Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 502, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797830

RESUMEN

BACKGROUND: Inflammation and dysregulated immunity play vital roles in idiopathic pulmonary arterial hypertension (IPAH), while the mechanisms that initiate and promote these processes are unclear. METHODS: Transcriptomic data of lung tissues from IPAH patients and controls were obtained from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA), differential expression analysis, protein-protein interaction (PPI) and functional enrichment analysis were combined with a hemodynamically-related histopathological score to identify inflammation-associated hub genes in IPAH. The monocrotaline-induced rat model of pulmonary hypertension was utilized to confirm the expression pattern of these hub genes. Single-cell RNA-sequencing (scRNA-seq) data were used to identify the hub gene-expressing cell types and their intercellular interactions. RESULTS: Through an extensive bioinformatics analysis, CXCL9, CCL5, GZMA and GZMK were identified as hub genes that distinguished IPAH patients from controls. Among these genes, pulmonary expression levels of Cxcl9, Ccl5 and Gzma were elevated in monocrotaline-exposed rats. Further investigation revealed that only CCL5 and GZMA were highly expressed in T and NK cells, where CCL5 mediated T and NK cell interaction with endothelial cells, smooth muscle cells, and fibroblasts through multiple receptors. CONCLUSIONS: Our study identified a new inflammatory pathway in IPAH, where T and NK cells drove heightened inflammation predominantly via the upregulation of CCL5, providing groundwork for the development of targeted therapeutics.


Asunto(s)
Quimiocina CCL5 , Hipertensión Pulmonar Primaria Familiar , Células Asesinas Naturales , RNA-Seq , Análisis de la Célula Individual , Linfocitos T , Animales , Humanos , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Hipertensión Pulmonar Primaria Familiar/genética , Hipertensión Pulmonar Primaria Familiar/patología , Hipertensión Pulmonar Primaria Familiar/metabolismo , Linfocitos T/metabolismo , Linfocitos T/inmunología , Masculino , Comunicación Celular/genética , Ratas Sprague-Dawley , Pulmón/patología , Ratas , Redes Reguladoras de Genes , Monocrotalina , Mapas de Interacción de Proteínas/genética , Biología Computacional
2.
Blood ; 140(15): 1686-1701, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-35881840

RESUMEN

Hematopoietic stem cells (HSCs) have reduced capacities to properly maintain and replenish the hematopoietic system during myelosuppressive injury or aging. Expanding and rejuvenating HSCs for therapeutic purposes has been a long-sought goal with limited progress. Here, we show that the enzyme Sphk2 (sphingosine kinase 2), which generates the lipid metabolite sphingosine-1-phosphate, is highly expressed in HSCs. The deletion of Sphk2 markedly promotes self-renewal and increases the regenerative potential of HSCs. More importantly, Sphk2 deletion globally preserves the young HSC gene expression pattern, improves the function, and sustains the multilineage potential of HSCs during aging. Mechanistically, Sphk2 interacts with prolyl hydroxylase 2 and the Von Hippel-Lindau protein to facilitate HIF1α ubiquitination in the nucleus independent of the Sphk2 catalytic activity. Deletion of Sphk2 increases hypoxic responses by stabilizing the HIF1α protein to upregulate PDK3, a glycolysis checkpoint protein for HSC quiescence, which subsequently enhances the function of HSCs by improving their metabolic fitness; specifically, it enhances anaerobic glycolysis but suppresses mitochondrial oxidative phosphorylation and generation of reactive oxygen species. Overall, targeting Sphk2 to enhance the metabolic fitness of HSCs is a promising strategy to expand and rejuvenate functional HSCs.


Asunto(s)
Células Madre Hematopoyéticas , Esfingosina , Glucólisis/genética , Células Madre Hematopoyéticas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Prolil Hidroxilasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Phys Rev Lett ; 132(2): 020601, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38277590

RESUMEN

Anyons, exotic quasiparticles in two-dimensional space exhibiting nontrivial exchange statistics, play a crucial role in universal topological quantum computing. One notable proposal to manifest the fractional statistics of anyons is the toric code model; however, scaling up its size through quantum simulation poses a serious challenge because of its highly entangled ground state. In this Letter, we demonstrate that a modular superconducting quantum processor enables hardware-pragmatic implementation of the toric code model. Through in-parallel control across separate modules, we generate a 10-qubit toric code ground state in four steps and realize six distinct braiding paths to benchmark the performance of anyonic statistics. The path independence of the anyonic braiding statistics is verified by correlation measurements in an efficient and scalable fashion. Our modular approach, serving as a hardware embodiment of the toric code model, offers a promising avenue toward scalable simulation of topological phases, paving the way for quantum simulation in a distributed fashion.

4.
Thromb J ; 22(1): 17, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317247

RESUMEN

Patients with venous thromboembolism (VTE) comorbid renal insufficiency (RI) are at higher risk of bleeding and thrombosis. Recommendations in guidelines on anticoagulation therapy for those patients remain ambiguous. The goal of this study is to compare the efficacy and safety between different anticoagulant regimens in VTE patients comorbid RI at different stages of treatment and prophylaxis. We performed English-language searches of Pubmed, EMBASE, and Web of Science (inception to Nov 2022). RCTs evaluated anticoagulants for VTE treatment at the acute phase, extension phase, and prophylaxis in patients with RI and reported efficacy and safety outcomes were selected. The methodological quality of the studies was assessed at the outcome level using the risk-of-bias assessment tool developed by the Cochrane Bias Methods Group. A meta-analysis of twenty-five RCTs was conducted, comprising data from twenty-three articles, encompassing a total of 9,680 participants with RI. In the acute phase, the risk of bleeding was increased with novel oral anticoagulants (NOACs) compared to LMWH (RR 1.29, 95% CI 1.04-1.60). For the prophylaxis of VTE, NOACs were associated with an elevated risk of bleeding compared with placebo (RR 1.31, 95%CI 1.02-1.68). In comparison to non-RI patients, both NOACs and vitamin K antagonists (VKA) could increase the risk of bleeding among RI patients (RR 1.45, 95%CI 1.14-1.84 and RR 1.53, 95%CI 1.25-1.88, respectively) during acute phase, while NOACs may increase the incidence of VTE in RI population (RR 1.74, 95%CI 1.29-2.34). RI patients who are under routine anticoagulation have a significantly higher risk of adverse outcomes. LMWH is the most effective and safe option for VTE treatment or prophylaxis in patients with RI.

5.
BMC Pulm Med ; 24(1): 265, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825688

RESUMEN

BACKGROUND: Chronic thromboembolic pulmonary hypertension (CTEPH) is a progressive pulmonary vascular disorder with substantial morbidity and mortality, also a disease underdiagnosed and undertreated. It is potentially curable by pulmonary endarterectomy (PEA) in patients with surgically accessible thrombi. Balloon pulmonary angioplasty (BPA) and targeted medical therapy are options for patients with distal lesions or persistent/recurrent pulmonary hypertension after PEA. There is an urgent need to increase the awareness of CTEPH. Qualified CTEPH centers are still quite limited. Baseline characteristics, management pattern and clinical outcome of CTEPH in China needs to be reported. METHODS AND DESIGN: The CHinese reAl-world study to iNvestigate the manaGEment pattern and outcomes of chronic thromboembolic pulmonary hypertension (CHANGE) study is designed to provide the multimodality treatment pattern and clinical outcomes of CTEPH in China. Consecutive patients who are ≥ 14 year-old and diagnosed with CTEPH are enrolled. The diagnosis of CTEPH is confirmed in right heart catheterization and imaging examinations. The multimodality therapeutic strategy, which consists of PEA, BPA and targeted medical therapy, is made by a multidisciplinary team. The blood sample and tissue from PEA are stored in the central biobank for further research. The patients receive regular follow-up every 3 or 6 months for at least 3 years. The primary outcomes include all-cause mortality and changes in functional and hemodynamic parameters from baseline. The secondary outcomes include the proportion of patients experiencing lung transplantation, the proportion of patients experiencing heart and lung transplantation, and changes in health-related quality of life. Up to 31 December 2023, the study has enrolled 1500 eligible patients from 18 expert centers. CONCLUSIONS: As a real-world study, the CHANGE study is expected to increase our understanding of CTEPH, and to fill the gap between guidelines and the clinical practice in the diagnosis, assessment and treatment of patients with CTEPH. REGISTRATION NUMBER IN CLINICALTRIALS.GOV: NCT05311072.


Asunto(s)
Angioplastia de Balón , Endarterectomía , Hipertensión Pulmonar , Embolia Pulmonar , Humanos , Hipertensión Pulmonar/terapia , China , Embolia Pulmonar/complicaciones , Embolia Pulmonar/terapia , Enfermedad Crónica , Calidad de Vida , Resultado del Tratamiento , Femenino , Terapia Combinada , Masculino , Pueblos del Este de Asia
6.
J Gastroenterol Hepatol ; 38(7): 1123-1130, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36879550

RESUMEN

BACKGROUND AND AIM: Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor with high prevalence of KIT and PDGFRA mutations. Few effective treatments can be exploited in imatinib or sunitinib resistant cases. While in immunotherapy, application of the highly individualized cancer neoantigen vaccines is hampered due to high economic and time cost. In this study we identified the most frequent mutation in Chinese GIST patients and predicted candidate neopeptide by next generation sequencing (NGS). METHODS: Tumor tissues and matched blood samples of 116 Chinese GIST patients were collected. Genomic profile was detected through NGS, and 450 cancer genes were deeply sequenced. KIT mutations were identified, and long peptides containing the mutation were queried in NetMHCpan 4.0 tools to predict MHC class I binding of mutant peptides. RESULTS: The most frequent mutated genes in detected GIST patients were KIT (81.9%, 95/116), CDKN2A (18.97%, 22/116), and CDKN2B (15.52%, 18/116) in this cohort. The most common mutation of KIT was A502_Y503 duplication (15.93%, 18/113) in exon 9. Among the 116 cases, 103 were HLA I genotyped, and 101 were HLA II genotyped. In total, 16 samples with the mutation of KIT p.A502_Y503dup were identified to produce neoantigens with qualified HLA affinity. CONCLUSIONS: KIT hotspot mutation (p.A502_Y503dup) has the highest incidence, which may further eliminate the need for whole genome sequencing and patient-specific neoantigen prediction and synthesis. Therefore, for those carrying such mutation, accounting for around 16% of Chinese GIST patients and are usually less sensitive to imatinib, effective immunotherapies are in prospect.


Asunto(s)
Antineoplásicos , Tumores del Estroma Gastrointestinal , Humanos , Antineoplásicos/uso terapéutico , Pueblos del Este de Asia , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Mesilato de Imatinib/uso terapéutico , Mutación , Proteínas Proto-Oncogénicas c-kit/genética , Sunitinib/uso terapéutico , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética
7.
Cellulose (Lond) ; 30(5): 3073-3082, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776789

RESUMEN

Owing to unique physiochemical and biological properties as well as the ability to be combined with a wide variety of materials for both biocompatibility and hydrophilia, carboxymethyl cellulose (CMC) is an excellent choice as a carrier. Loading Chlorine dioxide (ClO2) into biodegradable carrier for its good disinfection performance and high safety factors has attracted significantattention. Therefore, in this study, we used ClO2 as a model drug, and a sustained-ClO2-gas-release gel was developed from degradable materials, such as carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and ß-cyclodextrin (ßCD), through a simple and benign crosslinking strategy. Notably, the gel had sustained-release property in a wide temperature range of 4-35 â„ƒ and released ClO2 gas effectively for more than 30 days. Furthermore, a loss factor was proposed based on the incomplete release of the drug in the sustained release process to a chieve a good fit with the gas diffusion process. A new diffusion model was designed based on the Korsmeyer-Peppas model, and an excellent fit was obtained. This sustained-ClO2-gas-release gel provides theoretical and technical guidance for the development of sustained-disinfectant-release agents for use in space and offers new insights into the sustained release model of skeleton-soluble hydrogels. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-023-05070-6.

8.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047745

RESUMEN

P2ry12 is a microglial marker gene. Recently, increasing evidence has demonstrated that its expression levels can vary in response to different CNS disorders and can affect microglial functions, such as polarization, plasticity, and migration. However, the expression and function of P2ry12 in microglia during ischemia-reperfusion injury (IRI) remain unclear. Here, we developed a computational method to obtain microglia-specific P2ry12 genes (MSPGs) using sequencing data associated with IRI. We evaluated the change in comprehensive expression levels of MSPGs during IRI and compared it to the expression of P2ry12 to determine similarity. Subsequently, the MSPGs were used to explore the P2ry12 functions in microglia through bioinformatics. Moreover, several animal experiments were also conducted to confirm the reliability of the results. The expression of P2ry12 was observed to decrease gradually within 24 h post injury. In response, microglia with reduced P2ry12 expression showed an increase in the expression of one receptor-encoding gene (Flt1) and three ligand-encoding genes (Nampt, Igf1, and Cxcl2). Furthermore, double-labeling immunofluorescence staining revealed that inhibition of P2ry12 blocked microglial migration towards vessels during IRI. Overall, we employ a combined computational and experimental approach to successfully explore P2ry12 expression and function in microglia during IRI.


Asunto(s)
Microglía , Daño por Reperfusión , Animales , Microglía/metabolismo , Reproducibilidad de los Resultados , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo
9.
Anal Bioanal Chem ; 413(30): 7531-7539, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34635932

RESUMEN

Acrylamide is a group 2A carcinogen and potential endocrine disruptor that can enter the ecosystem by various routes and has recently become a dangerous pollutant. This widely used chemical can enter the human body via air inhalation, food or water consumption, or skin contact. In this study, we developed a peptide probe for the detection of acrylamide by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) after its micro-tagging with a peptide. Direct detection of acrylamide by MALDI-TOF MS is not feasible due to its poor ionization in the MALDI interface, which hinders its analysis by the technique. After microwave irradiation for 2 min, the formed acrylamide-peptide derivative was detected easily by MALDI-TOF MS without the need for extraction procedures. The procedure does not involve organic solvents and a water-soluble peptide that allows detection of acrylamide in small sample volumes with a limit of detection (LOD) of 0.05 ng/µL. The relative standard deviation (RSD) and relative error (RE) of the measurements were < 6.7% for intra- and inter-day assays. Gel-washing solutions from a polyacrylamide gel experiment were used as a model to study the efficiency of the developed method. Finally, we used the proposed method for the detection of free acrylamide in small volumes of lung epithelial cells (a model to test the air inhalation of acrylamide under a tiny volume of sample) and human urine. The developed method will enable rapid acrylamide detection in environmental and biological samples via a green approach based on microwave-assisted derivatization in water alongside the use of a less toxic derivatization reagent, reusable target plate, and miniaturization protocols.


Asunto(s)
Acrilamida/análisis , Sondas Moleculares/química , Péptidos/química , Acrilamida/orina , Animales , Línea Celular , Células Epiteliales/química , Humanos , Límite de Detección , Pulmón/química , Pulmón/citología , Ratones , Reproducibilidad de los Resultados , Solventes/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
10.
Phys Rev Lett ; 125(9): 090502, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32915602

RESUMEN

The detection of topological phases of matter has become a central issue in recent years. Conventionally, the realization of a specific topological phase in condensed matter physics relies on probing the underlying surface band dispersion or quantum transport signature of a real material, which may be imperfect or even absent. On the other hand, quantum simulation offers an alternative approach to directly measure the topological invariant on a universal quantum computer. However, experimentally demonstrating high-dimensional topological phases remains a challenge due to the technical limitations of current experimental platforms. Here, we investigate the three-dimensional topological insulators in the AIII (chiral unitary) symmetry class, which yet lack experimental realization. Using the nuclear magnetic resonance system, we experimentally demonstrate their topological properties, where a dynamical quenching approach is adopted and the dynamical bulk-boundary correspondence in the momentum space is observed. As a result, the topological invariants are measured with high precision on the band-inversion surface, exhibiting robustness to the decoherence effect. Our Letter paves the way toward the quantum simulation of topological phases of matter in higher dimensions and more complex systems through controllable quantum phases transitions.

11.
Chembiochem ; 19(22): 2395-2402, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30155962

RESUMEN

Transketolase (TK) catalyzes a reversible transfer of a two-carbon (C2 ) unit between phosphoketose donors and phosphoaldose acceptors, for which the group-transfer reaction that follows a one- or two-electron mechanism and the force that breaks the C2"-C3" bond of the ketose donors remain unresolved. Herein, we report ultrahigh-resolution crystal structures of a TK (TKps) from Pichia stipitis in previously undiscovered intermediate states and support a diradical mechanism for a reversible group-transfer reaction. In conjunction with MS, NMR spectroscopy, EPR and computational analyses, it is concluded that the enzyme-catalyzed non-Kekulé diradical cofactor brings about the C2"-C3" bond cleavage/formation for the C2 -unit transfer reaction, for which suppression of activation energy and activation and destabilization of enzymatic intermediates are facilitated.


Asunto(s)
Pichia/enzimología , Transcetolasa/química , Biocatálisis , Cristalografía por Rayos X , Escherichia coli/genética , Cinética , Modelos Moleculares , Oxidación-Reducción
12.
Anal Bioanal Chem ; 410(28): 7405-7414, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30191273

RESUMEN

In the clinic, ethosuximide is commonly used to treat generalized absence seizures but has recently been repurposed for other diseases. Because of adverse effects and drug interactions, high-throughput therapeutic drug monitoring of ethosuximide is necessary. Microextraction is a simple, effective, rapid, and low consumption of organic solvents method for sample preparation. In this study, microderivatization-increased detection (MDID)-combined microextraction was used to detect ethosuximide by mass spectrometry. Ethosuximide is a difficult to retain and ionize compound in the C18 nano-flow column and ionization interface, respectively. Hence, we developed a fast method for detecting ethosuximide in human plasma by using the MDID strategy (within 2 min). Chemical microderivatization parameters were studied and optimized to increase the sensitivity of ethosuximide detection at trace levels. The linear range for the analysis of ethosuximide in 10 µL plasma was 5-500 µg/mL with a coefficient of determination (r2) ≥ 0.995. The precision and accuracy of intraday and interday analyses of ethosuximide were below 13.0%. Furthermore, modifications of major proteins in plasma and blood cells, induced by ethosuximide, were identified. The proposed method effectively utilizes microliter samples to detect drug plasma concentrations under suitable microextraction procedures toward the eco-friendly goal of low consumption of organic solvents. Graphical abstract ᅟ.


Asunto(s)
Proteínas Sanguíneas/química , Etosuximida/sangre , Microextracción en Fase Líquida/métodos , Etosuximida/química , Humanos , Espectrometría de Masas , Estructura Molecular , Sensibilidad y Especificidad
13.
Sensors (Basel) ; 18(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563137

RESUMEN

Current mainstream navigation and positioning equipment, intended for providing accurate positioning signals, comprise global navigation satellite systems, maps, and geospatial databases. Although global navigation satellite systems have matured and are widespread, they cannot provide effective navigation and positioning services in covered areas or areas lacking strong signals, such as indoor environments. To solve the problem of positioning in environments lacking satellite signals and achieve cost-effective indoor positioning, this study aimed to develop an inexpensive indoor positioning program, in which the positions of users were calculated by pedestrian dead reckoning (PDR) using the built-in accelerometer and gyroscope in a mobile phone. In addition, the corner and linear calibration points were established to correct the positions with the map assistance. Distance, azimuth, and rotation angle detections were conducted for analyzing the indoor positioning results. The results revealed that the closure accuracy of the PDR positioning was enhanced by more than 90% with a root mean square error of 0.6 m after calibration. Ninety-four percent of the corrected PDR positioning results exhibited errors of <1 m, revealing a desk-level positioning accuracy. Accordingly, this study successfully combined mobile phone sensors with map assistance for improving indoor positioning accuracy.

14.
Opt Express ; 24(12): 13394-409, 2016 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-27410357

RESUMEN

Although the numerous advantages of polymer optical fiber (POF) sensors have been applied in different fields, the measurement consistency and sensitivity of POF evanescent wave (EW) sensors are still affected by its thermal stability and water absorption. Therefore, we perform a study to demonstrate the mechanism of the effect of heat treatments on physical and optical properties of POF EW sensors. We investigate the surface morphology, composition, refractive index, geometry, and weight of the fiber-sensing region subjected to water and vacuum heat treatments. We examine the spectral transmission and transmitted light intensity of POF sensors. We present a theoretical investigation of the effect of heat treatments on the sensitivity of POF EW sensors. The performance of the prepared sensor is evaluated using glucose and Chlorella pyrenoidosa analytes. We discovered that the spectral transmission and transmitted light intensity of the fibers shows little effect of vacuum heat treatments. In particular, the sensors, which subject to vacuum heat treatment at 110 °C for 3 h, exhibit temperature-independent measuring consistency and high sensitivity in glucose solutions in the temperature range 15-60 °C and also show high sensitivity in Chlorella pyrenoidosa solutions.

15.
Calcif Tissue Int ; 97(6): 581-91, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26314884

RESUMEN

Diabetic osteoporosis continues to surge worldwide, increasing the risk of fracture. We have previously demonstrated that haploinsufficiency of endogenous parathyroid hormone-related peptide (PTHrP) impairs fracture healing. However, whether an exogenous supply of PTHrP can repair bone damage and accelerate fracture healing remains unclear. This study aimed to assess the efficacy and safety of PTHrP in healing fractures. Standardized mid-diaphyseal femur fractures were generated in 12-week-old wild-type and leptin receptor null Lepr(-/-) mice. After administration of PTHrP for 2 weeks, callus tissue properties were analyzed by radiography, micro-computed tomography, histology, histochemistry, immunohistochemistry, and molecular biology techniques. At 2 weeks post-fracture, cartilaginous callus areas were reduced, while total callus and bony callus areas were increased in PTHrP-treated Lepr(-/-) animals and control wild-type mice, compared with vehicle-treated Lepr(-/-) mice. The following parameters were enhanced both in Lepr(-/-) mice after treatment with PTHrP and vehicle-treated wild-type animals, compared with vehicle-treated Lepr(-/-) mice: osteoblast numbers; tissue alkaline phosphatase (ALP) and Type I collagen immunopositive areas; mRNA levels of ALP, Type I collagen, osteoprotegerin, and receptor activator for nuclear factor-κ B ligand; protein levels of Runt-related transcription factor 2 and insulin-like growth factor-1; and the number and surface of osteoclasts. In conclusion, exogenous PTHrP by subcutaneous injection promotes fracture repair in Lepr(-/-) mice by increasing callus formation and accelerating cell transformation: upregulated osteoblastic gene and protein expression, increased endochondral bone formation, osteoblastic bone formation, and osteoclastic bone resorption. However, complete repair was not obtained in PTHrP-treated Lepr(-/-) mice as in control wild-type animals.


Asunto(s)
Fracturas del Fémur/patología , Curación de Fractura/efectos de los fármacos , Proteína Relacionada con la Hormona Paratiroidea/farmacología , Animales , Western Blotting , Resorción Ósea/metabolismo , Modelos Animales de Enfermedad , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Ratones , Ratones Noqueados , Osteogénesis/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Microtomografía por Rayos X
16.
Life Sci ; 344: 122576, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492918

RESUMEN

Long non-coding RNAs (lncRNAs) have emerged as influential contributors to diverse cellular processes, which regulate gene function and expression via multiple mechanistic pathways. Therefore, it is essential to exploit the structures and interactions of lncRNAs to comprehend their mechanistic functions within cells. A growing body of evidence has revealed that deregulated lncRNAs are involved in multiple regulations of malignant events including cell proliferation, growth, invasion, and metabolism. SRY-related high mobility group box (SOX)2, a well-recognized member of the SOX family, is commonly overexpressed in various types of cancer, contributing to tumor progression and maintenance of stemness. Emerging studies have shown that lncRNAs interact with SOX2 to remarkably contribute to carcinogenesis and disease states. This review elaborates on the crosstalk between the intricate and complicated functions of lncRNAs and SOX2 in the context of malignant diseases. We elucidate distinct molecular mechanisms that contribute to the onset/advancement of cancer, indicating that lncRNAs/SOX2 axes hold immense promise for potential therapeutic targets. Furthermore, we delve into the modalities of emerging feasible treatment options for targeting lncRNAs, highlighting the limitations of such therapies and providing novel insights into further ameliorations of targeted strategies of lncRNAs to promote the clinical implications. Translating current discoveries into clinical applications could ultimately boost improved survival and prognosis of cancer patients.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Factores de Transcripción SOXB1 , Humanos , Biomarcadores de Tumor/genética , Carcinogénesis , Regulación Neoplásica de la Expresión Génica , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
17.
Mol Cancer Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953887

RESUMEN

Endometrial cancer (EC) is one of the predominant tumors of the female reproductive system. In this current study, we investigated the functions and related mechanisms of NAP1L1/DDX5 in EC. This retrospective study analyzed the medical records of EC patients, collected tissue samples for NAP1L1 and DDX5 staining, and conducted survival analysis using the Kaplan-Meier method. To evaluate the impact of NAP1L1 and/or DDX5 on cellular processes in EC cells, several techniques were employed. These included CCK-8 assay, wound healing assay, Transwell assay, as well as overexpression or knockdown of target gene expression. Additionally, ChIP, dual luciferase reporter gene, Co-IP assay were utilized to confirm the interaction between NAP1L1, EP300 and DDX5. Furthermore, qRT-PCR, western blot and Co-IP assay were performed to analyze the modulation of NAP1L1/DDX5 in Wnt/ß-catenin. NAP1L1 and DDX5 expression were upregulated in EC tissues, and correlated with poor prognosis. NAP1L1/DDX5 promoted EC cell proliferation, migration and invasion. NAP1L1 promotes acetylation and transcription by recruiting EP300 to the DDX5 promoter. DDX5 could activate Wnt/ß-catenin signal by binding to ß-catenin. In animal models, knockdown of NAP1L1 inhibits EC tumor growth and lung metastasis. To sum up, our study demonstrated that NAP1L1 promoted the malignant phenotypes of EC cells via recruiting EP300 to promote DDX5 acetylation, thus activating the Wnt/ß-catenin signaling pathway. Implications: Our research findings indicate that targeting the NAP1L1/EP300/DX5 axis might be a new potential treatment option for endometrial cancer.

18.
Cancer Manag Res ; 16: 691-701, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948681

RESUMEN

Purpose: As one of the most important breakthroughs in cancer therapy, immune checkpoint inhibitors have greatly prolonged survival of patients with breast cancer. However, their application and efficacy are limited, especially for advanced HER2-negative breast cancer. It has been reported that epigenetic modulation of the histone deacetylase (HDAC) inhibitor chidamide, as well as immune microenvironment modulation of radiotherapy are potentially synergistic with immunotherapy. Thus, the combination of chidamide, radiotherapy and immunotherapy is expected to improve prognosis of patients with advanced HER2-negative breast cancer. Patients and Methods: This is a single-arm, open, prospective clinical trial investigating the efficacy and safety of the combination of HDAC inhibitor chidamide, anti-PD-1 antibody sintilimab, and the novel immuno-radiotherapy, which aims to enhance efficacy of immunotherapy, in subsequent lines of therapy of HER2-negative breast cancer. Our study will include 35 patients with advanced breast cancer that has failed endocrine therapy and first-line chemotherapy. Participants will receive 30 mg of chidamide twice a week, 200 mg of sintilimab once every 3 weeks, combined with immuno-radiotherapy. Radiotherapy will be centrally 8 Gy for at least one lesion, and at least 1 Gy for the other lesions. We will complete three fractions of radiotherapy in one cycle. The primary endpoint is progression-free survival, and secondary endpoints are objective response rate, disease control rate and safety. Moreover, biomarkers including cytokines and lymphocyte subgroups will be explored. Conclusion: As a single-arm clinical trial, the analysis of the influence of each single treatment is limited. Besides, our study is an open study, which involves neither randomization nor blinding. In spite of the abovementioned limitations, this prospective clinical trial will give an insight into subsequent lines of therapy of HER2-negative advanced breast cancer, prolong the survival or achieve long remission for these participants, and identify potential responders.

19.
Heart Lung ; 64: 189-197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38290183

RESUMEN

BACKGROUND: Multiple studies have highlighted a potential link between gut microbes and the onset of Pulmonary Arterial Hypertension (PAH). Nonetheless, the precise cause-and-effect relationship remains uncertain. OBJECTIVES: In this investigation, we utilized a two-sample Mendelian randomization (TSMR) approach to probe the presence of a causal connection between gut microbiota and PAH. METHODS: Genome-wide association (GWAS) data for gut microbiota and PAH were sourced from MiBioGen and FinnGen research, respectively. Inverse variance weighting (IVW) was used as the primary method to explore the causal effect between gut flora and PAH, supplemented by MR-Egger, weighted median (WM). Sensitivity analyses examined the robustness of the MR results. Reverse MR analysis was used to rule out the effect of reverse causality on the results. RESULTS: The results indicate that Genus Ruminococcaceae UCG004 (OR = 0.407, P = 0.031) and Family Alcaligenaceae (OR = 0.244, P = 0.014) were protective factors for PAH. Meanwhile Genus Lactobacillus (OR = 2.446, P = 0.013), Class Melainabacteria (OR = 2.061, P = 0.034), Phylum Actinobacteria (OR = 3.406, P = 0.010), Genus Victivallis (OR = 1.980, P = 0.010), Genus Dorea (OR = 3.834, P = 0.024) and Genus Slackia (OR = 2.622, P = 0.039) were associated with an increased Prevalence of PAH. Heterogeneity and pleiotropy were not detected by sensitivity analyses, while there was no reverse causality for these nine specific gut microorganisms. CONCLUSIONS: This study explores the causal effects of eight gut microbial taxa on PAH and provides new ideas for early prevention of PAH.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Arterial Pulmonar/epidemiología , Hipertensión Arterial Pulmonar/genética , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Hipertensión Pulmonar Primaria Familiar
20.
Pulm Circ ; 14(1): e12327, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38162296

RESUMEN

Balloon pulmonary angioplasty (BPA) has been proven effective for addressing technically inoperable chronic thromboembolic pulmonary hypertension (CTEPH). However, the effectiveness of BPA in technically operable CTEPH patients who, for various reasons, did not undergo the procedure remains an area requiring exploration. This study sought to assess the safety and efficacy of BPA in such cases. We collected and reviewed data from CTEPH patients who underwent BPA in a consecutive manner. Following multidisciplinary team (MDT) decisions, patients were classified into two groups: technically inoperable (group A) and operable (group B). Group B comprised patients deemed technically suitable for pulmonary endarterectomy (PEA) but who did not undergo the procedure for various reasons. All patients underwent a comprehensive diagnostic work-up, including right heart categorization at baseline and the last intervention. This study compared changes in hemodynamic parameters, functional capacity, and quality of life between the two groups. In total, 161 patients underwent 414 procedures at our center, with Group A comprising 112 patients who underwent 282 BPA sessions and group B comprising 49 patients who underwent 132 BPA sessions. Significantly, both groups exhibited improvements in hemodynamics, functional capacity, and quality of life. The occurrence rate of complications, including hemoptysis and lung injury, was similar [12 (63.2%) vs. 7 (36.8%), p = 0.68]. BPA demonstrated favorable outcomes in patients with proximal CTEPH who did not undergo pulmonary endarterectomy. However, the clinical impact of BPA in technically operable CTEPH was found to be less significant than in inoperable cases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA