Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23369, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100642

RESUMEN

The human cardiovascular system has evolved to accommodate the gravity of Earth. Microgravity during spaceflight has been shown to induce vascular remodeling, leading to a decline in vascular function. The underlying mechanisms are not yet fully understood. Our previous study demonstrated that miR-214 plays a critical role in angiotensin II-induced vascular remodeling by reducing the levels of Smad7 and increasing the phosphorylation of Smad3. However, its role in vascular remodeling evoked by microgravity is not yet known. This study aimed to determine the contribution of miR-214 to the regulation of microgravity-induced vascular remodeling. The results of our study revealed that miR-214 expression was increased in the forebody arteries of both mice and monkeys after simulated microgravity treatment. In vitro, rotation-simulated microgravity-induced VSMC migration, hypertrophy, fibrosis, and inflammation were repressed by miR-214 knockout (KO) in VSMCs. Additionally, miR-214 KO increased the level of Smad7 and decreased the phosphorylation of Smad3, leading to a decrease in downstream gene expression. Furthermore, miR-214 cKO protected against simulated microgravity induced the decline in aorta function and the increase in stiffness. Histological analysis showed that miR-214 cKO inhibited the increases in vascular medial thickness that occurred after simulated microgravity treatment. Altogether, these results demonstrate that miR-214 has potential as a therapeutic target for the treatment of vascular remodeling caused by simulated microgravity.


Asunto(s)
MicroARNs , Ingravidez , Humanos , Ratones , Animales , Músculo Liso Vascular/metabolismo , MicroARNs/metabolismo , Remodelación Vascular/genética , Aorta/metabolismo , Miocitos del Músculo Liso/metabolismo
2.
Cell Commun Signal ; 22(1): 257, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711089

RESUMEN

Benign prostatic hyperplasia (BPH) is a multifactorial disease in which abnormal growth factor activation and embryonic reawakening are considered important factors. Here we demonstrated that the aberrant activation of transforming growth factor ß (TGF-ß)/Rho kinase 1 (ROCK1) increased the stemness of BPH tissue by recruiting mesenchymal stem cells (MSCs), indicating the important role of embryonic reawakening in BPH. When TGF-ß/ROCK1 is abnormally activated, MSCs are recruited and differentiate into fibroblasts/myofibroblasts, leading to prostate stromal hyperplasia. Further research showed that inhibition of ROCK1 activation suppressed MSC migration and their potential for stromal differentiation. Collectively, our findings suggest that abnormal activation of TGF-ß/ROCK1 regulates stem cell lineage specificity, and the small molecule inhibitor GSK269962A could target ROCK1 and may be a potential treatment for BPH.


Asunto(s)
Células Madre Mesenquimatosas , Hiperplasia Prostática , Factor de Crecimiento Transformador beta , Quinasas Asociadas a rho , Quinasas Asociadas a rho/metabolismo , Masculino , Hiperplasia Prostática/patología , Hiperplasia Prostática/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Diferenciación Celular , Próstata/patología , Próstata/metabolismo , Movimiento Celular , Ratones , Células del Estroma/metabolismo , Células del Estroma/patología
3.
J Nanobiotechnology ; 22(1): 208, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664789

RESUMEN

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS: Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS: Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteocitos , Osteogénesis , Tropomiosina , Animales , Masculino , Ratones , Adipogénesis , Diferenciación Celular , Células Cultivadas , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoclastos/metabolismo , Osteocitos/metabolismo , Osteoporosis/metabolismo , Tropomiosina/metabolismo , Tropomiosina/genética
4.
World J Urol ; 41(12): 3629-3634, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37831157

RESUMEN

PURPOSE: To determine the difference in the burden of benign prostatic hyperplasia (BPH) between China and the United States from 1990 to 2019. METHODS: The prevalence, incidence, Years Lived with Disability (YLD), and their age-standardized rates for BPH in China and USA from 1990 to 2019 were based on the Global Burden of Disease Study 2019 (GBD 2019). The annual percentage changes (APC) of the age-standardized incidence rate (ASIR) and the age-standardized YLD rates (ASYR) were calculated using joinpoint regression analysis. The YLD numbers of six urinary tract diseases were also compared in both countries. RESULTS: The absolute burden of BPH increased continuously in both countries, but it was much higher in China than in the United States. The ASIR and ASYR of BPH decreased in China but remained stable or decreased slightly in the United States. BPH incidence and YLD rates decreased in all age groups in China from 1990 to 2019. In the USA, they varied by age group. BPH caused more YLD number than any other urinary tract disease in China. In the USA, prostate cancer (PCa) caused more YLDs than BPH. CONCLUSIONS: This research reveals marked BPH burden differences between China and the US (1990-2019). China's higher burden necessitates targeted interventions, while unique trends in both countries demand tailored strategies. These insights enhance understanding of BPH dynamics, informing effective interventions across diverse contexts.


Asunto(s)
Carga Global de Enfermedades , Hiperplasia Prostática , Masculino , Humanos , Estados Unidos/epidemiología , Hiperplasia Prostática/epidemiología , Incidencia , Prevalencia , China/epidemiología , Años de Vida Ajustados por Calidad de Vida
5.
Circulation ; 144(9): 694-711, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34139860

RESUMEN

BACKGROUND: Without adequate treatment, pathological cardiac hypertrophy induced by sustained pressure overload eventually leads to heart failure. WWP1 (WW domain-containing E3 ubiquitin protein ligase 1) is an important regulator of aging-related pathologies, including cancer and cardiovascular diseases. However, the role of WWP1 in pressure overload-induced cardiac remodeling and heart failure is yet to be determined. METHODS: To examine the correlation of WWP1 with hypertrophy, we analyzed WWP1 expression in patients with heart failure and mice subjected to transverse aortic constriction (TAC) by Western blotting and immunohistochemical staining. TAC surgery was performed on WWP1 knockout mice to assess the role of WWP1 in cardiac hypertrophy, heart function was examined by echocardiography, and related cellular and molecular markers were examined. Mass spectrometry and coimmunoprecipitation assays were conducted to identify the proteins that interacted with WWP1. Pulse-chase assay, ubiquitination assay, reporter gene assay, and an in vivo mouse model via AAV9 (adeno-associated virus serotype 9) were used to explore the mechanisms by which WWP1 regulates cardiac remodeling. AAV9 carrying cardiac troponin T (cTnT) promoter-driven small hairpin RNA targeting WWP1 (AAV9-cTnT-shWWP1) was administered to investigate its rescue role in TAC-induced cardiac dysfunction. RESULTS: The WWP1 level was significantly increased in the hypertrophic hearts from patients with heart failure and mice subjected to TAC. The results of echocardiography and histology demonstrated that WWP1 knockout protected the heart from TAC-induced hypertrophy. There was a direct interaction between WWP1 and DVL2 (disheveled segment polarity protein 2). DVL2 was stabilized by WWP1-mediated K27-linked polyubiquitination. The role of WWP1 in pressure overload-induced cardiac hypertrophy was mediated by the DVL2/CaMKII/HDAC4/MEF2C signaling pathway. Therapeutic targeting WWP1 almost abolished TAC induced heart dysfunction, suggesting WWP1 as a potential target for treating cardiac hypertrophy and failure. CONCLUSIONS: We identified WWP1 as a key therapeutic target for pressure overload induced cardiac remodeling. We also found a novel mechanism regulated by WWP1. WWP1 promotes atypical K27-linked ubiquitin multichain assembly on DVL2 and exacerbates cardiac hypertrophy by the DVL2/CaMKII/HDAC4/MEF2C pathway.


Asunto(s)
Cardiomegalia/metabolismo , Proteínas Dishevelled/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Biomarcadores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/diagnóstico , Cardiomegalia/etiología , Cardiomegalia/prevención & control , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/prevención & control , Histona Desacetilasas/metabolismo , Humanos , Inmunohistoquímica , Factores de Transcripción MEF2/metabolismo , Ratones , Ratones Noqueados , Unión Proteica , Estabilidad Proteica , Proteínas Represoras/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
FASEB J ; 35(11): e21947, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34637552

RESUMEN

Vascular remodeling is a prominent trait during the development of hypertension, attributable to the phenotypic transition of vascular smooth muscle cells (VSMCs). Increasing studies demonstrate that microRNA plays an important role in this process. Here, we surprisingly found that smooth muscle cell-specific miR-214 knockout (miR-214 cKO) significantly alleviates angiotensin II (Ang II)-induced hypertension, which has the same effect as that of miR-214 global knockout mice in response to Ang II stimulation. Under the treatment of Ang II, miR-214 cKO mice exhibit substantially reduced systolic blood pressure. The vascular medial thickness and area in miR-214 cKO blood vessels were obviously reduced, the expression of collagen I and proinflammatory factors were also inhibited. VSMC-specific deletion of miR-214 blunts the response of blood vessels to the stimulation of endothelium-dependent and -independent vasorelaxation and phenylephrine and 5-HT induced vasocontraction. In vitro, Ang II-induced VSMC proliferation, migration, contraction, hypertrophy, and stiffness were all repressed with miR-214 KO in VSMC. To further explore the mechanism of miR-214 in the regulation of the VSMC function, it is very interesting to find that the TGF-ß signaling pathway is mostly enriched in miR-214 KO VSMC. Smad7, the potent negative regulator of the TGF-ß/Smad pathway, is identified to be the target of miR-214 in VSMC. By which, miR-214 KO sharply enhances Smad7 levels and decreases the phosphorylation of Smad3, and accordingly alleviates the downstream gene expression. Further, Ang II-induced hypertension and vascular dysfunction were reversed by antagomir-214. These results indicate that miR-214 in VSMC established a crosstalk between Ang II-induced AT1R signaling and TGF-ß induced TßRI /Smad signaling, by which it exerts a pivotal role in vascular remodeling and hypertension and imply that miR-214 has the potential as a therapeutic target for the treatment of hypertension.


Asunto(s)
Angiotensina II/farmacología , Técnicas de Inactivación de Genes/métodos , Hipertensión/inducido químicamente , Hipertensión/metabolismo , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Transducción de Señal/genética , Proteína smad7/metabolismo , Regulación hacia Arriba/genética , Animales , Presión Sanguínea/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Remodelación Vascular/genética
7.
Eur Heart J ; 42(36): 3786-3799, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34347073

RESUMEN

AIMS: 3' untranslated region (3' UTR) of mRNA is more conserved than other non-coding sequences in vertebrate genomes, and its sequence space has substantially expanded during the evolution of higher organisms, which substantiates their significance in biological regulation. However, the independent role of 3' UTR in cardiovascular disease was largely unknown. METHODS AND RESULTS: Using bioinformatics, RNA fluorescent in situ hybridization and quantitative real-time polymerase chain reaction, we found that 3' UTR and coding sequence regions of Ckip-1 mRNA exhibited diverse expression and localization in cardiomyocytes. We generated cardiac-specific Ckip-1 3' UTR overexpression mice under wild type and casein kinase 2 interacting protein-1 (CKIP-1) knockout background. Cardiac remodelling was assessed by histological, echocardiography, and molecular analyses at 4 weeks after transverse aortic constriction (TAC) surgery. The results showed that cardiac Ckip-1 3' UTR significantly inhibited TAC-induced cardiac hypertrophy independent of CKIP-1 protein. To determine the mechanism of Ckip-1 3' UTR in cardiac hypertrophy, we performed transcriptome and metabolomics analyses, RNA immunoprecipitation, biotin-based RNA pull-down, and reporter gene assays. We found that Ckip-1 3' UTR promoted fatty acid metabolism through AMPK-PPARα-CPT1b axis, leading to its protection against pathological cardiac hypertrophy. Moreover, Ckip-1 3' UTR RNA therapy using adeno-associated virus obviously alleviates cardiac hypertrophy and improves heart function. CONCLUSIONS: These findings disclose that Ckip-1 3' UTR inhibits cardiac hypertrophy independently of its cognate protein. Ckip-1 3' UTR is an effective RNA-based therapy tool for treating cardiac hypertrophy and heart failure.


Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Regiones no Traducidas 3'/genética , Animales , Cardiomegalia/genética , Cardiomegalia/prevención & control , Proteínas Portadoras , Insuficiencia Cardíaca/genética , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos
8.
J Cell Mol Med ; 25(12): 5525-5533, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33960660

RESUMEN

Osteoporosis is one of the most common metabolic bone diseases affecting millions of people. We previously found that harmine prevents bone loss in ovariectomized mice via increasing preosteoclast platelet-derived growth factor-BB (PDGF-BB) production and type H vessel formation. However, the molecular mechanisms by which harmine promotes preosteoclast PDGF-BB generation are still unclear. In this study, we revealed that inhibitor of DNA binding-2 (Id2) and activator protein-1 (AP-1) were important factors implicated in harmine-enhanced preosteoclast PDGF-BB production. Exposure of RANKL-induced Primary bone marrow macrophages (BMMs), isolated from tibiae and femora of mice, to harmine increased the protein levels of Id2 and AP-1. Knockdown of Id2 by Id2-siRNA reduced the number of preosteoclasts as well as secretion of PDGF-BB in RANKL-stimulated BMMs administrated with harmine. Inhibition of c-Fos or c-Jun (components of AP-1) both reversed the stimulatory effect of harmine on preosteoclast PDGF-BB production. Dual-luciferase reporter assay analyses determined that PDGF-BB was the direct target of AP-1 which was up-regulated by harmine treatment. In conclusion, our data demonstrated a novel mechanism involving in the production of PDGF-BB increased by harmine, which may provide potential therapeutic targets for bone loss diseases.


Asunto(s)
Becaplermina/metabolismo , Médula Ósea/efectos de los fármacos , Harmina/farmacología , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Macrófagos/efectos de los fármacos , Osteoclastos/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Médula Ósea/metabolismo , Células Cultivadas , Alucinógenos/farmacología , Proteína 2 Inhibidora de la Diferenciación/genética , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Osteoclastos/citología , Factor de Transcripción AP-1/genética
9.
J Am Chem Soc ; 143(3): 1284-1289, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33449698

RESUMEN

Mitochondrial dysregulation controls cell death and survival by changing endogenous molecule concentrations and ion flows across the membrane. Here, we report the design of a triply emissive nanoscale metal-organic layer (nMOL), NA@Zr-BTB/F/R, for sensing mitochondrial dysregulation. Zr-BTB nMOL containing Zr6 secondary building units (SBUs) and 2,4,6-tris(4-carboxyphenyl)aniline (BTB-NH2) ligands was postsynthetically functionalized to afford NA@Zr-BTB/F/R by exchanging formate capping groups on the SBUs with glutathione(GSH)-selective (2E)-1-(2'-naphthyl)-3-(4-carboxyphenyl)-2-propen-1-one (NA) and covalent conjugation of pH-sensitive fluorescein (F) and GSH/pH-independent rhodamine-B (R) to the BTB-NH2 ligands. Cell imaging demonstrated NA@Zr-BTB/F/R as a ratiometric sensor for mitochondrial dysregulation and chemotherapy resistance via GSH and pH sensing.


Asunto(s)
Glutatión/análisis , Estructuras Metalorgánicas/química , Mitocondrias/metabolismo , Nanoestructuras/química , Compuestos de Anilina/química , Técnicas Biosensibles/métodos , Línea Celular Tumoral , Fluoresceína-5-Isotiocianato/química , Colorantes Fluorescentes/química , Humanos , Concentración de Iones de Hidrógeno , Rodaminas/química , Espectrometría de Fluorescencia/métodos , Circonio/química
10.
Bioconjug Chem ; 32(11): 2318-2326, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34607430

RESUMEN

Combination therapy enhances anticancer efficacy through synergistic effects of different drugs/modalities and can potentially address the challenges in the treatment of metastatic diseases. Here we report the design of carb/pyro nanoscale coordination polymer nanoparticles that carry carboplatin (carb) in the core and the photosensitizer pyrolipid (pyro) on the shell for the treatment of metastatic triple negative breast cancer. Upon light irradiation, carb/pyro generated reactive oxygen species to cause severe cell apoptosis and early calreticulin exposure. Upon intravenous injection and local light irradiation, carb/pyro significantly regressed tumor growth in the 4T1 murine metastatic breast cancer model. When combined with an anti-CD47 antibody, carb/pyro with light irradiation completely eradicated primary and metastatic 4T1 tumors in 50% mice. The anticancer efficacy of carb/pyro was also demonstrated in the CT26 murine colorectal cancer model.


Asunto(s)
Fotoquimioterapia
11.
Exp Lung Res ; 47(4): 198-209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33754922

RESUMEN

PURPOSE: Idiopathic pulmonary fibrosis (IPF) is a type of progressive lung fibrosis disease. The survival time of diagnosed IPF patients is often only 2 years. Currently much evidence showed that the epithelial-mesenchymal transition (EMT) process is the main cause of the occurrence and development of IPF. LncRNA cardiac hypertrophy related factor (CHRF) was reported to be related with IPF development. Here we explored the functions and regulatory mechanisms of CHRF on EMT in IPF. MATERIALS AND METHODS: A549 cells were treated with transforming growth factor-ß1 (TGF-ß1) for 48 h to construct IPF cell model. CHRF and miR-146a expression were quantified using qPCR. The expression of L1 cell adhesion molecule (L1CAM) and EMT related indicators (E-cadherin, Vimentin, Slug and N-cadherin) were detected by qPCR and western blot. Dual luciferase reporter experiment was conducted to prove the molecular interaction of miR-146a and L1CAM, as well as CHRF and miR-146a. RESULTS: CHRF and L1CAM expression were significantly upregulated and promoted the EMT process in A549 after treatment of TGF-ß1. MiR-146a was obviously down-regulated, and knockdown of CHRF inhibited the EMT process by up-regulating miR-146a, in A549 after treatment of TGF-ß1. Meanwhile, overexpression of miR-146a inhibited EMT process via targeting L1CAM. In addition, L1CAM overexpression eliminated the inhibitory effect of sh-CHRF on the EMT process. CONCLUSIONS: These results provided evidence that CHRF promoted EMT process in A549 after treatment of TGF-ß1, which proposed a new insight for depth understanding the pathological mechanisms of IPF.


Asunto(s)
Transición Epitelial-Mesenquimal , MicroARNs , Molécula L1 de Adhesión de Célula Nerviosa , ARN Largo no Codificante , Células Epiteliales Alveolares , Línea Celular , Células Epiteliales , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta1
12.
An Acad Bras Cienc ; 91(2): e20181257, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31241707

RESUMEN

Triptolide, a purified diterpenoid from the herb Tripterygium wilfordii Hook.f., was widely used to treat many diseases. However, the hepatotoxicity of triptolide limited its clinical use. Research showed oxidative stress played an important role in triptolide-induced liver injury. To investigate the effect of vitamin C, which was one of the most effective antioxidants, on triptolide-induced hepatotoxicity and its potential mechanism in mice. In the present study, acute liver injury was induced by intraperitoneal injection of triptolide and vitamin C was orally administered. The results showed treatment with vitamin C prevented the triptolide-induced liver injury by reducing the levels of aspartate transaminase from 286.86 to 192.48 U/mL and alanine aminotransferase from 746.75 to 203.36 U/mL. Histopathological changes of liver corresponded to the same trend. Furthermore, vitamin C also protected the liver against triptolide-induced oxidative stress by inhibiting the generation of malondialdehyde (2.22 to 1.49 nmol/mgprot) and hydrogen peroxide (14.74 to 7.19 mmol/gprot) and restoring the level of total superoxide dismutase (24.32 to 42.55 U/mgprot) and glutathione (7.69 to 13.03 µg/mgprot). These results indicated that vitamin C could protect against triptolide-induced liver injury via reducing oxidative stress, and vitamin C may pose a significant health protection in the clinical use of triptolide.


Asunto(s)
Ácido Ascórbico/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Diterpenos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Fenantrenos/toxicidad , Sustancias Protectoras/uso terapéutico , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Compuestos Epoxi/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Sustancias Protectoras/aislamiento & purificación
13.
Arterioscler Thromb Vasc Biol ; 37(9): 1646-1656, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28684613

RESUMEN

OBJECTIVE: Impaired endothelial cell (EC) autophagy compromises shear stress-induced nitric oxide (NO) generation. We determined the responsible mechanism. APPROACH AND RESULTS: On autophagy compromise in bovine aortic ECs exposed to shear stress, a decrease in glucose uptake and EC glycolysis attenuated ATP production. We hypothesized that decreased glycolysis-dependent purinergic signaling via P2Y1 (P2Y purinoceptor 1) receptors, secondary to impaired autophagy in ECs, prevents shear-induced phosphorylation of eNOS (endothelial nitric oxide synthase) at its positive regulatory site S1117 (p-eNOSS1177) and NO generation. Maneuvers that restore glucose transport and glycolysis (eg, overexpression of GLUT1 [glucose transporter 1]) or purinergic signaling (eg, addition of exogenous ADP) rescue shear-induced p-eNOSS1177 and NO production in ECs with impaired autophagy. Conversely, inhibiting glucose transport via GLUT1 small interfering RNA, blocking purinergic signaling via ectonucleotidase-mediated ATP/ADP degradation (eg, apyrase), or inhibiting P2Y1 receptors using pharmacological (eg, MRS2179 [2'-deoxy-N6-methyladenosine 3',5'-bisphosphate tetrasodium salt]) or genetic (eg, P2Y1-receptor small interfering RNA) procedures inhibit shear-induced p-eNOSS1177 and NO generation in ECs with intact autophagy. Supporting a central role for PKCδT505 (protein kinase C delta T505) in relaying the autophagy-dependent purinergic-mediated signal to eNOS, we find that (1) shear stress-induced activating phosphorylation of PKCδT505 is negated by inhibiting autophagy, (2) shear-induced p-eNOSS1177 and NO generation are restored in autophagy-impaired ECs via pharmacological (eg, bryostatin) or genetic (eg, constitutively active PKCδ) activation of PKCδT505, and (3) pharmacological (eg, rottlerin) and genetic (eg, PKCδ small interfering RNA) PKCδ inhibition prevents shear-induced p-eNOSS1177 and NO generation in ECs with intact autophagy. Key nodes of dysregulation in this pathway on autophagy compromise were revealed in human arterial ECs. CONCLUSIONS: Targeted reactivation of purinergic signaling and PKCδ has strategic potential to restore compromised NO generation in pathologies associated with suppressed EC autophagy.


Asunto(s)
Adenosina Trifosfato/metabolismo , Autofagia , Células Endoteliales/enzimología , Glucólisis , Mecanotransducción Celular , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Animales , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/deficiencia , Proteínas Relacionadas con la Autofagia/genética , Bovinos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Mecanotransducción Celular/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Receptores Purinérgicos P2Y1/efectos de los fármacos , Receptores Purinérgicos P2Y1/genética , Serina , Estrés Mecánico , Transfección , Enzimas Ubiquitina-Conjugadoras/deficiencia , Enzimas Ubiquitina-Conjugadoras/genética
14.
Can J Physiol Pharmacol ; 92(7): 605-12, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24941409

RESUMEN

Autophagy is a lysosomal catabolic process by which cells degrade or recycle their contents to maintain cellular homeostasis, adapt to stress, and respond to disease. Impairment of autophagy in endothelial cells studied under static conditions results in oxidant stress and impaired nitric oxide (NO) bioavailability. We tested the hypothesis that vascular autophagy is also important for induction of NO production caused by exposure of endothelial cells to shear stress (i.e., 3 h × ≈20 dyn/cm(2)). Atg3 is a requisite autophagy pathway mediator. Control cells treated with non-targeting control siRNA showed increased autophagy, reactive oxygen species (ROS) production, endothelial NO synthase (eNOS) phosphorylation, and NO production upon exposure to shear stress (p < 0.05 for all). In contrast, cells with >85% knockdown of Atg3 protein expression (via Atg3 siRNA) exhibited a profound impairment of eNOS phosphorylation, and were incapable of increasing NO in response to shear stress. Moreover, ROS accumulation and inflammatory cytokine production (MCP-1 and IL-8) were exaggerated (all p < 0.05) in response to shear stress. These findings reveal that autophagy not only plays a critical role in maintaining NO bioavailability, but may also be a key regulator of oxidant-antioxidant balance and inflammatory-anti-inflammatory balance that ultimately regulate endothelial cell responses to shear stress.


Asunto(s)
Autofagia , Óxido Nítrico/metabolismo , Animales , Proteínas Relacionadas con la Autofagia , Restricción Calórica , Bovinos , Células Endoteliales/citología , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , Estrés Mecánico , Enzimas Ubiquitina-Conjugadoras/metabolismo
15.
Adv Sci (Weinh) ; : e2403520, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013093

RESUMEN

The combination of cuproptosis and immune checkpoint inhibition has shown promise in treating malignant tumors. However, it remains a challenge to deliver copper ions and immune checkpoint inhibitors efficiently and simultaneously to tumors. Herein, a mitochondria-targeted nanoscale coordination polymer particle, Cu/TI, comprising Cu(II), and a triphenylphosphonium conjugate of 5-carboxy-8-hydroxyquinoline (TI), for effective cuproptosis induction and programmed cell death-1 (PD-L1) downregulation is reported. Upon systemic administration, Cu/TI efficiently accumulates in tumor tissues to induce immunogenic cancer cell death and reduce PD-L1 expression. Consequently, Cu/TI promotes the intratumoral infiltration and activation of cytotoxic T lymphocytes to greatly inhibit tumor progression of colorectal carcinoma and triple-negative breast cancer in mouse models without causing obvious side effects.

16.
Front Nutr ; 11: 1407007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903617

RESUMEN

Introduction: 2-Amino-1-methyl-6-phenylimidazole [4,5-b] pyridine (PhIP), a heterocyclic amine (HAA), is found in meat products heated at high temperatures. However, PhIP is a mutagenic and potential carcinogenic compound. Cassiae semen, a type of medicine and food homology plant, is abundant in China and has been less applied for inhibiting heterocyclic amines. Methods: To investigate the inhibitory effect of cassiae semen extract on PhIP formation within a model system and elucidate the inhibitory mechanism, an ultrasonic-assisted method with 70% ethanol was used to obtain cassiae semen extract, which was added to a model system (0.6 mmol of phenylalanine: creatinine, 1:1). PhIP was analyzed by LC-MS to determine inhibitory effect. The byproducts of the system and the mechanism of PhIP inhibition were verified by adding the extract to a model mixture of phenylacetaldehyde, phenylacetaldehyde and creatinine. Results: The results indicated that PhIP production decreased as the concentration of cassiae semen extract increased, and the highest inhibition rate was 91.9%. Byproduct (E), with a mass-charge ratio of m/z 199.9, was detected in the phenylalanine and creatinine model system but was not detected in the other systems. The cassiae semen extract may have reacted with phenylalanine to produce byproduct (E), which prevented the degradation of phenylalanine by the Strecker reaction to produce phenylacetaldehyde. Discussion: Cassiae semen extract consumed phenylalanine, which is the precursor for PhIP, thus inhibiting the formation of phenylacetaldehyde and ultimately inhibiting PhIP formation. The main objective of this study was to elucidate the mechanism by which cassiae semen inhibit PhIP formation and establish a theoretical and scientific foundation for practical control measures.

17.
Adv Sci (Weinh) ; 11(23): e2310309, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38477411

RESUMEN

The recent discovery of copper-mediated and mitochondrion-dependent cuproptosis has aroused strong interest in harnessing this novel mechanism of cell death for cancer therapy. Here the design of a core-shell nanoparticle, CuP/Er, for the co-delivery of copper (Cu) and erastin (Er) to cancer cells for synergistic cuproptosis and ferroptosis is reported. The anti-Warburg effect of Er sensitizes tumor cells to Cu-mediated cuproptosis, leading to irreparable mitochondrial damage by depleting glutathione and enhancing lipid peroxidation. CuP/Er induces strong immunogenic cell death, enhances antigen presentation, and upregulates programmed death-ligand 1 expression. Consequently, CuP/Er promotes proliferation and infiltration of T cells, and when combined with immune checkpoint blockade, effectively reinvigorates T cells to mediate the regression of murine colon adenocarcinoma and triple-negative breast cancer and prevent tumor metastasis. This study suggests a unique opportunity to synergize cuproptosis and ferroptosis with combination therapy nanoparticles to elicit strong antitumor effects and potentiate current cancer immunotherapies.


Asunto(s)
Cobre , Ferroptosis , Inmunoterapia , Nanopartículas , Ferroptosis/efectos de los fármacos , Animales , Ratones , Inmunoterapia/métodos , Modelos Animales de Enfermedad , Humanos , Línea Celular Tumoral , Femenino , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Piperazinas
18.
ACS Nano ; 18(6): 5152-5166, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38286035

RESUMEN

Blockade of programmed cell death-1/programmed cell death-ligand 1 (PD-L1) immune checkpoints with monoclonal antibodies has shown great promise for cancer treatment, but these antibodies can cause immune-related adverse events in normal organs. Here we report a dual-cell targeted chemo-immunotherapeutic nanoscale coordination polymer (NCP), OxPt/BP, comprising oxaliplatin (OxPt) and 2-bromopalmitic acid (BP), for effective downregulation of PD-L1 expression in both cancer cells and dendritic cells (DCs) by inhibiting palmitoyl acyltransferase DHHC3. OxPt/BP efficiently promotes DC maturation by increasing intracellular oxidative stress and enhancing OxPt-induced immunostimulatory immunogenic cancer cell death. Systemic administration of OxPt/BP reduces the growth of subcutaneous and orthotopic colorectal carcinoma by facilitating the infiltration and activation of cytotoxic T lymphocytes together with reducing the population of immunosuppressive regulatory T cells. As a result, OxPt/BP significantly extends mouse survival without causing side effects. This work highlights the potential of NCPs in simultaneously reprogramming cancer cells and DCs for potent cancer treatment.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Animales , Ratones , Ligandos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Inmunidad Adaptativa , Apoptosis , Células Dendríticas , Línea Celular Tumoral
19.
Virulence ; 15(1): 2313410, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38378443

RESUMEN

Benign prostatic hyperplasia (BPH) is a prevalent disease among middle-aged and elderly males, but its pathogenesis remains unclear. Dysbiosis of the microbiome is increasingly recognized as a significant factor in various human diseases. Prostate tissue also contains a unique microbiome, and its dysbiosis has been proposed to contribute to prostate diseases. Here, we obtained prostate tissues and preoperative catheterized urine from 24 BPH individuals, and 8 normal prostate samples as controls, which followed strict aseptic measures. Using metagenomic next-generation sequencing (mNGS), we found the disparities in the microbiome composition between normal and BPH tissues, with Pseudomonas significantly enriched in BPH tissues, as confirmed by fluorescence in situ hybridization (FISH). Additionally, we showed that the prostate microbiome differed from the urine microbiome. In vitro experiments revealed that lipopolysaccharide (LPS) of Pseudomonas activated NF-κB signalling, leading to inflammation, proliferation, and EMT processes, while inhibiting apoptosis in prostatic cells. Overall, our research determines the presence of microbiome dysbiosis in BPH, and suggests that Pseudomonas, as the dominant microflora, may promote the progression of BPH through LPS activation of NF-κB signalling.


Asunto(s)
Microbiota , Hiperplasia Prostática , Masculino , Persona de Mediana Edad , Anciano , Humanos , Hiperplasia Prostática/patología , FN-kappa B/genética , Pseudomonas , Disbiosis , Hibridación Fluorescente in Situ , Lipopolisacáridos
20.
Front Immunol ; 15: 1346878, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590522

RESUMEN

Herpesviruses, prevalent DNA viruses with a double-stranded structure, establish enduring infections and play a part in various diseases. Despite their deployment of multiple tactics to evade the immune system, both localized and systemic inflammatory responses are triggered by the innate immune system's recognition of them. Recent progress has offered more profound understandings of the mechanisms behind the activation of the innate immune system by herpesviruses, specifically through inflammatory signaling. This process encompasses the initiation of an intracellular nucleoprotein complex, the inflammasome associated with inflammation.Following activation, proinflammatory cytokines such as IL-1ß and IL-18 are released by the inflammasome, concurrently instigating a programmed pathway for cell death. Despite the structural resemblances between herpesviruses, the distinctive methods of inflammatory activation and the ensuing outcomes in diseases linked to the virus exhibit variations.The objective of this review is to emphasize both the similarities and differences in the mechanisms of inflammatory activation among herpesviruses, elucidating their significance in diseases resulting from these viral infections.Additionally, it identifies areas requiring further research to comprehensively grasp the impact of this crucial innate immune signaling pathway on the pathogenesis of these prevalent viruses.


Asunto(s)
Infecciones por Herpesviridae , Virosis , Humanos , Inflamasomas/metabolismo , Caspasa 1/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA