Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Immunol ; 207(12): 2933-2943, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34799427

RESUMEN

Autoimmune uveitis (AU) is a sight-threatening ocular inflammatory disorder, characterized by massive retinal vascular leakage and inflamed lesions with infiltration of the uveitogenic T cells in the retina and disorders of the T cell-related immune response in the system. Stimulation of TCRs can trigger calcium release and influx via Ca2+ channels and then transmit signals from the surface to the nucleus, which are important for energy metabolism, proliferation, activation, and differentiation. Inhibition of Ca2+ influx by pharmacological modulation of Ca2+ channels may suppress T cell function, representing a novel anti-inflammatory strategy in the treatment of AU. This study investigated the effects of the l-type voltage-gated calcium channel blocker nimodipine in experimental AU (EAU). Nimodipine was found to not only decrease the clinical and histopathological inflammation score of EAU (C57BL/6J mice) but also dwindle the infiltration of uveitogenic CD4+ T cells into the retina. Moreover, nimodipine decreased the effector T cells and increased the regulatory T cells in the immune system. In vitro, nimodipine reduced the effector T cell differentiation of the IRBP1-20-specific CD4+ T cells of EAU mice and LPS-stimulated PBMCs of uveitis patients. Meanwhile, nimodipine suppressed the energy metabolism, proliferation, activation, and Th1 cell differentiation of T cells. Further studies on RNA sequencing and molecular mechanisms have established that nimodipine alleviates EAU by regulating T cells response through the p38-MAPK pathway signaling. Taken together, our data reveal a novel therapeutic potential of the l-type Ca2+ channels antagonist nimodipine in AU by regulating the balance of T cell subsets.


Asunto(s)
Enfermedades Autoinmunes , Uveítis , Animales , Canales de Calcio , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Nimodipina/farmacología , Nimodipina/uso terapéutico , Retina , Transducción de Señal , Linfocitos T
2.
J Neuroinflammation ; 19(1): 124, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624485

RESUMEN

BACKGROUND: Melatonin, an indoleamine produced by the pineal gland, plays a pivotal role in maintaining circadian rhythm homeostasis. Recently, the strong antioxidant and anti-inflammatory properties of melatonin have attracted attention of researchers. We evaluated the therapeutic efficacy of melatonin in experimental autoimmune uveitis (EAU), which is a representative animal model of human autoimmune uveitis. METHODS: EAU was induced in mice via immunization with the peptide interphotoreceptor retinoid binding protein 1-20 (IRBP1-20). Melatonin was then administered via intraperitoneal injection to induce protection against EAU. With EAU induction for 14 days, clinical and histopathological scores were graded to evaluate the disease progression. T lymphocytes accumulation and the expression of inflammatory cytokines in the retinas were assessed via flow cytometry and RT-PCR, respectively. T helper 1 (Th1), T helper 17 (Th17), and regulatory T (Treg) cells were detected via flow cytometry for both in vivo and in vitro experiments. Reactive-oxygen species (ROS) from CD4 + T cells was tested via flow cytometry. The expression of thioredoxin-interacting protein (TXNIP) and hypoxia-inducible factor 1 alpha (HIF-1α) proteins were quantified via western blot. RESULTS: Melatonin treatment resulted in notable attenuation of ocular inflammation in EAU mice, evidenced by decreasing optic disc edema, few signs of retinal vasculitis, and minimal retinal and choroidal infiltrates. Mechanistic studies revealed that melatonin restricted the proliferation of peripheral Th1 and Th17 cells by suppressing their transcription factors and potentiated Treg cells. In vitro studies corroborated that melatonin restrained the polarization of retina-specific T cells towards Th17 and Th1 cells in addition to enhancing the proportion of Treg cells. Pretreatment of retina-specific T cells with melatonin failed to induce EAU in naïve recipients. Furthermore, the ROS/ TXNIP/ HIF-1α pathway was shown to mediate the therapeutic effect of melatonin in EAU. CONCLUSIONS: Melatonin regulates autoimmune T cells by restraining effector T cells and facilitating Treg generation, indicating that melatonin could be a hopeful treatment alternative for autoimmune uveitis.


Asunto(s)
Enfermedades Autoinmunes , Melatonina , Uveítis , Animales , Proteínas Portadoras , Melatonina/farmacología , Melatonina/uso terapéutico , Ratones , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Th17 , Tiorredoxinas/metabolismo
3.
Invest Ophthalmol Vis Sci ; 64(7): 9, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37272763

RESUMEN

Purpose: We investigated the therapeutic potential of ABBV744, a bromodomain and extra-terminal (BET) inhibitor with selectivity for the second bromodomain (BD2) in thyroid eye disease (TED). The anti-fibrotic effects of ABBV744 and its underlying mechanism were explored in cultured orbital fibroblasts (OFs) from patients with TED. Methods: Immunohistochemistry (IHC) and real-time quantitative polymerase chain reaction (RT-qPCR) assays were conducted on orbital connective tissues from TED and controls. RT-qPCR, Western blot, Cell-counting Kit-8 (CCK-8), and 5-ethynyl-2'-deoxyuridine (EdU) cell proliferation assays were conducted on OFs isolated from patients with TED. Results: The expression of BRD4 was upregulated in the orbital tissues of patients with TED relative to controls and in TED OFs stimulated with TGF-ß1. Further, we showed that BRD4 modulated the profibrotic process through the interaction with Forkhead Box M1 (FoxM1) and its downstream molecule Polo-like kinase 1 (Plk1) in cultured TED OFs. Inhibition of BRD4 both by BD2 selective inhibitor ABBV744 and pan-BET inhibitor JQ1 exerted anti-fibrotic effects, whereas ABBV744 displayed superior anti-fibrotic effects and acceptable safety compared to JQ1. Conclusions: We conclude that BDR4 may modulate the profibrotic process in OFs of patients with TED via the FoxM1/Plk1 axis, and that selectively targeting BD2 domain of BRD4 may therefore be a potential therapeutic option for treating patients with TED.


Asunto(s)
Oftalmopatía de Graves , Humanos , Oftalmopatía de Graves/tratamiento farmacológico , Oftalmopatía de Graves/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/metabolismo , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/farmacología , Quinasa Tipo Polo 1
4.
Front Immunol ; 13: 859260, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401507

RESUMEN

Purpose: Inflammation triggers the activation of CD4+T cells and the breakdown of blood-retinal barrier, thus contributing to the pathology of experimental autoimmune uveitis (EAU). We explored the anti-inflammatory effect of hydroxychloroquine (HCQ) on EAU and the potential mechanisms active in T cells and retinal vascular endothelial cells (RVECs). Methods: C57BL/6J mice were immunized with interphotoreceptor retinoid binding protein 1-20 (IRBP1-20) to induce EAU and then treated with the vehicle or HCQ (100 mg/kg/day). On day 7, 14, 21, 30 and 60 after immunization, clinical scores were evaluated. On day 14, histopathological scores were assessed, and retinas, spleens, and lymph nodes were collected for quantitative polymerase chain reaction or flow cytometry analysis. RVEC dysfunction was induced by tumor necrosis factor α (TNF-α) stimulation. The expression of cytokines, chemokines, adhesion molecules, and lectin-like oxidized LDL receptor-1 (LOX-1)/nuclear factor κB (NF-κB) was measured in RVECs with or without HCQ. Results: HCQ treatment protected mice from uveitis, evidenced by reduced expression of inflammatory factors, chemokines, and adhesion molecules in the retina. In systemic immune response, HCQ inhibited the activation of naïve CD4+T cells and frequencies of T effector cells, and promoted T regulatory cells. HCQ decreased IRBP1-20-specific T cell responses and proliferation of CD4+T cells in vitro. Further studies established that TNF-α induced RVECs to express inflammatory cytokines, chemokines, and adhesion molecules, whereas HCQ alleviated the alterations via the LOX-1/NF-κB pathways. Conclusions: HCQ alleviates EAU by regulating the Teff/Treg balance and ameliorating RVECs dysfunction via the LOX-1/NF-κB axis. HCQ may be a promising therapeutic candidate for uveitis.


Asunto(s)
Hidroxicloroquina , Uveítis , Animales , Citocinas/metabolismo , Células Endoteliales/metabolismo , Hidroxicloroquina/farmacología , Hidroxicloroquina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , FN-kappa B , Receptores Depuradores de Clase E , Factor de Necrosis Tumoral alfa/uso terapéutico
5.
Invest Ophthalmol Vis Sci ; 63(8): 23, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35881406

RESUMEN

Purpose: Experimental autoimmune uveitis (EAU) is a representative animal model of human uveitis. In this study, we investigated whether apolipoprotein A1 (APOA1) can alleviate EAU and explored its underlying mechanism. Methods: Mice were immunized with interphotoreceptor retinoid-binding protein 1-20 and treated with APOA1 or vehicle. The retinas, draining lymph nodes (DLNs), and spleens were analyzed. Isolated T cells were used for proliferation, differentiation, and function assays in vitro. Selective inhibitors and pathway agonists were used to study signaling pathways. The effect of APOA1 on peripheral blood mononuclear cells (PBMCs) from uveitis patients was also examined. Results: Administration of APOA1 ameliorated EAU. APOA1 suppressed pathogenic CD4+ T cell expansion in DLNs and spleen, and decreased the infiltration of effector T (Teff) cells into retina. APOA1 also inhibited T cell proliferation and T helper 1 cell differentiation in vitro and promoted regulatory T (Treg) cell differentiation. APOA1 restricted inflammatory cytokine production from lipopolysaccharide-stimulated PBMCs. Mechanistic studies revealed that the effect of APOA1 was mediated by scavenger receptor class B type I (SR-BI) and downstream signals including phosphatidylinositol 3-kinase/Protein kinase B (PKB, or Akt), p38 mitogen-activated protein kinase, and nuclear factor-κB. Conclusions: APOA1 ameliorates EAU by regulating the Teff/Treg partially through SR-BI. Our results suggest that APOA1 can be a therapeutic alternative for autoimmune uveitis.


Asunto(s)
Enfermedades Autoinmunes , Eragrostis , Uveítis , Animales , Apolipoproteína A-I/farmacología , Apolipoproteína A-I/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Leucocitos Mononucleares , Ratones , Ratones Endogámicos C57BL , Receptores Depuradores/uso terapéutico , Proteínas de Unión al Retinol , Linfocitos T Reguladores
6.
JAMA Ophthalmol ; 140(11): 1076-1083, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36173609

RESUMEN

Importance: Mild thyroid-associated ophthalmopathy (TAO) negatively impacts quality of life, yet no clinical guidelines for its treatment are available. Existing evidence supports the use of doxycycline in treating mild TAO. Objective: To evaluate the short-term (12 weeks) efficacy of doxycycline in treating mild TAO. Design, Setting, and Participants: In this placebo-controlled multicenter randomized double-masked trial, 148 patients were assessed for eligibility. After exclusions (patients who were pregnant or lactating, had an allergy to tetracyclines, or had uncontrolled systematic diseases), 100 patients with mild TAO (orbital soft tissue affected mildly) at 5 centers in China were enrolled from July 2013 to December 2019 and monitored for 12 weeks. Interventions: Participants were randomly assigned 1:1 to receive doxycycline (50 mg) or placebo once daily for 12 weeks. Main Outcomes and Measures: The primary outcome was the rate of improvement at 12 weeks compared with baseline assessed by a composite indicator of eyelid aperture (reduction ≥2 mm), proptosis (reduction ≥2 mm), ocular motility (increase ≥8°), and Graves ophthalmopathy-specific quality-of-life (GO-QOL) scale score (increase ≥6 points). Adverse events were recorded. Results: A total of 50 participants were assigned to doxycycline and 50 to placebo. The mean (SD) age was 36.7 (9.1) years; 75 participants (75.0%) were female and 100 (100.0%) were Asian. Medication compliance was checked during participant interviews and by counting excess tablets. At week 12, the improvement rate was 38.0% (19 of 50) in the doxycycline group and 16.0% (8 of 50) in the placebo group (difference, 22.0%; 95% CI, 5.0-39.0; P = .01) in the intention-to-treat population. The per-protocol sensitivity analysis showed similar results (39.6% [19 of 48] vs 16.0% [8 of 50]; difference, 23.6%; 95% CI, 6.4-40.8; P = .009). No adverse events other than 1 case of mild gastric acid regurgitation was recorded in either group. Conclusions and Relevance: The results of this study indicate that oral doxycycline, 50 mg daily, resulted in greater improvement of TAO-related symptoms at 12 weeks compared with placebo in patients with mild TAO. These findings support the consideration of doxycycline for mild TAO but should be tempered by recognizing the relatively short follow-up and the size of the cohort. Trial Registration: ClinicalTrials.gov Identifier: NCT02203682.


Asunto(s)
Doxiciclina , Oftalmopatía de Graves , Humanos , Femenino , Adulto , Masculino , Doxiciclina/efectos adversos , Oftalmopatía de Graves/tratamiento farmacológico , Calidad de Vida , Lactancia , Antibacterianos/efectos adversos , Método Doble Ciego
7.
Biochem Pharmacol ; 193: 114793, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34600916

RESUMEN

Uveitis is one of the most common blindness-causing ocular disorders. Due to its complicated pathogenesis, the treatment of uveitis has been widely recognized as a challenge for ophthalmologists. Recently, the anti-inflammatory properties of the antibiotic Azithromycin (AZM) have been reported. However, the therapeutic effects of Azithromycin in experimental autoimmune uveitis (EAU), a representative model of human AU, have not been elucidated till date. We conducted this study to examine the therapeutic effects and potential mechanisms of Azithromycin in EAU. We observed that Azithromycin significantly attenuated retinal inflammation in EAU mice at day 14 after immunization along with a significantly decreased inflammatory cell infiltration and cytokine production in the retina. Furthermore, we observed that Azithromycin increased the number of regulatory T cells (Treg) and decreased the number of effector T cells (Teff) in both the draining lymph nodes and spleen of EAU mice. Additionally, Azithromycin suppressed the proliferation and activation of CD4 + T cells, and induced the apoptosis of CD4 + CD44 + memory T and CD4 + CXCR3 + Th1 cells. Mechanistically, we proved that Azithromycin could regulate Teff/Treg balance by inhibiting the phosphorylation of S6 ribosomal protein, a downstream target of mammalian target of rapamycin (mTOR). Together, our findings revealed that Azithromycin alleviated EAU by regulating the Teff/Treg balance through the mTOR signaling pathway, suggesting that Azithromycin could be a promising therapeutic candidate for AU.


Asunto(s)
Azitromicina/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Enfermedades de la Retina/tratamiento farmacológico , Subgrupos de Linfocitos T/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Traslado Adoptivo , Animales , Antibacterianos/farmacología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/toxicidad , Enfermedades de la Retina/inducido químicamente , Proteínas de Unión al Retinol/toxicidad , Subgrupos de Linfocitos T/fisiología , Serina-Treonina Quinasas TOR/genética , Transcriptoma
8.
Mol Inform ; 39(6): e1900101, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32077235

RESUMEN

Flash points of organic molecules play an important role in preventing flammability hazards and large databases of measured values exist, although millions of compounds remain unmeasured. To rapidly extend existing data to new compounds many researchers have used quantitative structure-property relationship (QSPR) analysis to effectively predict flash points. In recent years graph-based deep learning (GBDL) has emerged as a powerful alternative method to traditional QSPR. In this paper, GBDL models were implemented in predicting flash point for the first time. We assessed the performance of two GBDL models, message-passing neural network (MPNN) and graph convolutional neural network (GCNN), by comparing against 12 previous QSPR studies using more traditional methods. Our result shows that MPNN both outperforms GCNN and yields slightly worse but comparable performance with previous QSPR studies. The average R2 and Mean Absolute Error (MAE) scores of MPNN are, respectively, 2.3 % lower and 2.0 K higher than previous comparable studies. To further explore GBDL models, we collected the largest flash point dataset to date, which contains 10575 unique molecules. The optimized MPNN gives a test data R2 of 0.803 and MAE of 17.8 K on the complete dataset. We also extracted 5 datasets from our integrated dataset based on molecular types (acids, organometallics, organogermaniums, organosilicons, and organotins) and explore the quality of the model in these classes.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Modelos Teóricos , Bases de Datos como Asunto , Estadística como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA