Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nutr ; 154(5): 1505-1516, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460786

RESUMEN

BACKGROUND: Sterol regulatory element binding protein (SREBP) 1 is considered to be a crucial regulator for lipid synthesis in vertebrates. However, whether SREBP1 could regulate hepatic gluconeogenesis under high-fat diet (HFD) condition is still unknown, and the underlying mechanism is also unclear. OBJECTIVES: This study aimed to determine gluconeogenesis-related gene and protein expressions in response to HFD in large yellow croaker and explore the role and mechanism of SREBP1 in regulating the related transcription and signaling. METHODS: Croakers (mean weight, 15.61 ± 0.10 g) were fed with diets containing 12% crude lipid [control diet (ND)] or 18% crude lipid (HFD) for 10 weeks. The glucose tolerance, insulin tolerance, hepatic gluconeogenesis-related genes, and proteins expressions were determined. To explore the role of SREBP1 in HFD-induced gluconeogenesis, SREBP1 was inhibited by pharmacologic inhibitor (fatostatin) or genetic knockdown in croaker hepatocytes under palmitic acid (PA) condition. To explore the underlying mechanism, luciferase reporter and chromatin immunoprecipitation assays were conducted in HEK293T cells. Data were analyzed using analysis of variance or Student t test. RESULTS: Compared with ND, HFD increased the mRNA expressions of gluconeogenesis genes (2.40-fold to 2.60-fold) (P < 0.05) and reduced protein kinase B (AKT) phosphorylation levels (0.28-fold to 0.34-fold) (P < 0.05) in croakers. However, inhibition of SREBP1 by fatostatin addition or SREBP1 knockdown reduced the mRNA expressions of gluconeogenesis genes (P < 0.05) and increased AKT phosphorylation levels (P < 0.05) in hepatocytes, compared with that by PA treatment. Moreover, fatostatin addition or SREBP1 knockdown also increased the mRNA expressions of irs1 (P < 0.05) and reduced serine phosphorylation of IRS1 (P < 0.05). Furthermore, SREBP1 inhibited IRS1 transcriptions by binding to its promoter and induced IRS1 serine phosphorylation by activating diacylglycerol-protein kinase Cε signaling. CONCLUSIONS: This study reveals the role of SREBP1 in hepatic gluconeogenesis under HFD condition in croakers, which may provide a potential strategy for improving HFD-induced glucose intolerance.


Asunto(s)
Dieta Alta en Grasa , Gluconeogénesis , Intolerancia a la Glucosa , Hígado , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Animales , Gluconeogénesis/efectos de los fármacos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Humanos , Intolerancia a la Glucosa/metabolismo , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Células HEK293 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Transducción de Señal
2.
Br J Nutr ; 131(4): 553-566, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-37699661

RESUMEN

Sterol regulatory element-binding protein 2 (SREBP2) is considered to be a major regulator to control cholesterol homoeostasis in mammals. However, the role of SREBP2 in teleost remains poorly understand. Here, we explored the molecular characterisation of SREBP2 and identified SREBP2 as a key modulator for 3-hydroxy-3-methylglutaryl-coenzyme A reductase and 7-dehydrocholesterol reductase, which were rate-limiting enzymes of cholesterol biosynthesis. Moreover, dietary palm oil in vivo or palmitic acid (PA) treatment in vitro elevated cholesterol content through triggering SREBP2-mediated cholesterol biosynthesis in large yellow croaker. Furthermore, our results also found that PA-induced activation of SREBP2 was dependent on the stimulating of endoplasmic reticulum stress (ERS) in croaker myocytes and inhibition of ERS by 4-Phenylbutyric acid alleviated PA-induced SREBP2 activation and cholesterol biosynthesis. In summary, our findings reveal a novel insight for understanding the role of SREBP2 in the regulation of cholesterol metabolism in fish and may deepen the link between dietary fatty acid and cholesterol biosynthesis.


Asunto(s)
Grasas Insaturadas en la Dieta , Perciformes , Animales , Colesterol/metabolismo , Estrés del Retículo Endoplásmico , Músculos/metabolismo , Aceite de Palma/farmacología , Perciformes/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
3.
Am J Pathol ; 192(12): 1779-1794, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36063899

RESUMEN

The observation that diabetic retinopathy (DR) typically takes decades to develop suggests the existence of an endogenous system that protects from diabetes-induced damage. To investigate the existance of such a system, primary human retinal endothelial cells were cultured in either normal glucose (5 mmol/L) or high glucose (30 mmol/L; HG). Prolonged exposure to HG was beneficial instead of detrimental. Although tumor necrosis factor-α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 was unaffected after 1 day of HG, it waned as the exposure to HG was extended. Similarly, oxidative stress-induced death decreased with prolonged exposure to HG. Furthermore, mitochondrial functionality, which was compromised by 1 day of HG, was improved by 10 days of HG, and this change required increased clearance of damaged mitochondria (mitophagy). Finally, antagonizing mitochondrial dynamics compromised the cells' ability to endure HG: susceptibility to cell death increased, and basal barrier function and responsiveness to vascular endothelial growth factor deteriorated. These observations indicate the existence of an endogenous system that protects human retinal endothelial cells from the deleterious effects of HG. Hyperglycemia-induced mitochondrial adaptation is a plausible contributor to the mechanism responsible for the delayed onset of DR; loss of hyperglycemia-induced mitochondrial adaptation may set the stage for the development of DR.


Asunto(s)
Retinopatía Diabética , Hiperglucemia , Humanos , Mitofagia , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Glucosa/metabolismo , Hiperglucemia/patología , Retinopatía Diabética/patología
4.
Chemphyschem ; 24(19): e202300369, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37439149

RESUMEN

Ab initio molecular dynamics calculations were performed to study H2 dissociation mechanisms on Cu13 and defective graphene-supported Cu13 clusters. The study reveals that seven types of corresponding dissociation processes are found on the two clusters. The average dissociation energy barriers are 0.51 eV on the Cu13 cluster and 0.12 eV on the defective graphene-supported Cu13 cluster, which are lowered by ~19 % and ~81 % compared with the pristine Cu(111) surface, respectively. Furthermore, compared with the pure Cu13 cluster, the average dissociation energy barrier on the defective graphene-supported Cu13 cluster is substantially reduced by about 76 %. The preferred dissociation mechanisms on the two clusters are H2 located at a top-bridge site with the barrier heights of 0.30 eV on the Cu13 cluster and -0.31 eV on the defective graphene-supported Cu13 cluster. Analysis of the H-Cu bond interactions in the transition states shows that the antibonding-orbital center shifts upward on the defective graphene-supported Cu13 cluster compared with the one on the Cu13 cluster, which explains the reduction of the dissociation energy barrier. The average adsorption energy of dissociated H atoms is also greatly enhanced on the defective graphene-supported Cu13 cluster, about twice that on the Cu13 cluster.

5.
Fish Shellfish Immunol ; 134: 108609, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36764631

RESUMEN

Transcription factor EB (TFEB) plays an integral role in the production of proinflammatory cytokines and chemokines in response to pathogen stimulation in mammals. However, the role of TFEB in antiviral immune responses and the potential regulatory mechanisms in fish remain poorly understood. Here, we cloned and characterized Larimichthys crocea TFEB (LcTFEB) with 524 amino acids and a typical basic helix-loop-helix-leucine zipper domain. LcTFEB could translocate into the nucleus upon starvation and had a comparatively high expression in immune tissues. Similar to the expression of antiviral immune genes, the transcriptional expression and activity of LcTFEB showed a trend of increasing and then decreasing with the prolongation of stimulation. Inhibition of LcTFEB using siRNA dramatically increased the polyinosinic-polycytidylic acid (poly (I:C))-induced interferon response and pro-inflammatory cytokines mRNA expression levels, whereas pharmacological activation and overexpression of LcTFEB exhibited the reverse effects. Mechanically, LcTFEB might promote the expression of IFNh as negative feedback to limit the virus-induced inflammatory responses. Notably, although inhibition of mTORC1 exacerbated poly (I:C)-triggered inflammatory responses, the effects of LcTFEB were independent of mTORC1. Overall, this study revealed an unidentified critical role of LcTFEB in the regulation of antiviral immune responses and promoted the understanding of TFEB in the antiviral immunity of fish macrophages.


Asunto(s)
Antivirales , Perciformes , Animales , Antivirales/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Peces/genética , Macrófagos , Citocinas/metabolismo , Poli I-C/farmacología , Factores de Transcripción/metabolismo , Inmunidad , Mamíferos/metabolismo
6.
Fish Shellfish Immunol ; 141: 109031, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37640122

RESUMEN

Glycerol monolaurate (GML) is a potential candidate for regulating metabolic syndrome and inflammatory response. However, the role of GML in modulating intestinal health in fish has not been well determined. In this study, a 70-d feeding trial was conducted to evaluate the effect of GML on intestinal barrier, antioxidant capacity, inflammatory response and microbiota community of large yellow croaker (13.05 ± 0.09 g) fed with high level soybean oil (SO) diets. Two basic diets with fish oil (FO) or SO were formulated. Based on the SO group diet, three different levels of GML 0.02% (SO0.02), 0.04% (SO0.04) and 0.08% (SO0.08) were supplemented respectively. Results showed that intestinal villus height and perimeter ratio were increased in SO0.04 treatment compared with the SO group. The mRNA expressions of intestinal physical barrier-related gene odc and claudin-11 were significantly up-regulated in different addition of GML treatments compared with the SO group. Fish fed SO diet with 0.04% GML addition showed higher activities of acid phosphatase and lysozyme compared with the SO group. The content of malonaldehyde was significantly decreased and activities of catalase and superoxide dismutase were significantly increased in 0.02% and 0.04% GML groups compared with those in the SO group. The mRNA transcriptional levels of inflammatory response-related genes (il-1ß, il-6, tnf-α and cox-2) in 0.04% GML treatment were notably lower than those in the SO group. Meanwhile, sequencing analysis of bacterial 16S rRNA V4-V5 region showed that GML addition changed gut microbiota structure and increased alpha diversity of large yellow croaker fed diets with a high level of SO. The correlation analysis results indicated that the change of intestinal microbiota relative abundance strongly correlated with intestinal health indexes. In conclusion, these results demonstrated that 0.02%-0.04% GML addition could improve intestinal morphology, physical barrier, antioxidant capacity, inflammatory response and microbiota dysbiosis of large yellow croaker fed diets with a high percentage of SO.


Asunto(s)
Microbiota , Perciformes , Animales , Antioxidantes/metabolismo , Aceite de Soja/metabolismo , Disbiosis , ARN Ribosómico 16S , Dieta/veterinaria , Perciformes/genética , ARN Mensajero/metabolismo , Alimentación Animal/análisis
7.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047375

RESUMEN

The purpose of this study was to identify genes that mediate VEGF-induced permeability. We performed RNA-Seq analysis on primary human retinal endothelial cells (HRECs) cultured in normal (5 mM) and high glucose (30 mM) conditions that were treated with vehicle, VEGF, or VEGF then anti-VEGF. We filtered our RNA-Seq dataset to identify genes with the following four characteristics: (1) regulated by VEGF, (2) VEGF regulation reversed by anti-VEGF, (3) regulated by VEGF in both normal and high glucose conditions, and (4) known contribution to vascular homeostasis. Of the resultant 18 genes, members of the Notch signaling pathway and ANGPT2 (Ang2) were selected for further study. Permeability assays revealed that while the Notch pathway was dispensable for relaxing the barrier, it contributed to maintaining an open barrier. In contrast, Ang2 limited the extent of barrier relaxation in response to VEGF. These findings indicate that VEGF engages distinct sets of genes to induce and sustain barrier relaxation. Furthermore, VEGF induces expression of genes that limit the extent of barrier relaxation. Together, these observations begin to elucidate the elegance of VEGF-mediated transcriptional regulation of permeability.


Asunto(s)
Células Endoteliales , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Células Cultivadas , Retina/metabolismo , Glucosa/farmacología , Glucosa/metabolismo
8.
Molecules ; 27(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36235002

RESUMEN

Despite an outstanding agent for control of Lepidoptera, the diamide insecticide cyclaniliprole (CYCP) is a suspected carcinogen. In the present study, an analytical method was developed for the determination of CYCP in six fruits and vegetables (apple, grape, peach, bell pepper, lettuce, and tomato) using ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry. Sample preparation was carried out by the acetonitrile-salting-out extraction followed by simple and fast cleanup of disposable pipette extraction tip containing styrene divinyl benzene and/or graphitized carbon black. Satisfactory linearity (r > 0.99) was obtained in the calibration range of 0.001−1 µg mL−1. Matrix effects decreased from −9.9−−17.9% to −1.0−−7.6% after the cleanup. The recoveries of CYCP at three spike levels (0.01, 0.1, and 1 mg kg−1) from different matrices were between 75.7% and 111.5%, with the intra-day (n = 5) and inter-day (n = 15) relative standard deviations lower than 12.1%. The limit of quantification was 0.01 mg kg−1. The developed method provides a good reference for routine monitoring of CYCP in these fruits and vegetables.


Asunto(s)
Insecticidas , Residuos de Plaguicidas , Acetonitrilos/análisis , Carcinógenos/análisis , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Diamida , Frutas/química , Insecticidas/química , Residuos de Plaguicidas/análisis , Hollín , Estirenos , Espectrometría de Masas en Tándem/métodos , Verduras/química
9.
Am J Pathol ; 190(9): 1971-1981, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32590003

RESUMEN

Leakage of retinal blood vessels, which is an essential element of diabetic retinopathy, is driven by chronic elevation of vascular endothelial growth factor (VEGF). VEGF quickly relaxes the endothelial cell barrier by triggering signaling events that post-translationally modify pre-existing components of intercellular junctions. VEGF also changes expression of genes that are known to regulate barrier function. Our goal was to identify effectors by which VEGF and anti-VEGF control the endothelial cell barrier in cells that were chronically exposed to VEGF (hours instead of minutes). The duration of VEGF exposure influenced both barrier relaxation and anti-VEGF-mediated closure. Most VEGF-induced changes in gene expression were not reversed by anti-VEGF. Those that were constitute VEGF effectors that are targets of anti-VEGF. Pursuit of such candidates revealed that VEGF used multiple, nonredundant effectors to relax the barrier in cells that were chronically exposed to VEGF. One such effector was angiotensin-converting enzyme, which is a member of the renin-angiotensin-aldosterone system (RAAS). Pharmacologically antagonizing either the angiotensin-converting enzyme or the receptor for angiotensin II attenuated VEGF-mediated relaxation of the barrier. Finally, activating the RAAS reduced the efficacy of anti-VEGF. These discoveries provide a plausible mechanistic explanation for the long-standing appreciation that RAAS inhibitors are beneficial for patients with diabetic retinopathy and suggest that antagonizing the RAAS improves patients' responsiveness to anti-VEGF.


Asunto(s)
Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Sistema Renina-Angiotensina/fisiología , Retina/metabolismo , Vasos Retinianos/metabolismo , Antagonistas de Receptores de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Permeabilidad Capilar/efectos de los fármacos , Células Cultivadas , Humanos , Vasos Retinianos/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
10.
Curr Microbiol ; 77(9): 2441-2448, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32506239

RESUMEN

Wolbachia is capable of regulating host reproduction, and thus of great significance in preventing the spread of insect-borne diseases and controlling pest insects. The fruit fly Drosophila melanogaster is an excellent model insect for understanding Wolbachia-host interactions. Here we artificially transferred the wCcep strain from the rice moth Corcyra cephalonica into D. melanogaster by microinjection. Crossing experiments indicated that wCcep could induce a high level of CI in the phylogenetically distant host D. melanogaster and imposed no negative fitness costs on host development and fecundity. Based on quantitative analysis, the titres of wCcep and the native wMel strain were negatively correlated, and wCcep could only be transmitted in the novel host for several generations (G0 to G4) after transinfection. Transcriptome sequencing indicated that the invading wCcep strain induced a significant immune- and stress-related response from the host. An association analysis between the expression of immune genes attacin-D/edin and the titre of Wolbachia by linear regression displayed a negative correlation between them. Our study suggest that the intrusion of wCcep elicited a robust immune response from the host and incurred a competitive exclusion from the native Wolbachia strain, which resulted in the failure of its establishment in D. melanogaster.


Asunto(s)
Mariposas Nocturnas , Wolbachia , Animales , Drosophila melanogaster , Simbiosis , Wolbachia/genética
11.
BMC Biol ; 17(1): 6, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30683095

RESUMEN

BACKGROUND: Sex determination mechanisms in teleost fish broadly differ from mammals and birds, with sex chromosomes that are far less differentiated and recombination often occurring along the length of the X and Y chromosomes, posing major challenges for the identification of specific sex determination genes. Here, we take an innovative approach of comparative genome analysis of the genomic sequences of the X chromosome and newly sequenced Y chromosome in the channel catfish. RESULTS: Using a YY channel catfish as the sequencing template, we generated, assembled, and annotated the Y genome sequence of channel catfish. The genome sequence assembly had a contig N50 size of 2.7 Mb and a scaffold N50 size of 26.7 Mb. Genetic linkage and GWAS analyses placed the sex determination locus within a genetic distance less than 0.5 cM and physical distance of 8.9 Mb. However, comparison of the channel catfish X and Y chromosome sequences showed no sex-specific genes. Instead, comparative RNA-Seq analysis between females and males revealed exclusive sex-specific expression of an isoform of the breast cancer anti-resistance 1 (BCAR1) gene in the male during early sex differentiation. Experimental knockout of BCAR1 gene converted genetic males (XY) to phenotypic females, suggesting BCAR1 as a putative sex determination gene. CONCLUSIONS: We present the first Y chromosome sequence among teleost fish, and one of the few whole Y chromosome sequences among vertebrate species. Comparative analyses suggest that sex-specific isoform expression through alternative splicing may underlie sex determination processes in the channel catfish, and we identify BCAR1 as a potential sex determination gene.


Asunto(s)
Ictaluridae/genética , Procesos de Determinación del Sexo/genética , Cromosoma Y , Animales , Mapeo Cromosómico , Femenino , Ligamiento Genético , Genoma , Masculino , Análisis de Secuencia de ADN
12.
Fish Physiol Biochem ; 46(1): 187-197, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31612298

RESUMEN

Cadmium (Cd) is the most abundant heavy metal in aquatic environments and is easily detected on a global scale. Carassius auratus gibelio is a common aquaculture species. The aim of this study was to explore the toxic effects of 1, 2, and 4 mg/L Cd on the energy metabolism, growth performance, and neurological responses of C. gibelio. After 30 days of exposure, Cd concentrations in the liver and brain were significantly increased in Cd-exposed groups. Low-level Cd exposure (1 mg/L) increased weight and length gains, as well as food intake, in the fish. Acetylcholinesterase activity decreased significantly in the Cd-exposed groups. Energy metabolism levels (as reflected by oxygen consumption, ammonia excretion rate, and swimming activity), as well as serum T3 and T4 levels, increased significantly in the fish exposed to 1 mg/L Cd. However, energy metabolism and serum T3/T4 levels decreased significantly in the 4-mg/L Cd group. Neuropeptide gene expression levels in brain were consistent with the observed changes in food intake. In the Cd-exposed groups, the expression levels of neuropeptide Y (NPY), apelin, and metallothionein (MT) increased significantly, while those of pro-opinmelanocortin (POMC), ghrelin, and corticotrophin-releasing factor (CRF) decreased significantly. Our data suggested that in fish, low doses of Cd might increase food intake, as well as weight and length gains, but high doses of Cd might have the opposite effect. These effects might be a result of neurohumoral regulation. Long-term exposure to low doses of Cd might cause weight gain and affect food intake.


Asunto(s)
Cadmio/toxicidad , Metabolismo Energético/efectos de los fármacos , Carpa Dorada/crecimiento & desarrollo , Neuropéptidos/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Carpa Dorada/metabolismo , Neuropéptidos/genética , Contaminantes Químicos del Agua/toxicidad
13.
Mol Genet Genomics ; 292(3): 663-670, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28289846

RESUMEN

Albinism is caused by a series of genetic abnormalities leading to reduction of melanin production. Albinism is quite frequent in catfish, but the causative gene and the molecular basis were unknown. In this study, we conducted a genome-wide association study (GWAS) using the 250 K SNP array. The GWAS analysis allowed mapping of the albino phenotype in the Hermansky-Pudlak syndrome 4 (Hps4) gene, which is known to be involved in melanosome biosynthesis. Sequencing analysis revealed that a 99-bp deletion was present in all analyzed albino catfish at the intron 2 and exon 3 junction. This deletion led to the skipping of the entire exon 3 which was confirmed by RT-PCR. Therefore, Hps4 was determined to be the candidate gene of the catfish albinism.


Asunto(s)
Proteínas de Peces/genética , Síndrome de Hermanski-Pudlak/genética , Ictaluridae/genética , Animales , Secuencia de Bases , Estudio de Asociación del Genoma Completo , Genotipo , Melaninas/biosíntesis , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Eliminación de Secuencia/genética
14.
Lipids Health Dis ; 16(1): 181, 2017 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-28946872

RESUMEN

BACKGROUND: Increased consumption of omega-3 (ω-3) fatty acids found in cold-water fish and fish oil has been reported to protect against obesity. A potential mechanism may be through reduction in adipocyte differentiation. Stearidonic acid (SDA), a plant-based ω-3 fatty acid, has been targeted as a potential surrogate for fish-based fatty acids; however, its role in adipocyte differentiation is unknown. This study was designed to evaluate the effects of SDA on adipocyte differentiation in 3T3-L1 cells. METHODS: 3T3-L1 preadipocytes were differentiated in the presence of SDA or vehicle-control. Cell viability assay was conducted to determine potential toxicity of SDA. Lipid accumulation was measured by Oil Red O staining and triglyceride (TG) quantification in differentiated 3T3-L1 adipocytes. Adipocyte differentiation was evaluated by adipogenic transcription factors and lipid accumulation gene expression by quantitative real-time polymerase chain reaction (qRT-PCR). Fatty acid analysis was conducted by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). RESULTS: 3T3-L1 cells treated with SDA were viable at concentrations used for all studies. SDA treatment reduced lipid accumulation in 3T3-L1 adipocytes. This anti-adipogenic effect by SDA was a result of down-regulation of mRNA levels of the adipogenic transcription factors CCAAT/enhancer-binding proteins alpha and beta (C/EBPα, C/EBPß), peroxisome proliferator-activated receptor gamma (PPARγ), and sterol-regulatory element binding protein-1c (SREBP-1c). SDA treatment resulted in decreased expression of the lipid accumulation genes adipocyte fatty-acid binding protein (AP2), fatty acid synthase (FAS), stearoyl-CoA desaturase (SCD-1), lipoprotein lipase (LPL), glucose transporter 4 (GLUT4) and phosphoenolpyruvate carboxykinase (PEPCK). The transcriptional activity of PPARγ was found to be decreased with SDA treatment. SDA treatment led to significant EPA enrichment in 3T3-L1 adipocytes compared to vehicle-control. CONCLUSION: These results demonstrated that SDA can suppress adipocyte differentiation and lipid accumulation in 3T3-L1 cells through down-regulation of adipogenic transcription factors and genes associated with lipid accumulation. This study suggests the use of SDA as a dietary treatment for obesity.


Asunto(s)
Adipocitos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Animales , Proteína beta Potenciadora de Unión a CCAAT/antagonistas & inhibidores , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/antagonistas & inhibidores , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Supervivencia Celular/efectos de los fármacos , Acido Graso Sintasa Tipo I/antagonistas & inhibidores , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Proteínas de Unión a Ácidos Grasos/antagonistas & inhibidores , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Transportador de Glucosa de Tipo 4/antagonistas & inhibidores , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Lipoproteína Lipasa/antagonistas & inhibidores , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Ratones , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , PPAR gamma/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/antagonistas & inhibidores , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidores , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
15.
Environ Monit Assess ; 189(11): 534, 2017 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-28971277

RESUMEN

Ginseng is a valuable herb, the roots of which have been consumed for medicinal use since ancient times in Asian countries. Currently, its cultivation in China is conducted in either forests or non-forest areas. In this study, we investigated the dissipation and residues of the diamide insecticide chlorantraniliprole (CAP) in ginseng ecosystems in these two cultivation environments. The half-life of CAP in ginseng leaves was calculated to be 16.5 days in non-forest areas and 23.9 days in forests, while the half-life of CAP in the soil under non-forest and forest cultivation was 33.0 and 53.3 days, respectively. The relatively long persistence of CAP in ginseng leaves and soil could be attributed to the unique cultivation techniques of ginseng, which prevents exposure to direct sunlight irradiation and rainfall. The residual amounts of CAP in ginseng leaves, roots, and soil in non-forest areas were 0.168, 0.011, and 0.013 mg kg-1 21 days after CAP application at the maximum label-allowed dosage and frequency versus 0.564, 0.013, and < 0.005 mg kg-1 in forests. CAP application strategies for the control of Lepidoptera pests such as armyworms, and the safety of harvested ginseng roots are recommended for ginseng cultivated in forests and non-forest areas based on the results of the CAP residue experiments.


Asunto(s)
Monitoreo del Ambiente , Insecticidas/análisis , Panax/química , Residuos de Plaguicidas/análisis , ortoaminobenzoatos/análisis , Asia , China , Diamida , Ecosistema , Bosques , Semivida , Hojas de la Planta/química , Raíces de Plantas/química , Suelo/química , Contaminantes del Suelo/análisis
16.
Cell Death Differ ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879724

RESUMEN

Development of the cerebellum requires precise regulation of granule neuron progenitor (GNP) proliferation. Although it is known that primary cilia are necessary to support GNP proliferation, the exact molecular mechanism governing primary cilia dynamics within GNPs remains elusive. Here, we establish the pivotal roles for the centrosomal kinase TTBK2 (Tau tubulin kinase-2) and the E3 ubiquitin ligase HUWE1 in GNP proliferation. We show that TTBK2 is highly expressed in proliferating GNPs under Sonic Hedgehog (SHH) signaling, coinciding with active GNP proliferation and the presence of primary cilia. TTBK2 stabilizes primary cilia by inhibiting their disassembly, thereby promoting GNP proliferation in response to SHH. Mechanistically, we identify HUWE1 as a novel centrosomal E3 ligase that facilitates primary cilia disassembly by targeting TTBK2 degradation. Disassembly of primary cilia serves as a trigger for GNP differentiation, allowing their migration from the external granule layer (EGL) of the cerebellum to the internal granule layer (IGL) for subsequent maturation. Moreover, we have established a link between TTBK2 and SHH-type medulloblastoma (SHH-MB), a tumor characterized by uncontrolled GNP proliferation. TTBK2 depletion inhibits SHH-MB proliferation, indicating that TTBK2 may be a potential therapeutic target for this cancer type. In summary, our findings reveal the mechanism governing cerebellar development and highlight a potential anti-cancer strategy for SHH-MB.

17.
Free Radic Biol Med ; 208: 402-417, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37660837

RESUMEN

Oxidized low-density lipoprotein (OX-LDL)-induced inflammation and autophagy dysregulation are important events in the progression of atherosclerosis. Phosphatidylethanolamine (PE), a multifunctional phospholipid that is enriched in cells, has been proven to be directly involved in autophagy which is closely associated with inflammation. However, whether PE can influence OX-LDL-induced autophagy dysregulation and inflammation has not been reported. In the present study, we revealed that OX-LDL significantly induced macrophage inflammation through the CD36-NLRP1-caspase-1 signaling pathway in fish. Meanwhile, cellular PE levels were significantly decreased in response to OX-LDL induction. Based on the relationship between PE and autophagy, we then examined the effect of PE supplementation on OX-LDL-mediated autophagy impairment and inflammation induction in macrophages. As expected, exogenous PE restored impaired autophagy and alleviated inflammation in OX-LDL-stimulated cells. Notably, autophagy inhibitors reversed the inhibitory effect of PE on OX-LDL-induced maturation of IL-1ß, indicating that the regulation of PE on OX-LDL-induced inflammation is dependent on autophagy. Furthermore, the positive effect of PE on OX-LDL-induced inflammation was relatively conserved in mouse and fish macrophages. In conclusion, we elucidated the role of the CD36-NLRP1-caspase-1 signaling pathway in OX-LDL-induced inflammation in fish and revealed for the first time that altering PE abundance in OX-LDL-treated cells could alleviate inflammasome-mediated inflammation by inducing autophagy. Given the relationship between OX-LDL-induced inflammation and atherosclerosis, this study prompts that the use of PE-rich foods promises to be a new strategy for atherosclerosis treatment in vertebrates.


Asunto(s)
Aterosclerosis , Inflamasomas , Fosfatidiletanolaminas , Animales , Ratones , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Autofagia , Caspasa 1/genética , Caspasa 1/metabolismo , Inflamasomas/genética , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Fosfatidiletanolaminas/farmacología
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1868(12): 159397, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37741313

RESUMEN

Low-density lipoprotein (LDL) is the main carrier of cholesterol transport in plasma, which participates in regulating lipid homeostasis. Studies in mammals have shown that high levels of LDL in plasma absorbed by macrophages trigger the formation of lipid-rich foam cells, leading to the development of atherosclerotic plaques. Although lipid-rich atherosclerosis-like lesions have been discovered in the aorta of several fish species, the physiological function of LDL in fish macrophages remains poorly understood. In the present study, LDL was isolated from the plasma of large yellow croaker (Larimichthys crocea), and mass spectrometry analysis identified two truncated forms of apolipoprotein B100 in the LDL protein profile. Transcriptomic analysis of LDL-stimulated macrophages revealed that differentially expressed genes (DEGs) were enriched in various pathways related to lipid metabolism, as confirmed by the fact that LDL increased total cholesterol and cholesteryl esters content. Meanwhile, the gene and protein expression levels of perilipin2 (PLIN2), a DEG enriched in the PPAR signaling pathway, were upregulated in response to LDL stimulation. Importantly, knocking down plin2 significantly attenuates LDL-induced cholesterol accumulation and promotes cholesterol efflux. Furthermore, the transcription factor PPARγ, which is upregulated in response to LDL stimulation, can enhance the promoter activity of plin2. In conclusion, this study suggests that LDL may upregulate plin2 expression through PPARγ, resulting in cholesterol accumulation in fish macrophages. This study will facilitate the investigation of the function of LDL in regulating lipid homeostasis in macrophages and shed light on the evolutionary origin of LDL metabolism in vertebrates.


Asunto(s)
Aterosclerosis , Perciformes , Animales , Metabolismo de los Lípidos , PPAR gamma/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Aterosclerosis/metabolismo , Perciformes/genética , Perciformes/metabolismo , Mamíferos/metabolismo
19.
Front Immunol ; 14: 1162633, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051230

RESUMEN

Dietary high soybean oil (SO) levels might cause hepatic lipid deposition, induce oxidative stress and inflammatory response in aquatic animals, while octanoate (OCT) is beneficial to metabolism and health in mammals. However, the effect of OCT has been studied rarely in aquatic animals. In this study, a 10-week feeding trial was conducted to investigate the effect of supplemental OCT on hepatic lipid metabolism, serum biochemical indexes, antioxidant capacity and inflammatory response of large yellow croaker (Larimichthys crocea) fed with high SO levels diet. The negative control diet contained 7% fish oil (FO), while the positive control diet contained 7% SO. The other four experimental diets were supplemented with 0.7, 2.1, 6.3 and 18.9 g/kg sodium octanoate (OCT) based on the positive control diet. Results showed that OCT supplementation effectively reduced the hepatic crude lipid, triglyceride (TG), total cholesterol (TC) and non-esterified free fatty acids contents, and alleviated lipid accumulation caused by the SO diet. Meanwhile, OCT supplementation decreased the serum TG, TC, alanine transaminase, aspartate transaminase and low-density lipoprotein cholesterol levels, increased the serum high-density lipoprotein cholesterol level, improved the serum lipid profiles and alleviated hepatic injury. Furthermore, with the supplementation of OCT, the mRNA expression of genes related to lipogenesis (acc1, scd1, fas, srebp1, dgat1 and cebpα) and fatty acid (FA) transport (fabp3, fatp and cd36) were down-regulated, while the mRNA expression of genes related to lipolysis (atgl, hsl and lpl) and FA ß-oxidation (cpt1 and mcad) were up-regulated. Besides that, dietary OCT increased the total antioxidant capacity, activities of peroxidase, catalase and superoxide dismutase and the content of reduced glutathione, decreased the content of 8-hydroxy-deoxyguanosine and malondialdehyde and relieved hepatic oxidative stress. Supplementation of 0.7 and 2.1 g/kg OCT down-regulated the mRNA expression of genes related to pro-inflammatory cytokines (tnfα, il1ß and ifnγ), and suppressed hepatic inflammatory response. In conclusion, supplementation with 0.7-2.1 g/kg OCT could reduce hepatic lipid accumulation, relieve oxidative stress and regulate inflammatory response in large yellow croaker fed the diet with high SO levels, providing a new way to alleviate the hepatic fat deposition in aquatic animals.


Asunto(s)
Antioxidantes , Perciformes , Animales , Antioxidantes/farmacología , Aceite de Soja , Caprilatos/farmacología , Caprilatos/metabolismo , Metabolismo de los Lípidos , Dieta , Inflamación , Perciformes/genética , ARN Mensajero/metabolismo , Colesterol/metabolismo , Mamíferos/metabolismo
20.
Biol Trace Elem Res ; 200(2): 812-821, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33740179

RESUMEN

Cadmium (Cd) poisoning in humans and fish represents a significant global problem. Bacillus cereus (B. cereus) is a widely used probiotic in aquaculture. The objective of this study was to evaluate the potential of B. cereus in ameliorating Cd-induced toxicity in mirror carp. The biosorption rate of Zn for the B. cereus in 85.99% was significantly more than five strains. All fishes were exposed for 30 days to dietary ZnCl2 (30mg/kg), waterborne Cd (1 mg/L), and/or dietary Zn-enriched B. cereus (Zn 30mg/kg and 107cfu/g B. cereus). At 15 and 30 days, the fishes were sampled, and bioaccumulation, antioxidant activity, and intestinal microbiota were measured. Waterborne Cd exposure caused marked alterations in the composition of the microbiota. Dietary supplementation with Zn-enriched B. cereus can reduce the changes in the composition of intestinal microbiota in Cd exposure and decrease the pathogenic bacteria of Flavobacterium and Pseudomonas in Zn-enriched B. cereus groups. The results obtained indicate that Zn-enriched B. cereus can provide a significant protective effect on the toxicity of cadmium by inhibiting alterations in the levels of bioaccumulation and antioxidant enzyme including superoxide dismutase (SOD), catalase (CAT), total antioxidant (T-AOC), and malonaldehyde (MDA). Our results suggest that administration of Zn-enriched B. cereus has the potential to combat Cd toxicity in mirror carp.


Asunto(s)
Carpas , Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Bacillus cereus/metabolismo , Bioacumulación , Cadmio/toxicidad , Carpas/metabolismo , Estrés Oxidativo , Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA