibility in the manipulation of terminal amines on oligonucleotide conjugates, including "cap-and-catch" purification, sequential synthesis during DEL construction, and on-DNA macrocyclization.


Asunto(s)
Isoindoles , o-Ftalaldehído , Aminas , ADN , o-Ftalaldehído/química
11.
Org Biomol Chem ; 20(25): 5045-5049, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35703385

RESUMEN

Inspired by diversity-oriented synthesis, we have developed a series of DNA-compatible transformations utilizing on-DNA vinyl azide as a synthon to forge divergent N-heterocyclic scaffolds. Polysubstituted imidazoles and isoquinolines were efficiently obtained with moderate-to-excellent conversions. Besides, the "one-pot" strategy to prepare in-house on-DNA vinyl azides afforded synthons readily. Results from substrate scope exploration and enzymatic ligation further demonstrate the feasibility of these N-heterocycle syntheses in DNA-encoded chemical library construction.


Asunto(s)
Azidas , ADN , Imidazoles , Isoquinolinas , Bibliotecas de Moléculas Pequeñas
12.
Angew Chem Int Ed Engl ; 61(7): e202115157, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34904335

RESUMEN

The use of a proper encoding methodology is one of the most important aspects when practicing DEL technology. A "headpiece"-based double-stranded DEL encoding method is currently the most widely used for productive DEL. However, the robustness of double-stranded DEL construction conflicts with the versatility presented by single-stranded DEL applications. We here report a novel encoding method, which is based on a "reversible covalent headpiece (RCHP)". The RCHP allows reversible interconversion between double- and single-stranded DNA formats, providing an avenue to robust synthesis and allowing for the applications in distinct setups. We have validated the versatility of this encoding method with encoded self-assembled chemical library and DNA-encoded dynamic library technology. Notably, based on the RCHP-settled library construction, a unique "ternary covalent complex" mediating ligand isolation methodology against non-immobilized targets was developed.

13.
Expert Opin Drug Discov ; 19(6): 725-740, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38753553

RESUMEN

INTRODUCTION: The effectiveness of Fragment-based drug design (FBDD) for targeting challenging therapeutic targets has been hindered by two factors: the small library size and the complexity of the fragment-to-hit optimization process. The DNA-encoded library (DEL) technology offers a compelling and robust high-throughput selection approach to potentially address these limitations. AREA COVERED: In this review, the authors propose the viewpoint that the DEL technology matches perfectly with the concept of FBDD to facilitate hit discovery. They begin by analyzing the technical limitations of FBDD from a medicinal chemistry perspective and explain why DEL may offer potential solutions to these limitations. Subsequently, they elaborate in detail on how the integration of DEL with FBDD works. In addition, they present case studies involving both de novo hit discovery and full ligand discovery, especially for challenging therapeutic targets harboring broad drug-target interfaces. EXPERT OPINION: The future of DEL-based fragment discovery may be promoted by both technical advances and application scopes. From the technical aspect, expanding the chemical diversity of DEL will be essential to achieve success in fragment-based drug discovery. From the application scope side, DEL-based fragment discovery holds promise for tackling a series of challenging targets.


Asunto(s)
ADN , Diseño de Fármacos , Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas , Descubrimiento de Drogas/métodos , Humanos , Bibliotecas de Moléculas Pequeñas/farmacología , Ligandos , Química Farmacéutica/métodos , Biblioteca de Genes , Ensayos Analíticos de Alto Rendimiento/métodos , Terapia Molecular Dirigida , Animales
14.
Front Med (Lausanne) ; 11: 1375554, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887670

RESUMEN

Objective: Anterior cervical discectomy and fusion (ACDF) is an established treatment for cervical degenerative disc disease, but cervical spine surgery may affect sagittal alignment parameters and induce adjacent segment degeneration (ASD). This study aimed to determine the risk factors for developing ASD following anterior cervical plate and cage (ACPC) compared with the use of zero-profile anchored spacer (ROI-C). Methods: A retrospective contrastive study included 105 patients who underwent ACPC or ROI-C between January 2014 and October 2019 at our treatment centre. There were 50 cases in the ROI-C group and 55 patients in the ACPC group. Clinical and radiological results and the incidence of ASD were assessed after surgery. All patients were further divided into the ASD and non-ASD groups for subgroup analysis. Results: At each follow-up time, there was no statistically significant in radiographic parameters between the two groups. The overall ASD rate was higher in the ACPC group than in the ROI-C group (65.5% vs. 44.0%, p = 0.027). The low preoperative Cobb angle, low preoperative segment angle (SA), and loss of Cobb (ΔCobb) were significantly correlated with ASD. However, clinical outcomes were not associated with ASD at any postoperative follow-up visit. Conclusion: Equally good therapeutic effects were achieved with both the ROI-C and ACPC. The occurrence of ASD was considerably higher in the ACPC group than in the ROI-C group. The preoperative Cobb angle, preoperative SA, and ΔCobb were the most associated with an increase in the risk of ASD.

15.
Chem Commun (Camb) ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963238

RESUMEN

The versatile reactivity of isothiocyanate intermediates enabled the diversity-oriented synthesis (DOS) of N-heterocycles in a DNA-compatible manner. We first reported a mild in situ conversion of DNA-conjugated amines to isothiocyanates. Subsequently, a set of diverse transformations was successfully developed to construct 2-thioxo-quinazolinones, 1,2,4-thiadiazoles, and 2-imino thiazolines. Finally, the feasibility of these approaches in constructing DELs was further demonstrated through enzymatic ligation and mock pool preparation. This study demonstrated the advantages of combining in situ conversion strategies with DOS, which effectively broadened the chemical and structural diversity of DELs.

16.
Org Lett ; 26(5): 1094-1099, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38277138

RESUMEN

Utilizing already existing DNA-encoded libraries (DELs) for the generation of a distinct DEL represents an expedited strategy for expanding the chemical space. Herein, we leverage the unique photoreactivity of tetrazoles to synthesize diacylhydrazines on DNA. Widely available carboxylic acids serving as building blocks were employed under the mild photomediated reaction conditions, affording diverse DNA-conjugated diacylhydrazines. This methodology also demonstrates robustness in DEL-compatible synthesis and facilitates the preparation of oligonucleotide-based chemical probes.


Asunto(s)
ADN , Biblioteca de Genes , Ácidos Carboxílicos , Bibliotecas de Moléculas Pequeñas/síntesis química
17.
J Med Chem ; 67(4): 2712-2731, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38295759

RESUMEN

The bromodomain and extra-terminal domain (BET) proteins are epigenetic readers, regulating transcription via two highly homologous tandem bromodomains, BD1 and BD2. Clinical development of nonselective pan-BD BET inhibitors has been challenging, partly due to dose-limiting side effects such as thrombocytopenia. This has prompted the push for domain-selective BET inhibitors to achieve a more favorable therapeutic window. We report a structure-guided drug design campaign that led to the development of a potent BD1-selective BET inhibitor, 33 (XL-126), with a Kd of 8.9 nM and 185-fold BD1/BD2 selectivity. The high selectivity was first assayed by SPR, validated by a secondary time-resolved fluorescence energy transfer assay, and further corroborated by BROMOscan (∼57-373 fold selectivity). The cocrystal of 33 with BRD4 BD1 and BD2 demonstrates the source of selectivity: repulsion with His437 and lost binding with the leucine clamp. Notably, the BD1 selectivity of BET inhibitor 33 leads to both the preservation of platelets and potent anti-inflammatory efficacy.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Factores de Transcripción/metabolismo , Proteínas Nucleares/metabolismo , Dominios Proteicos , Antiinflamatorios/farmacología , Piridonas/farmacología , Proteínas de Ciclo Celular/metabolismo
18.
Chem Commun (Camb) ; 59(62): 9489-9492, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439517

RESUMEN

2-Thiobenzazole is among the privileged heterocyclic scaffolds in medicinal chemistry. Constructing such structural components in DNA-encoded libraries (DELs) may promote related bioactive hit discovery in a high-throughput fashion. Herein, we reported a DNA-compatible mild-condition synthetic methodology to efficiently forge functionalized 2-thiobenzazole scaffolds, realizing on-DNA sulfhydryl incorporation with broad substrate scope, thereby expanding the scope of 2-thiobenzazole-focused DNA-encoded chemical libraries.


Asunto(s)
ADN , Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , ADN/química , Biblioteca de Genes , Bibliotecas de Moléculas Pequeñas/química , Técnicas Químicas Combinatorias
19.
Org Lett ; 25(24): 4473-4477, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37306473

RESUMEN

Thiazolidione, conferring drug-like properties, is an important heterocycle that widely exists in medicinally relevant molecules. In this work, by efficiently assembling various DNA-tagged primary amines, abundant aryl isothiocyanates, and ethyl bromoacetate, we present a DNA-compatible three-component annulation to generate a 2-iminothiazolidin-4-one scaffold, which was further decorated via Knoevenagel condensation by employing (hetero)aryl and alkyl aldehydes. These thiazolidione derivatives should find broad use in focused DNA-encoded library construction.


Asunto(s)
Aminas , ADN , Estructura Molecular , Biblioteca de Genes , Aldehídos
20.
ACS Pharmacol Transl Sci ; 6(11): 1724-1733, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37974618

RESUMEN

DNA-encoded libraries (DEL) have emerged as an important drug discovery technical platform for target-based compound library selection. The success rate of DEL depends on both the chemical diversity of combinatorial libraries and the accuracy of DNA barcoding. Therefore, it is critical that the chemistry applied to library construction should efficiently transform on a wide range of substrates while preserving the integrity of DNA tags. Although several analytical methods have been developed to measure DNA damage caused by DEL chemical reactions, efficient and cost-effective evaluation criteria for DNA damage detection are still demanding. Herein, we set standards for evaluating the DNA compatibility of chemistry development at the laboratory level. Based on four typical DNA damage models of three different DEL formats, we evaluated the detection capabilities of four analytical methods, including ultraperformance liquid chromatography (UPLC-MS), electrophoresis, quantitative polymerase chain reaction (qPCR), and Sanger sequencing. This work systematically revealed the scope and capability of different analytical methods in assessing DNA damages caused by chemical transformation. Based on the results, we recommended UPLC-MS and qPCR as efficient methods for DNA barcode integrity analysis in the early-stage development of DNA-compatible chemistry. Meanwhile, we identified that Sanger sequencing was unreliable to assess DNA damage in this application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA