Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 67(1): e0135222, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36507667

RESUMEN

Burkholderia cepacia complex (Bcc) and Burkholderia gladioli are opportunistic human pathogens that are inherently multidrug resistant, limiting treatment options for infections. Here, a novel diazabicyclooctane, ETX0462, was evaluated for activity against Bcc and B. gladioli. Ninety-eight percent of the isolates examined in this study were susceptible. ETX0462 was found to demonstrate in vitro activity superior to that of currently available treatment options (e.g., trimethoprim-sulfamethoxazole and ceftazidime).


Asunto(s)
Infecciones por Burkholderia , Complejo Burkholderia cepacia , Burkholderia , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ceftazidima/uso terapéutico , Combinación Trimetoprim y Sulfametoxazol/farmacología , Combinación Trimetoprim y Sulfametoxazol/uso terapéutico , Infecciones por Burkholderia/tratamiento farmacológico
2.
Antimicrob Agents Chemother ; 67(11): e0049823, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37768313

RESUMEN

The novel clinical-stage ß-lactam-ß-lactamase inhibitor combination, cefepime-taniborbactam, demonstrates promising activity toward many Gram-negative bacteria producing class A, B, C, and/or D ß-lactamases. We tested this combination against a panel of 150 Burkholderia cepacia complex (Bcc) and Burkholderia gladioli strains. The addition of taniborbactam to cefepime shifted cefepime minimum inhibitory concentrations toward the provisionally susceptible range in 59% of the isolates tested. Therefore, cefepime-taniborbactam possessed similar activity as first-line agents, ceftazidime and trimethoprim-sulfamethoxazole, supporting further development.


Asunto(s)
Complejo Burkholderia cepacia , Burkholderia gladioli , Fibrosis Quística , Humanos , Estados Unidos , Cefepima/farmacología , Antibacterianos/farmacología , Fibrosis Quística/microbiología , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas , Pruebas de Sensibilidad Microbiana
3.
Transpl Infect Dis ; 25(2): e14041, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36864824

RESUMEN

BACKGROUND: There is increased interest in bacteriophage (phage) therapy to treat infections caused by antibiotic-resistant bacteria. A lung transplant recipient with cystic fibrosis and Burkholderia multivorans infection was treated with inhaled phage therapy for 7 days before she died. METHODS: Phages were given via nebulization through the mechanical ventilation circuit. Remnant respiratory specimens and serum were collected. We quantified phage and bacterial deoxyribonucleic acid (DNA) using quantitative polymerase chain reaction, and tested phage neutralization in the presence of patient serum. We performed whole genome sequencing and antibiotic and phage susceptibility testing on 15 B. multivorans isolates. Finally, we extracted lipopolysaccharide (LPS) from two isolates and visualized their LPS using gel electrophoresis. RESULTS: Phage therapy was temporally followed by a temporary improvement in leukocytosis and hemodynamics, followed by worsening leukocytosis on day 5, deterioration on day 7, and death on day 8. We detected phage DNA in respiratory samples after 6 days of nebulized phage therapy. Bacterial DNA in respiratory samples decreased over time, and no serum neutralization was detected. Isolates collected between 2001 and 2020 were closely related but differed in their antibiotic and phage susceptibility profiles. Early isolates were not susceptible to the phage used for therapy, while later isolates, including two isolates collected during phage therapy, were susceptible. Susceptibility to the phage used for therapy was correlated with differences in O-antigen profiles of an early versus a late isolate. CONCLUSIONS: This case of clinical failure of nebulized phage therapy highlights the limitations, unknowns, and challenges of phage therapy for resistant infections.


Asunto(s)
Infecciones por Burkholderia , Complejo Burkholderia cepacia , Fibrosis Quística , Terapia de Fagos , Femenino , Humanos , Antibacterianos/uso terapéutico , Infecciones por Burkholderia/tratamiento farmacológico , Fibrosis Quística/microbiología , ADN/uso terapéutico , Leucocitosis/tratamiento farmacológico , Lipopolisacáridos/uso terapéutico , Pulmón/microbiología , Receptores de Trasplantes , Resultado Fatal , Adulto
4.
MMWR Morb Mortal Wkly Rep ; 71(48): 1517-1521, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36454695

RESUMEN

In July 2021, the Virginia Department of Health notified CDC of a cluster of eight invasive infections with Burkholderia stabilis, a bacterium in the Burkholderia cepacia complex (BCC), among hospitalized patients at hospital A. Most patients had undergone ultrasound-guided procedures during their admission. Culture of MediChoice M500812 nonsterile ultrasound gel used in hospital A revealed contamination of unopened product with B. stabilis that matched the whole genome sequencing (WGS) of B. stabilis strains found among patients. CDC and hospital A, in collaboration with partner health care facilities, state and local health departments, and the Food and Drug Administration (FDA), identified 119 B. stabilis infections in 10 U.S. states, leading to the national recall of all ultrasound gel products produced by Eco-Med Pharmaceutical (Eco-Med), the manufacturer of MediChoice M500812. Additional investigation of health care facility practices revealed frequent use of nonsterile ultrasound gel to assist with visualization in preparation for or during invasive, percutaneous procedures (e.g., intravenous catheter insertion). This practice could have allowed introduction of contaminated ultrasound gel into sterile body sites when gel and associated viable bacteria were not completely removed from skin, leading to invasive infections. This outbreak highlights the importance of appropriate use of ultrasound gel within health care settings to help prevent patient infections, including the use of only sterile, single-use ultrasound gel for ultrasonography when subsequent percutaneous procedures might be performed.


Asunto(s)
Infecciones por Burkholderia , Brotes de Enfermedades , Contaminación de Equipos , Instituciones de Salud , Humanos , Contaminación de Medicamentos , Ultrasonografía , Estados Unidos/epidemiología , Geles , Infecciones por Burkholderia/epidemiología , Infecciones por Burkholderia/etiología
5.
Antimicrob Agents Chemother ; 65(11): e0133221, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34370574

RESUMEN

The Burkholderia cepacia complex (Bcc) and Burkholderia gladioli are opportunistic pathogens that most commonly infect persons with cystic fibrosis or compromised immune systems. Members of the Burkholderia genus are intrinsically multidrug resistant (MDR), possessing both a PenA carbapenemase and an AmpC ß-lactamase, rendering treatment of infections due to these species problematic. Here, we tested the ß-lactam-ß-lactamase inhibitor combination imipenem-relebactam against a panel of MDR Bcc and B. gladioli strains. The addition of relebactam to imipenem dramatically lowered the MICs for Bcc and B. gladioli: only 16% of isolates tested susceptible to imipenem, while 71.3% were susceptible to the imipenem-relebactam combination. While ceftazidime-avibactam remained the most potent combination drug against this panel of Bcc and B. gladioli strains, imipenem-relebactam was active against 71.4% of the ceftazidime-avibactam-resistant isolates. Relebactam demonstrated potent inactivation of Burkholderia multivorans PenA1, with an apparent Ki (Kiapp) value of 3.2 µM. Timed mass spectrometry revealed that PenA1 formed a very stable adduct with relebactam, without any detectable desulfation for as long as 24 h. Based on our results, imipenem-relebactam may represent an alternative salvage therapy for Bcc and B. gladioli infections, especially in cases where the isolates are resistant to ceftazidime-avibactam.


Asunto(s)
Complejo Burkholderia cepacia , Burkholderia gladioli , Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Burkholderia , Complejo Burkholderia cepacia/efectos de los fármacos , Burkholderia gladioli/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Imipenem/farmacología , Pruebas de Sensibilidad Microbiana , beta-Lactamasas
6.
Artículo en Inglés | MEDLINE | ID: mdl-33318017

RESUMEN

The Gram-negative bacterial genus Burkholderia includes several hard-to-treat human pathogens: two biothreat species, Burkholderia mallei (causing glanders) and B. pseudomallei (causing melioidosis), and the B. cepacia complex (BCC) and B. gladioli, which cause chronic lung infections in persons with cystic fibrosis. All Burkholderia spp. possess an Ambler class A Pen ß-lactamase, which confers resistance to ß-lactams. The ß-lactam-ß-lactamase inhibitor combination sulbactam-durlobactam (SUL-DUR) is in clinical development for the treatment of Acinetobacter infections. In this study, we evaluated SUL-DUR for in vitro and in vivo activity against Burkholderia clinical isolates. We measured MICs of SUL-DUR against BCC and B. gladioli (n = 150), B. mallei (n = 30), and B. pseudomallei (n = 28), studied the kinetics of inhibition of the PenA1 ß-lactamase from B. multivorans and the PenI ß-lactamase from B. pseudomallei by durlobactam, tested for blaPenA1 induction by SUL-DUR, and evaluated in vivo efficacy in a mouse model of melioidosis. SUL-DUR inhibited growth of 87.3% of the BCC and B. gladioli strains and 100% of the B. mallei and B. pseudomallei strains at 4/4 µg/ml. Durlobactam potently inhibited PenA1 and PenI with second-order rate constant for inactivation (k2/K) values of 3.9 × 106 M-1 s-1 and 2.6 × 103 M-1 s-1 and apparent Ki (Kiapp) of 15 nM and 241 nM, respectively, by forming highly stable covalent complexes. Neither sulbactam, durlobactam, nor SUL-DUR increased production of PenA1. SUL-DUR demonstrated activity in vivo in a murine melioidosis model. Taken together, these data suggest that SUL-DUR may be useful as a treatment for Burkholderia infections.


Asunto(s)
Burkholderia mallei , Burkholderia pseudomallei , Burkholderia , Muermo , Melioidosis , Animales , Antibacterianos/farmacología , Muermo/tratamiento farmacológico , Caballos , Melioidosis/tratamiento farmacológico , Ratones , Sulbactam/farmacología
7.
Artículo en Inglés | MEDLINE | ID: mdl-33139284

RESUMEN

Antibiotic therapy is expected to impact host microbial communities considerably, yet many studies focused on microbiome and health are often confounded by limited information about antibiotic exposure. Given that antibiotics have diverse pharmacokinetic and antimicrobial properties, investigating the type and concentration of these agents in specific host specimens would provide much needed insight into their impact on the microbes therein. Here, we developed liquid chromatography mass spectrometry (LC-MS) methods to detect 18 antibiotic agents in sputum from persons with cystic fibrosis. Antibiotic spike-in control samples were used to compare three liquid extraction methods on the Waters Acquity Quattro Premier XE. Extraction with dithiothreitol captured the most antibiotics and was used to detect antibiotics in sputum samples from 11 people with cystic fibrosis, with results being compared to the individuals' self-reported antibiotic use. For the sputum samples, two LC-MS assays were used; the Quattro Premier detected nanomolar or micromolar concentrations of 16 antibiotics, whereas the Xevo TQ-XS detected all 18 antibiotics, most at subnanomolar levels. In 45% of tested sputum samples (71/158), at least one antibiotic that was not reported by the subject was detected by both LC-MS methods, a discordance largely explained by the thrice weekly administration and long half-life of azithromycin. For ∼37% of samples, antibiotics reported as taken by the individual were not detected by either instrument. Our results provide an approach for detecting a variety of antibiotics at the site of infection, thereby providing a means to include antibiotic usage data into microbiome studies.


Asunto(s)
Fibrosis Quística , Antibacterianos/uso terapéutico , Cromatografía Liquida , Fibrosis Quística/tratamiento farmacológico , Humanos , Espectrometría de Masas , Esputo
8.
J Clin Microbiol ; 59(12): e0144721, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34524889

RESUMEN

The Burkholderia cepacia complex (BCC) is known for causing serious lung infections in people with cystic fibrosis (CF). These infections can require lung transplantation, eligibility for which may be guided by antimicrobial susceptibility testing (AST). While the Clinical and Laboratory Standards Institute recommends AST for BCC, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) does not, due to poor method performance and correlation with clinical outcomes. Furthermore, limited data exist on the performance of automated AST methods for BCC. To address these issues, reproducibility and accuracy were evaluated for disk diffusion (DD), broth microdilution (BMD), and MicroScan WalkAway using 50 B. cenocepacia and 50 B. multivorans isolates collected from people with CF. The following drugs were evaluated in triplicate: chloramphenicol (CAM), ceftazidime (CAZ), meropenem (MEM), trimethoprim-sulfamethoxazole (TMP-SMX), minocycline (MIN), levofloxacin (LVX), ciprofloxacin (CIP), and piperacillin-tazobactam (PIP-TAZ). BMD reproducibility was ≥ 95% for MEM and MIN only, and MicroScan WalkAway reproducibility was similar to BMD. DD reproducibility was < 90% for all drugs tested when a 3 mm cut-off was applied. When comparing the accuracy of DD to BMD, only MEM met all acceptance criteria. TMP-SMX and LVX had high minor errors, CAZ had unacceptable very major errors (VME), and MIN, PIP-TAZ, and CIP had both unacceptable minor errors and VMEs. For MicroScan WalkAway, no drugs met acceptance criteria. Analyses also showed that errors were not attributed to one species. In general, our data agree with EUCAST recommendations.


Asunto(s)
Infecciones por Burkholderia , Burkholderia cenocepacia , Complejo Burkholderia cepacia , Fibrosis Quística , Antibacterianos/farmacología , Burkholderia , Fibrosis Quística/complicaciones , Humanos , Pruebas de Sensibilidad Microbiana , Reproducibilidad de los Resultados
9.
Thorax ; 75(1): 88-90, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31732688

RESUMEN

This report describes transmission of a Burkholderia cenocepacia ET12 strain (ET12-Bc) at the Toronto Adult Cystic Fibrosis (CF) Centre occurring from 2008 to 2017. Epidemiological and genomic data from 11 patients with CF were evaluated. Isolates were analysed using whole genome sequencing (WGS). Epidemiological investigation and WGS analysis suggested nosocomial transmission, despite enhanced infection control precautions. This was associated with subsequent deaths in 10 patients. ET12-Bc positive patients are no longer cared for on the same unit as ET12-Bc negative patients.


Asunto(s)
Infecciones por Burkholderia/transmisión , Burkholderia cenocepacia/aislamiento & purificación , Fibrosis Quística , Adulto , Técnicas de Tipificación Bacteriana , Infecciones por Burkholderia/epidemiología , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Humanos , Ontario/epidemiología
10.
Thorax ; 75(9): 780-790, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32631930

RESUMEN

RATIONALE: The most common antibiotic used to treat people with cystic fibrosis (PWCF) is inhaled tobramycin, administered as maintenance therapy for chronic Pseudomonas aeruginosa lung infections. While the effects of inhaled tobramycin on P. aeruginosa abundance and lung function diminish with continued therapy, this maintenance treatment is known to improve long-term outcomes, underscoring how little is known about why antibiotics work in CF infections, what their effects are on complex CF sputum microbiomes and how to improve these treatments. OBJECTIVES: To rigorously define the effect of maintenance tobramycin on CF sputum microbiome characteristics. METHODS AND MEASUREMENTS: We collected sputum from 30 PWCF at standardised times before, during and after a single month-long course of maintenance inhaled tobramycin. We used traditional culture, quantitative PCR and metagenomic sequencing to define the dynamic effects of this treatment on sputum microbiomes, including abundance changes in both clinically targeted and untargeted bacteria, as well as functional gene categories. MAIN RESULTS: CF sputum microbiota changed most markedly by 1 week of antibiotic therapy and plateaued thereafter, and this shift was largely driven by changes in non-dominant taxa. The genetically conferred functional capacities (ie, metagenomes) of subjects' sputum communities changed little with antibiotic perturbation, despite taxonomic shifts, suggesting functional redundancy within the CF sputum microbiome. CONCLUSIONS: Maintenance treatment with inhaled tobramycin, an antibiotic with demonstrated long-term mortality benefit, primarily impacted clinically untargeted bacteria in CF sputum, highlighting the importance of monitoring the non-canonical effects of antibiotics and other treatments to accurately define and improve their clinical impact.


Asunto(s)
Antibacterianos/farmacología , Bacterias , Fibrosis Quística/microbiología , Microbiota/efectos de los fármacos , Esputo/microbiología , Tobramicina/farmacología , Administración por Inhalación , Adolescente , Adulto , Anciano , Antibacterianos/uso terapéutico , Bacterias/genética , Bacterias/aislamiento & purificación , Infecciones Bacterianas/prevención & control , Niño , Fibrosis Quística/fisiopatología , Volumen Espiratorio Forzado , Humanos , Quimioterapia de Mantención , Metagenoma/efectos de los fármacos , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Factores de Tiempo , Tobramicina/uso terapéutico , Adulto Joven
11.
J Clin Microbiol ; 58(11)2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32878952

RESUMEN

Ancestral genetic exchange between members of many important bacterial pathogen groups has resulted in phylogenetic relationships better described as networks than as bifurcating trees. In certain cases, these reticulated phylogenies have resulted in phenotypic and molecular overlap that challenges the construction of practical approaches for species identification in the clinical microbiology laboratory. Burkholderia cepacia complex (Bcc), a betaproteobacteria species group responsible for significant morbidity in persons with cystic fibrosis and chronic granulomatous disease, represents one such group where network-structured phylogeny has hampered the development of diagnostic methods for species-level discrimination. Here, we present a phylogeny-informed proteomics approach to facilitate diagnostic classification of pathogen groups with reticulated phylogenies, using Bcc as an example. Starting with a set of more than 800 Bcc and Burkholderia gladioli whole-genome assemblies, we constructed phylogenies with explicit representation of inferred interspecies recombination. Sixteen highly discriminatory peptides were chosen to distinguish B. cepacia, Burkholderia cenocepacia, Burkholderia multivorans, and B. gladioli and multiplexed into a single, rapid liquid chromatography-tandem mass spectrometry multiple reaction monitoring (LC-MS/MS MRM) assay. Testing of a blinded set of isolates containing these four Burkholderia species demonstrated 50/50 correct automatic negative calls (100% accuracy with a 95% confidence interval [CI] of 92.9 to 100%), and 70/70 correct automatic species-level positive identifications (100% accuracy with 95% CI 94.9 to 100%) after accounting for a single initial incorrect identification due to a preanalytic error, correctly identified on retesting. The approach to analysis described here is applicable to other pathogen groups for which development of diagnostic classification methods is complicated by interspecies recombination.


Asunto(s)
Infecciones por Burkholderia , Complejo Burkholderia cepacia , Burkholderia cepacia , Burkholderia , Infecciones por Burkholderia/diagnóstico , Complejo Burkholderia cepacia/genética , Cromatografía Liquida , Humanos , Filogenia , Proteómica , Espectrometría de Masas en Tándem
12.
J Ind Microbiol Biotechnol ; 47(6-7): 475-484, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32671501

RESUMEN

The presence of Burkholderia cepacia complex (BCC) strains has resulted in recalls of pharmaceutical products, since these opportunistic pathogens can cause serious infections. Rapid and sensitive diagnostic methods to detect BCC are crucial to determine contamination levels. We evaluated bacterial cultures, real-time PCR (qPCR), droplet digital PCR (ddPCR), and flow cytometry to detect BCC in nuclease-free water, in chlorhexidine gluconate (CHX) and benzalkonium chloride (BZK) solutions. Twenty BCC strains were each suspended (1, 10, 100, and 1000 CFU/ml) in autoclaved nuclease-free water, 10 µg/ml CHX, and 50 µg/ml BZK. Five replicates of each strain were tested at each concentration (20 strains × 4 concentrations × 5 replicates = 400 tests) to detect BCC using the aforementioned four methods. We demonstrated the potential of ddPCR and flow cytometry as more sensitive alternatives to culture-based methods to detect BCC in autoclaved nuclease-free water and antiseptics samples.


Asunto(s)
Antiinfecciosos Locales/farmacología , Complejo Burkholderia cepacia , Contaminación de Medicamentos , Citometría de Flujo , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa , Compuestos de Benzalconio , Biotecnología , Clorhexidina/análogos & derivados , Cultura , Agua
13.
J Bacteriol ; 201(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31109991

RESUMEN

Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can infect the lungs of people with cystic fibrosis (CF). The highly viscous mucus in the CF lung, expectorated as sputum, serves as the primary nutrient source for microbes colonizing this site and induces virulence-associated phenotypes and gene expression in several CF pathogens. Here, we characterized the transcriptional responses of three S. maltophilia strains during exposure to synthetic CF sputum medium (SCFM2) to gain insight into how this organism interacts with the host in the CF lung. These efforts led to the identification of 881 transcripts differentially expressed by all three strains, many of which reflect the metabolic pathways used by S. maltophilia in sputum, as well as altered stress responses. The latter correlated with increased resistance to peroxide exposure after pregrowth in SCFM2 for two of the strains. We also compared the SCFM2 transcriptomes of two S. maltophilia CF isolates to that of the acute infection strain, S. maltophilia K279a, allowing us to identify CF isolate-specific signatures in differential gene expression. The expression of genes from the accessory genomes was also differentially altered in response to SCFM2. Finally, a number of biofilm-associated genes were differentially induced in SCFM2, particularly in K279a, which corresponded to increased aggregation and biofilm formation in this strain relative to both CF strains. Collectively, this work details the response of S. maltophilia to an environment that mimics important aspects of the CF lung, identifying potential survival strategies and metabolic pathways used by S. maltophilia during infections.IMPORTANCEStenotrophomonas maltophilia is an important infecting bacterium in the airways of people with cystic fibrosis (CF). However, compared to the other CF pathogens, S. maltophilia has been relatively understudied. The significance of our research is to provide insight into the global transcriptomic changes of S. maltophilia in response to a medium that was designed to mimic important aspects of the CF lung. This study elucidates the overall metabolic changes that occur when S. maltophilia encounters the CF lung and generates a road map of candidate genes to test using in vitro and in vivo models of CF.


Asunto(s)
Fibrosis Quística/microbiología , Infecciones por Bacterias Gramnegativas/microbiología , Esputo/microbiología , Stenotrophomonas maltophilia/genética , Antibacterianos/farmacología , Genoma Bacteriano , Humanos , Filogenia , Especificidad de la Especie , Stenotrophomonas maltophilia/efectos de los fármacos , Stenotrophomonas maltophilia/metabolismo
14.
Clin Infect Dis ; 69(10): 1812-1816, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31056660

RESUMEN

Median cystic fibrosis (CF) survival has increased dramatically over time due to several factors, including greater availability and use of antimicrobial therapies. During the progression of CF lung disease, however, the emergence of multidrug antimicrobial resistance can limit treatment effectiveness, threatening patient longevity. Current planktonic-based antimicrobial susceptibility testing lacks the ability to predict clinical response to antimicrobial treatment of chronic CF lung infections. There are numerous reasons for these limitations including bacterial phenotypic and genotypic diversity, polymicrobial interactions, and impaired antibiotic efficacy within the CF lung environment. The parallels to other chronic diseases such as non-CF bronchiectasis are discussed as well as research priorities for moving forward.


Asunto(s)
Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fibrosis Quística/tratamiento farmacológico , Infecciones por Pseudomonas/tratamiento farmacológico , Enfermedad Crónica/tratamiento farmacológico , Fibrosis Quística/microbiología , Humanos , Pulmón/efectos de los fármacos , Pulmón/microbiología , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología , Esputo/microbiología
15.
Am J Transplant ; 19(3): 933-938, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30091842

RESUMEN

"Cepacia syndrome", caused by Burkholderia cepacia complex and often associated with cystic fibrosis, carries a high mortality rate. It is rare for Burkholderia multivorans, a species within the B. cepacia complex, to cause cepacia syndrome even among patients with cystic fibrosis. This is the first reported fatal case of cepacia syndrome caused by B. multivorans occurring in a pediatric liver transplant recipient who does not have cystic fibrosis. We describe the unique characteristics of this pathogen among the non-cystic fibrosis population and the importance of early recognition and treatment.


Asunto(s)
Infecciones por Burkholderia/microbiología , Complejo Burkholderia cepacia/patogenicidad , Fiebre de Origen Desconocido/cirugía , Trasplante de Hígado/efectos adversos , Sepsis/etiología , Infecciones por Burkholderia/complicaciones , Resultado Fatal , Fiebre de Origen Desconocido/patología , Humanos , Lactante , Masculino , Sepsis/patología
16.
Artículo en Inglés | MEDLINE | ID: mdl-31611364

RESUMEN

We tested the in vitro activities of ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, piperacillin-tazobactam, and 11 other antimicrobial agents against 420 Burkholderia, Achromobacter, Stenotrophomonas, and Pandoraea strains, 89% of which were cultured from respiratory specimens from persons with cystic fibrosis. Among the ß-lactam-ß-lactamase inhibitor agents, meropenem-vaborbactam had the greatest activity against Burkholderia and Achromobacter, including multidrug-resistant and extensively-drug-resistant strains. None of the newer ß-lactam-ß-lactamase combination drugs showed increased activity compared to that of the older agents against Stenotrophomonas maltophilia or Pandoraea spp.


Asunto(s)
Antibacterianos/farmacología , Fibrosis Quística/microbiología , Inhibidores de beta-Lactamasas/farmacología , Achromobacter/efectos de los fármacos , Ácidos Borónicos/farmacología , Burkholderia/efectos de los fármacos , Humanos , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , Piperacilina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Stenotrophomonas/efectos de los fármacos , Stenotrophomonas maltophilia/efectos de los fármacos , Tazobactam/farmacología
17.
Artículo en Inglés | MEDLINE | ID: mdl-30910901

RESUMEN

Burkholderia cepacia complex (Bcc) lung infections in cystic fibrosis (CF) patients are often associated with a steady decline in lung function and death. The formation of biofilms and inherent multidrug resistance are virulence factors associated with Bcc infection and contribute to increased risk of mortality in CF patients. New therapeutic strategies targeting bacterial biofilms are anticipated to enhance antibiotic penetration and facilitate resolution of infection. Poly (acetyl, arginyl) glucosamine (PAAG) is a cationic glycopolymer therapeutic being developed to directly target biofilm integrity. In this study, 13 isolates from 7 species were examined, including Burkholderia multivorans, Burkholderia cenocepacia, Burkholderia gladioli, Burkholderia dolosa, Burkholderia vietnamiensis, and B. cepacia These isolates were selected for their resistance to standard clinical antibiotics and their ability to form biofilms in vitro Biofilm biomass was quantitated using static tissue culture plate (TCP) biofilm methods and a minimum biofilm eradication concentration (MBEC) assay. Confocal laser scanning microscopy (CLSM) visualized biofilm removal by PAAG during treatment. Both TCP and MBEC methods demonstrated a significant dose-dependent relationship with regard to biofilm removal by 50 to 200 µg/ml PAAG following a 1-h treatment (P < 0.01). A significant reduction in biofilm thickness was observed following a 10-min treatment of Bcc biofilms with PAAG compared to that with vehicle control (P < 0.001) in TCP, MBEC, and CLSM analyses. PAAG also rapidly permeabilizes bacteria within the first 10 min of treatment. Glycopolymers, such as PAAG, are a new class of large-molecule therapeutics that support the treatment of recalcitrant Bcc biofilm.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Infecciones por Burkholderia/tratamiento farmacológico , Complejo Burkholderia cepacia/efectos de los fármacos , Fibrosis Quística/tratamiento farmacológico , Glucosamina/farmacología , Infecciones por Burkholderia/microbiología , Fibrosis Quística/microbiología , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología
18.
Artículo en Inglés | MEDLINE | ID: mdl-30718248

RESUMEN

Burkholderia spp. are opportunistic human pathogens that infect persons with cystic fibrosis and the immunocompromised. Burkholderia spp. express class A and C ß-lactamases, which are transcriptionally regulated by PenRA through linkage to cell wall metabolism and ß-lactam exposure. The potency of temocillin, a 6-methoxy-ß-lactam, was tested against a panel of multidrug-resistant (MDR) Burkholderia spp. In addition, the mechanistic basis of temocillin activity was assessed and compared to that of ticarcillin. Susceptibility testing with temocillin and ticarcillin was conducted, as was biochemical analysis of the PenA1 class A ß-lactamase and AmpC1 class C ß-lactamase. Molecular dynamics simulations (MDS) were performed using PenA1 with temocillin and ticarcillin. The majority (86.7%) of 150 MDR Burkholderia strains were susceptible to temocillin, while only 4% of the strains were susceptible to ticarcillin. Neither temocillin nor ticarcillin induced bla expression. Ticarcillin was hydrolyzed by PenA1 (kcat/Km = 1.7 ± 0.2 µM-1 s-1), while temocillin was slow to form a favorable complex (apparent Ki [Ki app] = ∼2 mM). Ticarcillin and temocillin were both potent inhibitors of AmpC1, with Ki app values of 4.9 ± 1.0 µM and 4.3 ± 0.4 µM, respectively. MDS of PenA revealed that ticarcillin is in an advantageous position for acylation and deacylation. Conversely, with temocillin, active-site residues K73 and S130 are rotated and the catalytic water molecule is displaced, thereby slowing acylation and allowing the 6-methoxy of temocillin to block deacylation. Temocillin is a ß-lactam with potent activity against Burkholderia spp., as it does not induce bla expression and is poorly hydrolyzed by endogenous ß-lactamases.


Asunto(s)
Antibacterianos/farmacología , Burkholderia/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Penicilinas/farmacología , beta-Lactamas/farmacología , Burkholderia/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Ticarcilina/farmacología , Estados Unidos , beta-Lactamasas/metabolismo
19.
J Clin Microbiol ; 57(8)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31167848

RESUMEN

In persons with cystic fibrosis (CF), airway infection with Burkholderia cepacia complex (Bcc) species or Burkholderia gladioli presents a significant challenge due to inherent resistance to multiple antibiotics. Two chromosomally encoded inducible ß-lactamases, a Pen-like class A and AmpC are produced in Bcc and B. gladioli Previously, ceftazidime-avibactam demonstrated significant potency against Bcc and B. gladioli isolated from the sputum of individuals with CF; however, 10% of the isolates tested resistant to ceftazidime-avibactam. Here, we describe an alternative antibiotic combination to overcome ceftazidime-avibactam resistance. Antimicrobial susceptibility testing was performed on Bcc and B. gladioli clinical and control isolates. Biochemical analysis was conducted on purified PenA1 and AmpC1 ß-lactamases from Burkholderia multivorans ATCC 17616. Analytic isoelectric focusing and immunoblotting were conducted on cellular extracts of B. multivorans induced by various ß-lactams or ß-lactam-ß-lactamase inhibitor combinations. Combinations of piperacillin-avibactam, as well as piperacillin-tazobactam plus ceftazidime-avibactam (the clinically available counterpart), were tested against a panel of ceftazidime-avibactam nonsusceptible Bcc and B. gladioli The piperacillin-avibactam and piperacillin-tazobactam-ceftazidime-avibactam combinations restored susceptibility to 99% of the isolates tested. Avibactam is a potent inhibitor of PenA1 (apparent inhibitory constant [Kiapp] = 0.5 µM), while piperacillin was found to inhibit AmpC1 (Kiapp = 2.6 µM). Moreover, piperacillin, tazobactam, ceftazidime, and avibactam, as well as combinations thereof, did not induce expression of blapenA1 and blaampC1 in the B. multivorans ATCC 17616 background. When ceftazidime-avibactam is combined with piperacillin-tazobactam, the susceptibility of Bcc and B. gladioli to ceftazidime and piperacillin is restored in vitro Both the lack of blapenA1 induction and potent inactivation of PenA1 by avibactam likely provide the major contributions toward susceptibility. With in vivo validation, piperacillin-tazobactam-ceftazidime-avibactam may represent salvage therapy for individuals with CF and highly drug-resistant Bcc and B. gladioli infections.


Asunto(s)
Compuestos de Azabiciclo/farmacología , Complejo Burkholderia cepacia/efectos de los fármacos , Burkholderia gladioli/efectos de los fármacos , Fibrosis Quística/microbiología , Farmacorresistencia Bacteriana Múltiple , Piperacilina/farmacología , Antibacterianos/farmacología , Infecciones por Burkholderia/tratamiento farmacológico , Fibrosis Quística/complicaciones , Sustitución de Medicamentos , Humanos , Cinética , Pruebas de Sensibilidad Microbiana
20.
Appl Environ Microbiol ; 85(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31540982

RESUMEN

Since the discovery of penicillin, microbes have been a source of antibiotics that inhibit the growth of pathogens. However, with the evolution of multidrug-resistant (MDR) strains, it remains unclear if there is an abundant or limited supply of natural products to be discovered that are effective against MDR isolates. To identify strains that are antagonistic to pathogens, we examined a set of 471 globally derived environmental Pseudomonas strains (env-Ps) for activity against a panel of 65 pathogens including Achromobacter spp., Burkholderia spp., Pseudomonas aeruginosa, and Stenotrophomonas spp. isolated from the lungs of cystic fibrosis (CF) patients. From more than 30,000 competitive interactions, 1,530 individual inhibitory events were observed. While strains from water habitats were not proportionate in antagonistic activity, MDR CF-derived pathogens (CF-Ps) were less susceptible to inhibition by env-Ps, suggesting that fewer natural products are effective against MDR strains. These results advocate for a directed strategy to identify unique drugs. To facilitate discovery of antibiotics against the most resistant pathogens, we developed a workflow in which phylogenetic and antagonistic data were merged to identify strains that inhibit MDR CF-Ps and subjected those env-Ps to transposon mutagenesis. Six different biosynthetic gene clusters (BGCs) were identified from four strains whose products inhibited pathogens including carbapenem-resistant P. aeruginosa BGCs were rare in databases, suggesting the production of novel antibiotics. This strategy can be utilized to facilitate the discovery of needed antibiotics that are potentially active against the most drug-resistant pathogens.IMPORTANCE Carbapenem-resistant P. aeruginosa is difficult to treat and has been deemed by the World Health Organization as a priority one pathogen for which antibiotics are most urgently needed. Although metagenomics and bioinformatic studies suggest that natural bacteria remain a source of novel compounds, the identification of genes and their products specific to activity against MDR pathogens remains problematic. Here, we examine water-derived pseudomonads and identify gene clusters whose compounds inhibit CF-derived MDR pathogens, including carbapenem-resistant P. aeruginosa.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple , Pseudomonas/genética , Antibiosis , Pruebas de Sensibilidad Microbiana , Pseudomonas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA