Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Headache Pain ; 25(1): 28, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38433184

RESUMEN

BACKGROUND: Trigeminal nerve injury is one of the most serious complications in oral clinics, and the subsequent chronic orofacial pain is a consumptive disease. Increasing evidence demonstrates long non-coding RNAs (lncRNAs) play an important role in the pathological process of neuropathic pain. This study aims to explore the function and mechanism of LncRNA Anxa10-203 in the development of orofacial neuropathic pain. METHODS: A mouse model of orofacial neuropathic pain was established by chronic constriction injury of the infraorbital nerve (CCI-ION). The Von Frey test was applied to evaluate hypersensitivity of mice. RT-qPCR and/or Western Blot were performed to analyze the expression of Anxa10-203, DHX30, and MC1R. Cellular localization of target genes was verified by immunofluorescence and RNA fluorescence in situ hybridization. RNA pull-down and RNA immunoprecipitation were used to detect the interaction between the target molecules. Electrophysiology was employed to assess the intrinsic excitability of TG neurons (TGNs) in vitro. RESULTS: Anxa10-203 was upregulated in the TG of CCI-ION mice, and knockdown of Anxa10-203 relieved neuropathic pain. Structurally, Anxa10-203 was located in the cytoplasm of TGNs. Mechanistically, Mc1r expression was positively correlated with Anxa10-203 and was identified as the functional target of Anxa10-203. Besides, Anxa10-203 recruited RNA binding protein DHX30 and formed the Anxa10-203/DHX30 complex to enhance the stability of Mc1r mRNA, resulting in the upregulation of MC1R, which contributed to the enhancement of the intrinsic activity of TGNs in vitro and orofacial neuropathic pain in vivo. CONCLUSIONS: LncRNA Anxa10-203 in the TG played an important role in orofacial neuropathic pain and mediated mechanical allodynia in CCI-ION mice by binding with DHX30 to upregulate MC1R expression.


Asunto(s)
Neuralgia , ARN Largo no Codificante , Animales , Ratones , Modelos Animales de Enfermedad , Hibridación Fluorescente in Situ , ARN Largo no Codificante/genética , Ganglio del Trigémino
2.
J Neurosci Res ; 101(7): 1170-1187, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36807930

RESUMEN

Inward-rectifying K+ channel 4.1 (Kir4.1), which regulates the electrophysiological properties of neurons and glia by affecting K+ homeostasis, plays a critical role in neuropathic pain. Metabotropic glutamate receptor 5 (mGluR5) regulates the expression of Kir4.1 in retinal Müller cells. However, the role of Kir4.1 and its expressional regulatory mechanisms underlying orofacial ectopic allodynia remain unclear. This study aimed to investigate the biological roles of Kir4.1 and mGluR5 in the trigeminal ganglion (TG) in orofacial ectopic mechanical allodynia and the role of mGluR5 in Kir4.1 regulation. An animal model of nerve injury was established via inferior alveolar nerve transection (IANX) in male C57BL/6J mice. Behavioral tests indicated that mechanical allodynia in the ipsilateral whisker pad lasted at least 14 days after IANX surgery and was alleviated by the overexpression of Kir4.1 in the TG, as well as intraganglionic injection of an mGluR5 antagonist (MPEP hydrochloride) or a protein kinase C (PKC) inhibitor (chelerythrine chloride); Conditional knockdown of the Kir4.1 gene downregulated mechanical thresholds in the whisker pad. Double immunostaining revealed that Kir4.1 and mGluR5 were co-expressed in satellite glial cells in the TG. IANX downregulated Kir4.1 and upregulated mGluR5 and phosphorylated PKC (p-PKC) in the TG; Inhibition of mGluR5 reversed the changes in Kir4.1 and p-PKC that were induced by IANX; Inhibition of PKC activation reversed the downregulation of Kir4.1 expression caused by IANX (p < .05). In conclusion, activation of mGluR5 in the TG after IANX contributed to orofacial ectopic mechanical allodynia by suppressing Kir4.1 via the PKC signaling pathway.


Asunto(s)
Hiperalgesia , Receptor del Glutamato Metabotropico 5 , Ratas , Ratones , Masculino , Animales , Hiperalgesia/etiología , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Nervio Mandibular/metabolismo , Nervio Mandibular/cirugía
3.
Plant Cell Rep ; 42(12): 1967-1986, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37812279

RESUMEN

KEY MESSAGE: The important values of AMF in regulating endangered species Heptacodium miconioides growth and drought stress tolerance. The wild endangered tree Heptacodium miconioides is distributed sporadically in mountainous areas and often subjected to various abiotic stresses, such as drought. The mutualistic association between plants and arbuscular mycorrhizal fungi (AMF) is known to have a significant impact on plant growth and their ability to withstand drought conditions. However, the role of AMF in H. miconioides seedlings in regulating drought tolerance remains unknown. This study investigated the ability of AMF symbionts to mitigate drought and their underlying mechanism on H. miconioides leaves. The results showed that drought stress dramatically decreased the leaf biomass and damaged the chloroplast structure in seedlings. Conversely, inoculation with AMF noticeably alleviated the deleterious effects of drought stress by restoring leaf morphology and improving the photosynthetic capacity. Moreover, plants inoculated with AMF enhanced the proportion of palisade tissue to spongy tissue in the leaves and the size of starch grains and number of plastoglobules in the chloroplast ultrastructure. A transcriptomic analysis showed that 2157 genes (691 upregulated and 1466 downregulated) were differentially expressed between drought stress with AMF inoculation and drought treatment. Further examination demonstrated that the genes exhibiting differential expression were predominantly associated with the advancement of photosynthesis, sucrose and starch metabolism, nitrogen metabolism, chloroplast development, and phenylpropanoid biosynthetic pathways, and the key potential genes were screened. These findings conclusively provided the physiological and molecular mechanisms that underlie improved drought resistance in H. miconioides in the presence of AMF, which could contribute to improving the survival and species conservation of H. miconioides.


Asunto(s)
Micorrizas , Animales , Micorrizas/fisiología , Especies en Peligro de Extinción , Sequías , Simbiosis , Plantones , Almidón
4.
Plant Biotechnol J ; 20(10): 2023-2035, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35781755

RESUMEN

Thermosensitive genic male sterility (TGMS) lines serve as the major genetic resource for two-line hybrid breeding in rice. However, their unstable sterility under occasional low temperatures in summer highly limits their application. In this study, we identified a novel rice TGMS line, ostms18, of cultivar ZH11 (Oryza sativa ssp. japonica). ostms18 sterility is more stable in summer than the TGMS line carrying the widely used locus tms5 in the ZH11 genetic background, suggesting its potential application for rice breeding. The ostms18 TGMS trait is caused by the point mutation from Gly to Ser in a glucose-methanol-choline (GMC) oxidoreductase; knockout of the oxidoreductase was previously reported to cause complete male sterility. Cellular analysis revealed the pollen wall of ostms18 to be defective, leading to aborted pollen under high temperature. Further analysis showed that the tapetal transcription factor OsMS188 directly regulates OsTMS18 for pollen wall formation. Under low temperature, the flawed pollen wall in ostms18 is sufficient to protect its microspore, allowing for development of functional pollen and restoring fertility. We identified the orthologous gene in Arabidopsis. Although mutants for the gene were fertile under normal conditions (24°C), fertility was significantly reduced under high temperature (28°C), exhibiting a TGMS trait. A cellular mechanism integrated with genetic mutations and different plant species for fertility restoration of TGMS lines is proposed.


Asunto(s)
Arabidopsis , Oryza , Oxidorreductasas , Infertilidad Vegetal , Polen , Arabidopsis/genética , Arabidopsis/fisiología , Colina/metabolismo , Glucosa/metabolismo , Metanol/metabolismo , Mutación , Oryza/genética , Oryza/fisiología , Oxidorreductasas/genética , Infertilidad Vegetal/genética , Polen/genética , Polen/crecimiento & desarrollo , Temperatura , Factores de Transcripción/genética
5.
Brain Behav Immun ; 106: 129-146, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36038077

RESUMEN

The spinal N-methyl-d-aspartate receptor (NMDAR), particularly their subtypes NR2A and NR2B, plays pivotal roles in neuropathic and inflammatory pain. However, the roles of NR2A and NR2B in orofacial pain and the exact molecular and cellular mechanisms mediating nervous system sensitization are still poorly understood. Here, we exhaustively assessed the regulatory effect of NMDAR in mediating peripheral and central sensitization in orofacial neuropathic pain. Von-Frey filament tests showed that the inferior alveolar nerve transection (IANX) induced ectopic allodynia behavior in the whisker pad of mice. Interestingly, mechanical allodynia was reversed in mice lacking NR2A and NR2B. IANX also promoted the production of peripheral sensitization-related molecules, such as interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, brain-derived neurotrophic factor (BDNF), and chemokine upregulation (CC motif) ligand 2 (CCL2), and decreased the inward potassium channel (Kir) 4.1 on glial cells in the trigeminal ganglion, but NR2A conditional knockout (CKO) mice prevented these alterations. In contrast, NR2B CKO only blocked the changes of Kir4.1, IL-1ß, and TNF-α and further promoted the production of CCL2. Central sensitization-related c-fos, glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba-1) were promoted and Kir4.1 was reduced in the spinal trigeminal caudate nucleus by IANX. Differential actions of NR2A and NR2B in mediating central sensitization were also observed. Silencing of NR2B was effective in reducing c-fos, GFAP, and Iba-1 but did not affect Kir4.1. In contrast, NR2A CKO only altered Iba-1 and Kir4.1 and further increased c-fos and GFAP. Gain-of-function and loss-of-function approaches provided insight into the differential roles of NR2A and NR2B in mediating peripheral and central nociceptive sensitization induced by IANX, which may be a fundamental basis for advancing knowledge of the neural mechanisms' reaction to nerve injury.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuralgia , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Sensibilización del Sistema Nervioso Central , Dolor Facial/metabolismo , Dolor Facial/patología , Proteína Ácida Fibrilar de la Glía/metabolismo , Hiperalgesia/metabolismo , Ligandos , Ratones , Neuralgia/patología , Canales de Potasio , Receptores de N-Metil-D-Aspartato , Factor de Necrosis Tumoral alfa/metabolismo
6.
J Oral Rehabil ; 49(2): 195-206, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34714950

RESUMEN

BACKGROUND: Orofacial ectopic pain induced by trigeminal nerve injury is a serious complication of dental treatment. C-X-C motif chemokine ligand 1 (CXCL1) and its primary receptor C-X-C motif chemokine receptor 2 (CXCR2) contribute to the development and maintenance of neuropathic pain in the spinal nervous system, but their roles in trigeminal neuropathic sensation are still poorly understood. OBJECTIVES: This study aimed to investigate the exact role of CXCL1 and CXCR2 in the regulation of orofacial ectopic mechanical allodynia and their potential downstream mechanisms in the trigeminal ganglion (TG). METHODS: The head withdrawal threshold (HWT) of C57BL/6 mice was evaluated after inferior alveolar nerve (IAN) transection (IANX). Then, the distribution and expression of CXCL1 and CXCR2, and their potential downstream mechanisms in the TG were further measured using immunohistochemistry, real-time reverse transcription-quantitative polymerase chain reaction and Western blotting. Moreover, the effect of SB225002 (an inhibitor of CXCR2) on mechanical allodynia was examined. The data were analysed using the Student's t test and a analysis of variance (ANOVA). RESULTS: IANX triggered persistent (>21 days) mechanical allodynia and upregulation of CXCL1 and CXCR2 in the TG. In addition, exogenous CXCL1 also lowered the HWT, which was alleviated by CXCR2 and protein kinase C (PKC) antagonists (p < .05). In addition, IANX increased the phosphorylated PKC (p-PKC) levels and decreased the expression of voltage-gated potassium channels (Kv), and these effects were reversed by inhibition of CXCR2 (p < .05). CONCLUSION: Our results demonstrated that CXCR2 participated in orofacial ectopic mechanical allodynia via downregulation of Kv1.4 and Kv1.1 through the PKC signalling pathway. This mechanism may be a potential target in developing a treatment strategy for ectopic orofacial pain.


Asunto(s)
Hiperalgesia , Ganglio del Trigémino , Animales , Quimiocina CXCL1 , Ligandos , Ratones , Ratones Endogámicos C57BL , Receptores de Quimiocina , Receptores de Interleucina-8B
7.
J Neurophysiol ; 125(1): 223-231, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33326336

RESUMEN

This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide (CGRP), IL-1ß, and TNFα in the TG and spinal trigeminal nucleus caudalis (SpVc) of rats with inferior alveolar nerve transection. OXTR, a G protein-coupled receptor, has been demonstrated to play a significant role in analgesia after activation by its canonical agonist oxytocin (OXT) in the dorsal root ganglion. However, the role of OXTR in the trigeminal nervous system on the orofacial neuropathic pain is still little known. In the present study, we aimed to investigate the regulation effect and mechanism of OXTR in the TG) and SpVc) on orofacial ectopic pain induced by trigeminal nerve injury. The inferior alveolar nerve (IAN) was transected to establish a ectopic pain model. A behavioral test with electronic von Frey filament demonstrated IAN transection (IANX) evoked mechanical hypersensitivity in the whisker pad from day 1 to at least day 14 after surgery. In addition, administration of OXT (50 and 100 µM) into the TG attenuated the mechanical hypersensitivity induced by IANX, which was reversed by pretreatment with L-368,899 (a selective antagonist of OXTR) into the TG. In addition, immunofluorescence showed the expression of OXTR in neurons in the TG and SpVc. Furthermore, Western blot analysis indicated that the upregulated expression of OXTR, CGRP, IL-1ß, and TNFα in the TG and SpVc after IANX was inhibited by the administration of OXT into the TG. And the inhibition effect of OXT on the expression of CGRP, IL-1ß, and TNFα was abolished by preapplication of OXTR antagonist L-368,899 into the TG.NEW & NOTEWORTHY This study explores the effects of oxytocin receptor (OXTR) in the trigeminal ganglion (TG) on orofacial neuropathic pain. We demonstrate that OXTR activation in the TG relieves the orofacial ectopic pain as well as inhibits the upregulated expression of calcitonin gene-related peptide, IL-1ß, and TNF-α in the TG and spinal trigeminal nucleus caudalis of rats with inferior alveolar nerve transection.


Asunto(s)
Lesiones del Nervio Mandibular/metabolismo , Dolor/tratamiento farmacológico , Receptores de Oxitocina/metabolismo , Ganglio del Trigémino/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Canfanos/farmacología , Interleucina-1beta/metabolismo , Masculino , Lesiones del Nervio Mandibular/fisiopatología , Oxitocina/metabolismo , Oxitocina/uso terapéutico , Dolor/etiología , Piperazinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de Oxitocina/agonistas , Receptores de Oxitocina/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/metabolismo
8.
Compr Psychiatry ; 110: 152255, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34461390

RESUMEN

OBJECTIVE: Evidence suggested that traumatic events, including pandemics, can be associated with psychiatric symptoms like increased anxiety and depression. However, there were many unknowns concerning the emergent global coronavirus-19 (COVID-19), including its impact on psychiatric health within the United States. Our study aimed to track trends of mental health problems in individuals who presented with psychiatric complaints in an emergent setting. METHODS: A total of 1776 patients and 1610 patients presented to Emergency Department (ED) with psychiatric complaints between January 1 - July 9 of the years of 2019 and 2020, respectively, in Millcreek Community Hospital (MCH) Erie, PA. This study was an electronic medical record review (EMR), therefore the data were collected exclusively from EMR over the two-year span. ED prevalence was calculated as the number of total psychiatric MCH ED cases divided by the total number of all MCH ED patients, and prevalence ratio (PR) between 2019 and 2020 was used to reflect change of overall ED psychiatric prevalence. RESULTS: Clinical notes revealed increased ED psychiatric chief complaint prevalence, as indicated by a PR greater than one, in multiple categories in comparison to before the COVID-19 outbreak. Concerning primary psychiatric disorders, there was increased ED prevalence in chief complaint of total mood disorders (PR = 1.21) with major depressive disorder (PR = 1.23) and bipolar disorder (PR = 1.47), neurodevelopment disorders (PR = 1.25) with attention deficit hyperactivity disorder (ADHD) (PR = 1.19) and intellectual disability (PR = 1.52), trauma- and stressor-related disorders (PR = 1.56) with post-traumatic stress disorder (PTSD) (PR = 1.39) and adjustment disorder (PR = 1.73), substance abuse and addiction disorders (PR = 1.29), and personality disorders (PR = 1.56). CONCLUSIONS: The pandemic outbreak dramatically impacted mental health in an ER setting. Further research on mental health disparities in conjunction with the COVID-19 pandemic is critical to help predict and address risk for chronic symptoms and sequela to help anticipate and improve psychiatric patient care and well-being during potential future pandemics.


Asunto(s)
COVID-19 , Trastorno Depresivo Mayor , Trastornos Mentales , Psiquiatría , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/epidemiología , Servicio de Urgencia en Hospital , Hospitales Comunitarios , Humanos , Trastornos Mentales/diagnóstico , Trastornos Mentales/epidemiología , Pandemias , SARS-CoV-2
9.
Int J Mol Sci ; 21(4)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32079236

RESUMEN

To assess changes of metabolite content and regulation mechanism of the phenolic acid biosynthesis pathway at different developmental stages of leaves, this study performed a combined metabolome and transcriptome analysis of Cyclocarya paliurus leaves at different developmental stages. Metabolite and transcript profiling were conducted by ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometer and high-throughput RNA sequencing, respectively. Transcriptome identification showed that 58 genes were involved in the biosynthesis of phenolic acid. Among them, 10 differentially expressed genes were detected between every two developmental stages. Identification and quantification of metabolites indicated that 14 metabolites were located in the phenolic acid biosynthetic pathway. Among them, eight differentially accumulated metabolites were detected between every two developmental stages. Association analysis between metabolome and transcriptome showed that six differentially expressed structural genes were significantly positively correlated with metabolite accumulation and showed similar expression trends. A total of 128 transcription factors were identified that may be involved in the regulation of phenolic acid biosynthesis; these include 12 MYBs and 10 basic helix-loop-helix (bHLH) transcription factors. A regulatory network of the phenolic acid biosynthesis was established to visualize differentially expressed candidate genes that are involved in the accumulation of metabolites with significant differences. The results of this study contribute to the further understanding of phenolic acid biosynthesis during the development of leaves of C. paliurus.


Asunto(s)
Hidroxibenzoatos/metabolismo , Juglandaceae/genética , Metaboloma , Hojas de la Planta/metabolismo , Transcriptoma , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Vías Biosintéticas/genética , Flavonoides , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Juglandaceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción
10.
Planta ; 250(2): 535-548, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31111205

RESUMEN

MAIN CONCLUSION: ACOS5, OsACOS12 and PpACOS6 are all capable of fatty acyl-CoA synthetase activity but exhibit different substrate preferences. The transcriptional regulation of ACOS for sporopollenin synthesis appears to have been conserved in Physcomitrella, rice and Arabidopsis during evolution. Sporopollenin is the major constituent of spore and pollen exines. In Arabidopsis, acyl-CoA synthetase 5 (ACOS5) is an essential enzyme for sporopollenin synthesis, and its orthologues are PpACOS6 from the moss Physcomitrella and OsACOS12 from monocot rice. However, knowledge regarding the evolutionary conservation and divergence of the ACOS gene in sporopollenin synthesis remains limited. In this study, we analysed the function and regulation of PpACOS6 and OsACOS12. A complementation test showed that OsACOS12 driven by the ACOS5 promoter could partially restore the male fertility of the acos5 mutant in Arabidopsis, while PpACOS6 did not rescue the acos5 phenotype. ACOS5, PpACOS6 and OsACOS12 all complemented the acyl-CoA synthetase-deficient yeast strain (YB525) phenotype, although they exhibited different substrate preferences. To understand the conservation of sporopollenin synthesis regulation, we constructed two constructs with ACOS5 driven by the OsACOS12 or PpACOS6 promoter. Both constructs could restore the fertility of acos5 plants. The MYB transcription factor MS188 from Arabidopsis directly regulates ACOS5. We found that MS188 could also bind the promoters of OsACOS12 and PpACOS6 and activate the genes driven by the promoters, suggesting that the transcriptional regulation of these genes was similar to that of ACOS5. These results show that the ACOS gene promoter region from Physcomitrella, rice and Arabidopsis has been functionally conserved during evolution, while the chain lengths of fatty acid-derived monomers of sporopollenin vary in different plant species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Bryopsida/enzimología , Coenzima A Ligasas/metabolismo , Oryza/enzimología , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Biopolímeros/biosíntesis , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/ultraestructura , Carotenoides/biosíntesis , Coenzima A Ligasas/genética , Genes Reporteros , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/ultraestructura , Filogenia , Infertilidad Vegetal , Proteínas de Plantas/genética , Polen/enzimología , Polen/genética , Polen/crecimiento & desarrollo , Polen/ultraestructura , Alineación de Secuencia , Especificidad por Sustrato , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 47(2): 143-149, 2018 05 25.
Artículo en Zh | MEDLINE | ID: mdl-30226308

RESUMEN

OBJECTIVE: To explore the association between UCP2 rs659366 polymorphisms and the outcomes of patients after surgery for colorectal cancer. METHODS: The study was conducted among a cohort of 501 patients with primary colorectal cancer who had surgery in Sichuan Cancer Hospital during March 2010 and July 2013. The outcomes of the patients were followed up. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was applied to detect UPC2 rs659366 genotypes. The log-rank test was performed to analyze the effects of clinical features on patients' outcomes. The correlation between UCP2 rs659366 polymorphisms and the outcomes of patients was analyzed using the Cox proportional hazard model. RESULTS: In this study, the median of follow-up time was 44.23(0.13-78.53)months, and 101 out of 501 (20.2%) patients failed to follow-up. The log-rank test showed the tumor site, TNM stage, vascular invasion, perineural invasion and the preoperative carcino-embryonic antigen(CEA) level were significantly associated with the outcome of colorectal cancer (P<0.05 or P<0.01). The overall survival rate of patients with AA, GA and GG genotypes were 62.7%, 69.9% and 75.5%, respectively. Multivariate analysis according to Cox proportional hazard model taking the GG genotype as the reference indicated that the AA genotype increased risks for survival of patients (HR=1.823); under the dominant genetic model taking GG genotype as reference, GA+AA genotypes increased risks for the poorer outcomes of patients (HR=1.498); the addictive genetic model showed that allele A increased the hazard for the poorer outcomes (HR=1.787). CONCLUSIONS: The UCP2 rs659366 polymorphisms are significantly associated with the outcome of patients with colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Genotipo , Humanos , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , Modelos de Riesgos Proporcionales , Tasa de Supervivencia , Proteína Desacopladora 2
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 48(6): 886-890, 2017 Nov.
Artículo en Zh | MEDLINE | ID: mdl-29260526

RESUMEN

OBJECTIVE: To explore the association between intake of pickled vegetables and colorectal cancer (CRC),including the interactions between pickled vegetables and other dietary habits. METHODS: A 1:1 matched case-control study was undertaken,involving 400 patients with newly histopathologically diagnosed CRC and 400 healthy residents matched by age and gender. The participants were asked to complete a questionnaire. Conditional logistic regression models were established to identify risk factors of CRC and interactions between these factors. Additive interactions were analyzed using relative excess risk of interaction (RERI),attributable proportion of interaction (AP),and synergy index (S). RESULTS: Excessive intake of pickled vegetables (more than 3 times per week) increased the risk of CRC [odds ratio (OR)=2.703,95% confidence interval (CI): 1.866-3.916]. There was no multiplicative interaction between pickled vegetables and other dietary habits. Additive interactions were detected between pickled vegetables and cured meat,tea and bean products: with a RERI of 3.172 (95%CI: 0.834-5.518),2.131 (95%CI: 0.115-4.417) and 2.503 (95%CI: 0.760-4.246),respectively; an AP of 0.472 (95%CI: 0.245-0.699),0.386 (95%CI: 0.122-0.650) and 0.493 (95%CI: 0.253-0.732),respectively; and a S of 2.244 (95%CI: 1.266-3.978),1.893 (95%CI: 1.050-3.416) and 2.586 (95%CI:1.168-5.723) ,respectively. CONCLUSION: Excessive intake of pickled vegetables may be a risk factor of CRC. Cured meats and pickled vegetables might have a synergistic effect on CRC. However,tea and bean products might be antagonistic to the risk imposed by pickled vegetables on CRC.


Asunto(s)
Neoplasias Colorrectales/epidemiología , Dieta , Alimentos Fermentados , Verduras , Estudios de Casos y Controles , Humanos , Oportunidad Relativa , Factores de Riesgo
13.
BMC Plant Biol ; 16(1): 256, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27871243

RESUMEN

BACKGROUND: Sporopollenin is a major component of the pollen exine pattern. In Arabidopsis, acyl-CoA synthetase5 (ACOS5) is involved in sporopollenin precursor biosynthesis. In this study, we identified its orthologue, OsACOS12, in rice (Oryza sativa) and compared the functional conservation of ACOS in rice to Arabidopsis. RESULTS: Sequence analysis showed that OsACOS12 shares 63.9 % amino acid sequence identity with ACOS5. The osacos12 mutation caused by a pre-mature stop codon in LOC_Os04g24530 exhibits defective sexine resulting in a male sterile phenotype in rice. In situ hybridization shows that OsACOS12 is expressed in tapetal cells and microspores at the transcript level. The localization of OsACOS12-GFP demonstrated that OsACOS12 protein is accumulated in tapetal cells and anther locules. OsACOS12 driven by the ACOS5 promoter could partially restore the male fertility of the acos5 mutant in Arabidopsis. CONCLUSIONS: OsACOS12 is an orthologue of ACOS5 that is essential for sporopollenin synthesis in rice. ACOS5 and OsACOS12 are conserved for pollen wall formation in monocot and dicot species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Coenzima A Ligasas/metabolismo , Flores , Oryza , Polen , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Coenzima A Ligasas/genética , Flores/enzimología , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Oryza/enzimología , Oryza/genética , Oryza/crecimiento & desarrollo , Polen/enzimología , Polen/genética , Polen/crecimiento & desarrollo
14.
Pharm Biol ; 52(11): 1460-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24963944

RESUMEN

CONTEXT: Ammonium pyrrolidine dithiocarbamate (PDTC) is a potent inhibitor of nuclear factor-κB (NF-κB). Recent studies have shown that NF-κB plays an essential role in the regulation of genes whose products are involved in the pathogenesis of immunological liver injury. OBJECTIVE: To study the function of NF-κB in immunological liver injury of rat model and its effect on CYP2E1 content and metabolic activity. MATERIALS AND METHODS: The present study investigated the effect of passivating NF-κB activation on CYP2E1 using Bacillus calmette Guérin (BCG)-induced immunological liver injury in Sprague-Dawley rats measured in terms of enzyme levels. The degree of hepatic injury of rats was measured by using biochemical parameters, hepatic tissue pathological changes, and physiological parameters. Protein localization of liver NF-κB was detected by immunohistochemical assay. Western blot analysis was used to detect the protein expression of NF-κB, IκBα, iNOS, and CYP2E1. The content of CYP2E1 of homogenate in the rat liver was detected by ELISA assay and the enzyme kinetics of CYP2E1 probe drug chlorzoxazone was evaluated by high-performance liquid chromatography (HPLC) assay. RESULTS: The results showed that BCG-pretreatment (125 mg/kg) significantly (p < 0.01) increased the weight of liver and spleen (increased by 70% and 248%, respectively), serum levels of alanine transarninase (ALT) and aspartate aminotransferase (AST) (increased by 200% and 75.8%, respectively), the expression of NF-κB and iNOS (increased by 228% and 303%, respectively), and decreased CYP2E1 content and metabolic activity (p < 0.05). Administration of PDTC (50, 100, and 200 mg/kg) reversed above hepatic injury stimulated by BCG in vivo. Moreover, PDTC (ED50: 76 mg/kg) dose dependently inhibited down-regulation of CYP2E1 (p < 0.05). CONCLUSION: Passivation of NF-κB can inhibit the down-regulation of CYP2E1 and iNOS to induce in rat liver tissue with immunological liver injury; NF-κB may be involved in the CYP2E1 regulation through iNOS.


Asunto(s)
Citocromo P-450 CYP2E1/metabolismo , Hepatopatías/tratamiento farmacológico , Hepatopatías/inmunología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Pirrolidinas/uso terapéutico , Tiocarbamatos/uso terapéutico , Animales , Hepatopatías/metabolismo , Masculino , Mycobacterium bovis , Pirrolidinas/farmacología , Ratas , Ratas Sprague-Dawley , Tiocarbamatos/farmacología
15.
Plants (Basel) ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732478

RESUMEN

Understanding the light adaptation of plants is critical for conservation. Platycrater arguta, an endangered deciduous shrub endemic to East Asia, possesses high ornamental and phylogeographic value. However, the weak environmental adaptability of P. arguta species has limited its general growth and conservation. To obtain a deeper understanding of the P. arguta growth conditions, we examined the leaf morphology and physiology via anatomical and chloroplast ultrastructural analyses following exposure to different natural light intensities (full light, 40%, and 10%). The findings indicated that P. arguta seedings in the 10% light intensity had significantly improved leaf morphological characteristics and specific leaf area compared to those exposed to other intensities. The net photosynthetic rate, chlorophyll (Chl) content, photosynthetic nitrogen use efficiency (PNUE), and photosynthetic phosphorus use efficiency (PPUE) exhibited marked increases at a 10% light intensity compared to both 40% light and full light intensities, whereas the light compensation point and dark respiration levels reached their lowest values under the 10% light condition. With reduced light, leaf thickness, palisade tissue, spongy tissue, and stomatal density significantly decreased, whereas the stomatal length, stomatal width, and stomatal aperture were significantly elevated. When exposed to 10% light intensity, the ultrastructure of chloroplasts was well developed, chloroplasts and starch grain size, the number of grana, and thylakoids all increased significantly, while the number of plastoglobules was significantly reduced. Relative distance phenotypic plasticity index analysis exhibited that P. arguta adapts to varying light environments predominantly by adjusting PPUE, Chl b, PNUE, chloroplast area, and the activity of PSII reaction centers. We proposed that P. arguta efficiently utilizes low light to reconfigure its energy metabolism by regulating its leaf structure, photosynthetic capacity, nutrient use efficiency, and chloroplast development.

16.
Mol Neurobiol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976127

RESUMEN

Temporomandibular joint osteoarthritis (TMJOA) is a severe form of temporomandibular joint disorders (TMD), and orofacial inflammatory allodynia is one of its common symptoms which lacks effective treatment. N-methyl-D-aspartate receptor (NMDAR), particularly its subtypes GluN2A and GluN2B, along with gap junctions (GJs), are key players in the mediation of inflammatory pain. However, the precise regulatory mechanisms of GluN2A, GluN2B, and GJs in orofacial inflammatory allodynia during TMJ inflammation still remain unclear. Here, we established the TMJ inflammation model by injecting Complete Freund's adjuvant (CFA) into the TMJ and used Cre/loxp site-specific recombination system to conditionally knock out (CKO) GluN2A and GluN2B in the trigeminal ganglion (TG). Von-frey test results indicated that CFA-induced mechanical allodynia in the TMJ region was relieved in GluN2A and GluN2B deficient mice. In vivo, CFA significantly up-regulated the expression of GluN2A and GluN2B, Gjb1, Gjb2, Gjc2 and Panx3 in the TG, and GluN2A and GluN2B CKO played different roles in mediating the expression of Gjb1, Gjb2, Gjc2 and Panx3. In vitro, NMDA up-regulated the expression of Gjb1, Gjb2, Gjc2 and Panx3 in satellite glial cells (SGCs) as well as promoted the intercellular communication between SGCs, and GluN2A and GluN2B knocking down (KD) altered the expression and function differently. NMDAR regulated Gjb1 and Panx3 through ERK1/2 pathway, and mediated Gjb2 and Gjc2 through MAPK, PKA, and PKC intracellular signaling pathways. These findings shed light on the distinct functions of GluN2A and GluN2B in mediating peripheral sensitization induced by TMJ inflammation in the TG, offering potential therapeutic targets for managing orofacial inflammatory allodynia.

17.
Front Plant Sci ; 14: 1044581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36890897

RESUMEN

Heptacodium miconioides Rehd., commonly known as "seven-son flower," is an ornamental species with a beautiful flower pattern and persistent sepals. Its sepals are of horticultural value, turning bright red and elongating in the autumn; however, the molecular mechanisms that cause sepal color change remain unclear. We analyzed the dynamic changes in anthocyanin composition in the sepal of H. miconioides at four developmental stages (S1-S4). A total of 41 anthocyanins were detected and classified into 7 major anthocyanin aglycones. High levels of the pigments cyanidin-3,5-O-diglucoside, cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, and pelargonidin-3-O-glucoside were responsible for sepal reddening. Transcriptome analysis revealed 15 differentially expressed genes involved in anthocyanin biosynthesis that were detected between 2 developmental stages. Of these, the high expression of HmANS was considered critical structural gene related to anthocyanin biosynthesis pathway in the sepal through co-expression analysis with anthocyanin content. In addition, a transcription factor (TF)-metabolite correlation analysis revealed that three HmMYB, two HmbHLH, two HmWRKY, and two HmNAC TFs exhibited a strong positive role in the regulation of the anthocyanin structural genes (Pearson's correlation coefficient > 0.90). Luciferase activity assay showed that HmMYB114, HmbHLH130, HmWRKY6, and HmNAC1 could activate the promoters of HmCHS4 and HmDFR1 genes in vitro. These findings increase our understanding of anthocyanin metabolism in the sepal of H. miconioides and provide a guide for studies involving sepal color conversion and regulation.

18.
Brain Res ; 1820: 148578, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37709161

RESUMEN

The α-amino-3-hydroxy-5-methylisoxazole-4-isoxazolepropionic acid receptor (AMPAR) has been recognized to play a vital role in the development of neuropathic pain. Recent studies have indicated that protein kinase C (PKC) and protein interacting with C-kinase 1 (PICK1) are involved in the phosphorylation of AMPARs. However, whether PKC and PICK1 were involved in the AMPAR phosphorylation in the trigeminal ganglion (TG) to participate in orofacial neuropathic pain remains enigmatic. A behavioral test was utilized to evaluate the head withdrawal threshold (HWT) after chronic constriction injury of the infraorbital nerve (CCI-ION). The distribution and expression of GluA1, GluA2, PKC, and PICK1 were examined in the trigeminal ganglion (TG) by immunofluorescence, real-time reverse transcription-quantitative polymerase chain reaction, immunoblotting, and co-immunoprecipitation. Intra-ganglionic injections of drugs were performed to investigate the regulation mechanism. The present study demonstrated that CCI-ION-induced mechanical allodynia was maintained over at least 21 days. GluA1 and GluA2 were mainly expressed in the neurons. Trigeminal nerve injury potentiated the phosphorylation of GluA1, GluA2, and PKC in the TG, which was prevented by inhibiting PKC with chelerythrine chloride. Additionally, PICK1 colocalized and interacted with GluA2 in the TG. Following blocking PICK1 with FSC-231, the phosphorylation of GluA2 decreased. Finally, inhibition of PKC and PICK1 both alleviated mechanical allodynia in the whisker pad of CCI-ION mice. In conclusion, activation of PKC and PICK1 contribute to orofacial allodynia by regulating AMPAR phosphorylation in the TG of male mice, which provides potential therapeutic targets for alleviating orofacial neuropathic pain.

19.
Heliyon ; 8(10): e10784, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36217492

RESUMEN

Several studies have aimed to describe associated demographic and psychiatric risk factors that would lead to readmission to a behavioral health unit within 30 days of discharge. Here we considered 1,095 patients that were discharged from Millcreek Community Hospital (MCH) in Erie, Pennsylvania between June 2018 and June 2019. We extracted electronic medical data and analyzed various risk factors using a SPSS software and performed Chi square analysis to determine significance. We determined that patients between the age 30-39 that were diagnosed with major depressive disorder or bipolar disorder, and patients that had 12 or more previous behavioral health admissions were significantly more likely to be readmitted within 30 days of discharge. By analyzing risk factors that lead to a higher percentage of readmission rates, physicians can be more readily equipped and prepared while treating inpatient psychiatric patients. These physicians can take more precautionary measures when discharging patients with specific characteristic profiles to prevent the risk of being readmitted within 30 days of discharge.

20.
Life (Basel) ; 12(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36143347

RESUMEN

The leaf photosynthetic capacity, leaf N partitioning, non-structural carbohydrate content, C, N, and P contents of endangered U. elongata seedlings exposed to different light intensities were compared in this study. The most favorable light condition for the survival and growth of U. elongata seedlings in the present study was 100% full sunlight, as this induced higher Pn, PNUE, PC, PR, PB, and NSC content relative to shade-treated seedlings. PNUE, PR, PC, and PB in U. elongata seedling leaves decreased under 40% and 10% full sunlight, while PL increased, indicating that shade increased the light capture efficiency of photosystem (PS) II but decreased electron transfer from PSII to PSI. Furthermore, leaf N content increased with shade intensity, revealing an adaptive strategy for poor light environments. Additionally, the smallest leaf biomass, Pn, WUE, and CE values and C:N and C:P ratios in stems and leaves were observed under 10% full sunlight. These results indicate that seedlings growing under 40% full sunlight will benefit U. elongata conservation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA