Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(10): e18445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801403

RESUMEN

Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS), a prevalent urological ailment, exerts a profound influence upon the well-being of the males. Autoimmunity driven by Th17 cells has been postulated as a potential factor in CP/CPPS pathogenesis. Nonetheless, elucidating the precise mechanisms governing Th17 cell recruitment to the prostate, triggering inflammation, remained an urgent inquiry. This study illuminated that CCL20 played a pivotal role in attracting Th17 cells to the prostate, thereby contributing to prostatitis development. Furthermore, it identified prostate stromal cells and immune cells as likely sources of CCL20. Additionally, this research unveiled that IL-17A, released by Th17 cells, could stimulate macrophages to produce CCL20 through the NF-κB/MAPK/PI3K pathway. The interplay between IL-17A and CCL20 establishes a positive feedback loop, which might serve as a critical mechanism underpinning the development of chronic prostatitis, thus adding complexity to its treatment challenges.


Asunto(s)
Enfermedades Autoinmunes , Quimiocina CCL20 , Quimiotaxis , Interleucina-17 , Prostatitis , Células Th17 , Masculino , Prostatitis/inmunología , Prostatitis/patología , Prostatitis/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Quimiocina CCL20/metabolismo , Quimiocina CCL20/genética , Animales , Interleucina-17/metabolismo , Interleucina-17/inmunología , Ratones , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/patología , Macrófagos/metabolismo , Macrófagos/inmunología , Modelos Animales de Enfermedad , FN-kappa B/metabolismo , Transducción de Señal , Humanos , Ratones Endogámicos C57BL , Próstata/patología , Próstata/metabolismo , Próstata/inmunología , Fosfatidilinositol 3-Quinasas/metabolismo , Autoinmunidad
2.
Prostate ; 84(7): 666-681, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38444115

RESUMEN

BACKGROUND: Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) leads to severe discomfort in males and loss of sperm quality. Current therapeutic options have failed to achieve satisfactory results. Sodium butyrate (NaB) plays a beneficial role in reducing inflammation, increasing antioxidant capacities, and improving organ dysfunction; additionally NaB has good safety prospects and great potential for clinical application. The purpose of the current research was to study the effect of NaB on CP/CPPS and the underlying mechanisms using a mouse model of experimental autoimmune prostatitis (EAP) mice. METHODS: The EAP mouse model was successfully established by subcutaneously injecting a mixture of prostate antigen and complete Freund's adjuvant. Then, EAP mice received daily intraperitoneal injections of NaB (100, 200, or 400 mg/kg/day) for 16 days, from Days 26 to 42. We then explored anti-inflammatory potential mechanisms of NaB by studying the effects of Nrf2 inhibitor ML385 and HO-1 inhibitor zinc protoporphyrin on prostate inflammation and pelvic pain using this model. On Day 42, hematoxylin-eosin staining and dihydroethidium staining were used to evaluate the histological changes and oxidative stress levels of prostate tissues. Chronic pelvic pain was assessed by applying Von Frey filaments to the lower abdomen. The levels of inflammation-related cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor were detected by enzyme-linked immunosorbent assay. The regulation of Nrf2/HO-1 signaling pathway and the expression of NLRP3 inflammasome-related protein in EAP mice were detected by western blot analysis assay. RESULTS: Compared with the EAP group, chronic pain development, histological manifestations, and cytokine levels showed that NaB reduced the severity of EAP. NaB treatment could inhibit NLRP3 inflammasome activation. Mechanism studies showed that NaB intervention could alleviate oxidative stress in EAP mice through Nrf2/HO-1 signal pathway. Nrf2/HO-1 pathway inhibitors can inhibit NaB -mediated oxidative stress. The inhibitory effect of NaB on the activation of NLRP3 inflammasome and anti-inflammatory effect can also be blocked by Nrf2/HO-1 pathway. CONCLUSIONS: NaB treatment can alleviates prostatic inflammation and pelvic pain associated with EAP by inhibiting oxidative stress and NLRP3 inflammasome activation via the Nrf2/HO-1 pathway. NaB has the potential as an effective agent in the treatment of EAP.


Asunto(s)
Ácido Butírico , Prostatitis , Animales , Masculino , Antiinflamatorios/uso terapéutico , Ácido Butírico/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamasomas/metabolismo , Inflamación , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Dolor Pélvico/tratamiento farmacológico , Prostatitis/patología
3.
BMC Microbiol ; 24(1): 189, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38811884

RESUMEN

BACKGROUND: The study aims to analyze the epidemiology of preservation fluid (PF) contamination and investigate the impact of PF contamination and possible donor-derived infections(p-DDI) on early postoperative prognosis in kidney transplant (KT) recipients. METHODS: A total of 256 PF samples were collected for microbiological evaluation from all KT recipients who received deceased donor donations in our hospital from June 2018 to August 2022. Data on the baseline and clinical characteristics of these PF corresponding to recipients and donors were extracted from the electronic medical record. It mainly included the early postoperative complications and prognosis of KT recipients. RESULTS: From June 2018 to August 2022, 597 kidney transplants were performed in our center, with 260 recipients receiving kidney transplantation from donation after citizens' death. A total of 256 samples of PF were collected, of which 64.5% (165/256) were culture positive, and 24.6% (63/165) of the culture-positive PF were polymicrobial contamination. A total of 238 strains were isolated, of which coagulase-negative staphylococci (CoNS) had the highest proportion of 34.0% (81/238), followed by Klebsiella pneumoniae with 20.6% (49/238) and Escherichia coli with 8.8% (21/238). Recipients with culture-positive PF had a significantly higher incidence of postoperative infection (55.8% vs. 20.9%, P < 0.001) and DGF (38.2% vs. 24.2%, P = 0.023). In addition, the incidence of p-DDI was 12.9% (33/256). CRKP was the most common pathogen causing p-DDI. The recipients who developed p-DDI had a higher rate of graft loss (9.1% vs. 0.4%, P < 0.001), mortality (12.1% vs. 3.1%, P = 0.018), and longer postoperative hospital stay (30 days (19.5-73.5) vs. (22 days (18-32), P < 0.05) compared with recipients who did not develop p-DDI. CONCLUSIONS: Culture-positive PF is potentially significant for KT recipients, and p-DDI may increase the risk of poor prognosis for recipients. Prophylactic anti-infective treatment should be actively performed for highly virulent or multidrug-resistant (MDR) pathogens (especially Carbapenem-resistant Klebsiella pneumoniae, CRKP) in PF to avoid the occurrence of p-DDI.


Asunto(s)
Trasplante de Riñón , Soluciones Preservantes de Órganos , Donantes de Tejidos , Humanos , Trasplante de Riñón/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Pronóstico , Complicaciones Posoperatorias/microbiología , Complicaciones Posoperatorias/epidemiología , Receptores de Trasplantes/estadística & datos numéricos , Estudios Retrospectivos , Anciano , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética
4.
Cell Commun Signal ; 22(1): 183, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491517

RESUMEN

PURPOSE: Prostatitis is a highly prevalent condition that seriously affects men's physical and mental health. Although epidemiological investigations have provided evidence of a correlation between insufficient sleep and prostatitis, the pathogenesis of prostatitis remains unclear. We sought to identify the underlying mechanism involved and identify a promising therapeutic target. METHODS: Sleep deprivation (SD) was utilized to establish a mouse model of insufficient sleep in a special device. Prostatitis was observed at different time points post-SD. The degree of prostatitis was evaluated by pathological section and behavioural tests. Using immunofluorescence, western blot, and proteomic analyses, the underlying mechanism of SD-related prostatitis was investigated, and the development and therapeutic target of prostatitis were elucidated. RESULTS: SD, as an initial pathological trigger, resulted in a reduction in dihydrotestosterone and melatonin levels. Proteomic analysis revealed that the cGAS-STING pathway may play a significant role in inducing prostatitis. The subsequent results illustrated that the dual reduction in dihydrotestosterone and melatonin led to an accumulation of reactive oxygen species and the release of mitochondrial DNA (mt-DNA). The accumulation of mt-DNA activated the cGAS-STING pathway, which recruited inflammatory cells into the prostatic stroma through the secretion of interferon-ß. Consequently, an inflammatory microenvironment was formed, ultimately promoting the development of prostatitis. Notably, mice with SD-induced prostatitis gradually recovered to a normal state within 7 days of recovery sleep. However, after being subjected to SD again, these mice tended to have a more pronounced manifestation of prostatitis within a shorter timeframe, which suggested that prostatitis is prone to relapse. CONCLUSIONS: The cGAS-STING pathway activated by dual deficiency of dihydrotestosterone and melatonin plays a comprehensive inflammatory role in SD-related prostatitis. This research provides valuable insights into the pathogenesis, therapeutic targets, and prevention strategies of prostatitis.


Asunto(s)
Melatonina , Prostatitis , Humanos , Masculino , Animales , Ratones , Privación de Sueño/complicaciones , Dihidrotestosterona/farmacología , Proteómica , Sueño , ADN Mitocondrial , Nucleotidiltransferasas
5.
Int Urol Nephrol ; 56(5): 1639-1648, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100027

RESUMEN

BACKGROUND: TRAF-interacting protein (TRAIP) is a RING-type E3 ubiquitin ligase, which has been implicated in various cellular processes and participated in various cancers as an oncogene. However, the function and potential mechanism of TRAIP in prostate cancer (PCa) have not been investigated so far. METHODS: Public TGCA data were used to evaluate the expression profile of TRAIP in prostatic tumors. The relative expression of TRAIP and TRAF2 in PCa tissues and tumor cell lines was detected by qPCR, western blot, and IHC staining. Next, TRAIP knockdown and overexpression plasmids were constructed and transfected into PCa cell lines. Moreover, cell proliferation, invasion, migration, and apoptosis were measured by colony formation, Transwell, wound healing, and flow cytometry assays. Subsequently, cell cycle and signaling pathway-related proteins were tested by western blot. Finally, the effect of TRAIP on PCa was measured based on the nude mouse xenograft model. RESULTS: TRAIP was significantly upregulated in PCa tissues and tumor cell lines. In addition, TRAIP promoted cell proliferation, invasion, and migration of PCa cell lines. Such an oncogenic property was mediated by the cell cycle arrest and the inhibition of apoptosis, as indicated by different functional assays and the expression of cell cycle and apoptosis regulatory proteins in cultured cells. Moreover, TRAIP combined with TRAF2 to activate PI3K/AKT pathway. Finally, TRAIP depletion suppressed the growth of tumors and cell proliferation in vivo. CONCLUSIONS: Our study first revealed that TRAIP promoted tumor progression and identified it as a potential therapeutic target for PCa patients in the future.


Asunto(s)
Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-akt , Masculino , Animales , Ratones , Humanos , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Fosfatidilinositol 3-Quinasas , Neoplasias de la Próstata/patología , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Apoptosis/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Movimiento Celular
6.
Immunotargets Ther ; 13: 111-121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435982

RESUMEN

Background: The specific involvement of the CD8+ T effector memory RA (TEMRA) subset in patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) has largely not been explored in the literature. Methods: Targeted single-cell RNA sequencing (scRNA-seq) profiles were generated from peripheral blood mononuclear cells (PBMCs) obtained from two CP/CPPS patients and two healthy controls (HCs) in our recent study. Pseudotime series algorithms were used to reveal the differentiation trajectory, CellChat analysis was used to explore the communication between individual cells, and the SCENIC program was used to identify potential transcription factors (TFs). Based on the cosine similarity, clusters of differentially expressed genes (DEGs) were considered to be further enriched in different pathways. To confirm the functional role of the critical clusters, flow cytometry was employed. Results: The results revealed the molecular landscape of these clusters, with TEMRA cells exhibiting pronounced cytokine-mediated signaling pathway enrichment. Pseudotime trajectory analysis further mapped the evolution from naïve T cells to that of TEMRA cells, elucidating the developmental pathways involved in the immune context. A significant finding from CellChat analysis was the differential expression of ligands and receptors, with CD8+ TEMRA cells showing enhanced signaling, particularly in the CP/CPPS context, compared to HCs. Flow cytometry confirmed these results, revealing a heightened proinflammatory cytokine profile in patients with chronic prostatitis-like symptoms (CP-LS), suggesting that TEMRA cells play a significant role in disease pathogenesis. TF profiling across the T-cell clusters identified key regulators of cellular identity, identifying novel therapeutic targets. Elevated TNF signaling activity in CD8+ TEMRA cells underscored the involvement of these cells in disease mechanisms. Conclusion: This study elucidates the pivotal role of the CD8+ TEMRA cell subset in CP/CPPS, which is characterized by increased TNF signaling and proinflammatory factor expression, highlighting potential biomarkers and opening new avenues for therapeutic intervention.

7.
Front Cell Infect Microbiol ; 14: 1404404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779560

RESUMEN

Background: Ceftazidime-avibactam is a treatment option for carbapenem-resistant gram-negative bacilli (CR-GNB) infections. However, the risk factors associated with ceftazidime-avibactam (CAZ-AVI) treatment failure in kidney transplant (KT) recipients and the need for CAZ-AVI-based combination therapy remain unclear. Methods: From June 2019 to December 2023, a retrospective observational study of KT recipients with CR-GNB infection treated with CAZ-AVI was conducted, with the primary outcome being 30-day mortality and secondary outcomes being clinical cure, microbiological cure, and safety. Risk factors for 30-day mortality and clinical failure were also investigated. Results: A total of 81 KT recipients treated with CAZ-AVI were included in this study. Forty recipients (49.4%) received CAZ-AVI monotherapy, with a 30-day mortality of 22.2%. The clinical cure and microbiological cure rates of CAZ/AVI therapy were 72.8% and 66.7%, respectively. CAZ-AVI alone or in combination with other medications had no effect on clinical cure or 30-day mortality. Multivariate logistic regression analysis revealed that a higher Acute Physiology and Chronic Health Evaluation (APACHE) II score (odds ratio [OR]: 4.517; 95% confidence interval [CI]: 1.397-14.607; P = 0.012) was an independent risk factor for 30-day mortality. Clinical cure was positively associated with the administration of CAZ-AVI within 48 hours of infection onset (OR: 11.009; 95% CI: 1.344-90.197; P=0.025) and negatively associated with higher APACHE II scores (OR: 0.700; 95% CI: 0.555-0.882; P=0.002). Four (4.9%) recipients experienced recurrence within 90 days after the initial infection, 3 (3.7%) recipients experienced CAZ-AVI-related adverse events, and no CAZ-AVI resistance was identified. Conclusion: CAZ-AVI is an effective medication for treating CR-GNB infections following kidney transplantation, even as monotherapy. Optimization of CAZ/AVI therapy (used within 48 hours of infection onset) is positively associated with potential clinical benefit. Further larger-scale studies are needed to validate these findings.


Asunto(s)
Antibacterianos , Compuestos de Azabiciclo , Carbapenémicos , Ceftazidima , Combinación de Medicamentos , Infecciones por Bacterias Gramnegativas , Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Estudios Retrospectivos , Ceftazidima/uso terapéutico , Ceftazidima/farmacología , Masculino , Femenino , Persona de Mediana Edad , Factores de Riesgo , Compuestos de Azabiciclo/uso terapéutico , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/mortalidad , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Carbapenémicos/uso terapéutico , Carbapenémicos/farmacología , Adulto , Bacterias Gramnegativas/efectos de los fármacos , Resultado del Tratamiento , Anciano , Receptores de Trasplantes
8.
Cell Death Discov ; 10(1): 188, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649345

RESUMEN

Emerging evidence has highlighted that dysregulation of lipid metabolism in clear cell renal cell carcinoma (ccRCC) is associated with tumor development and progression. HIF-2α plays an oncogenic role in ccRCC and is involved in abnormal lipid accumulation. However, the underlying mechanisms between these two phenomena remain unknown. Here, MED15 was demonstrated to be a dominant factor for HIF-2α-dependent lipid accumulation and tumor progression. HIF-2α promoted MED15 transcriptional activation by directly binding the MED15 promoter region, and MED15 overexpression significantly alleviated the lipid deposition inhibition and malignant tumor behavior phenotypes induced by HIF-2α knockdown. MED15 was upregulated in ccRCC and predicted poor prognosis. MED15 promoted lipid deposition and tumor progression in ccRCC. Mechanistic investigations demonstrated that MED15 acts as SREBP coactivator directly interacting with SREBPs to promote SREBP-dependent lipid biosynthesis enzyme expression, and promotes SREBP1 and SREBP2 activation through the PLK1/AKT axis. Overall, we describe a molecular regulatory network that links MED15 to lipid metabolism induced by the SREBP pathway and the classic HIF-2α pathway in ccRCC. Efforts to target MED15 or inhibit MED15 binding to SREBPs as a novel therapeutic strategy for ccRCC may be warranted.

9.
J Exp Clin Cancer Res ; 43(1): 29, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263248

RESUMEN

BACKGROUND: The VHL-HIF pathway and lipid droplet accumulation are the main characteristics of clear cell renal cell carcinoma (ccRCC). However, the connection between the two features is largely unknown. METHODS: We used transcriptional sequencing and TCGA database analysis to identify APOL1 as a novel therapeutic target for ccRCC. The oncogenic functions of APOL1 were investigated by cell proliferation, colony formation, migration and invasion assays in ccRCC cells in vitro and xenografts derived from ccRCC cells in vivo. Oil red O staining and quantification were used to detect lipid droplets. Chromatin immunoprecipitation (ChIP) assays and luciferase reporter assays were carried out to identify HIF-2α bound to the promoter of APOL1 and lncRNA LINC02609. RNA-FISH and luciferase reporter assays were performed to determine that LncRNA LINC02609 functions as a competing endogenous RNA to regulate APOL1 expression by sponging miR-149-5p. FINDINGS: RNA-seq data revealed that HIF2α can regulate APOL1 and lncRNA LINC02609 expression. We also found that HIF-2α can bind to the promoter of APOL1 and lncRNA LINC02609 and transcriptionally regulate their expression directly. We further demonstrated that LncRNA LINC02609 functions as a competing endogenous RNA to regulate APOL1 expression by sponging miR-149-5p in ccRCC. Mechanistically, APOL1-dependent lipid storage is required for endoplasmic reticulum (ER) homeostasis and cell viability and metastasis in ccRCC. We also showed that high APOL1 expression correlated with worse clinical outcomes, and knockdown of APOL1 inhibited tumor cell lipid droplet formation, proliferation, metastasis and xenograft tumor formation abilities. Together, our studies identify that HIF2α can regulate the expression of the lipid metabolism related gene APOL1 by direct and indirect means, which are essential for ccRCC tumorigenesis. INTERPRETATION: Based on the experimental data, in ccRCC, the HIF-2α/LINC02609/APOL1 axis can regulate the expression of APOL1, thus interfering with lipid storage, promoting endoplasmic reticulum homeostasis and regulating tumor progression in ccRCC. Together, our findings provide potential biomarkers and novel therapeutic targets for future studies in ccRCC.


Asunto(s)
Apolipoproteína L1 , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carcinoma de Células Renales , Neoplasias Renales , ARN Largo no Codificante , Humanos , Apolipoproteína L1/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Retículo Endoplásmico , Homeostasis , Luciferasas , MicroARNs , ARN Largo no Codificante/genética , Animales
10.
Sci Rep ; 14(1): 18829, 2024 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138267

RESUMEN

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a urinary disorder that affects youthful to middle-aged men most frequently. It has been revealed that Th17/Treg imbalance is a crucial factor in the pathophysiological mechanisms behind this disease. However, this imbalance's mechanisms are unknown. In the experimental autoimmune prostatitis (EAP) mouse model, the NLRP3 inflammasome was turned on, IL-1ß levels went up. Moreover, there exists a discernible positive association between the upsurge in IL-1ß and the perturbation of Th17/Treg equilibrium. Additionally, we have revealed that IL-1ß plays a vital role in promoting the differentiation of Naïve CD4+ T cells into the Th17 cells and enhances the conversion of Treg cells into Th17 cells. Further studies revealed that IL-1ß promotes STAT3 phosphorylation, which is what causes Treg cells to become Th17 cells. All data strongly suggest that the NLRP3 inflammatory influence Th17 cell development and the conversion of Treg cells into Th17 cells through IL-1ß, disrupting the Th17/Treg balance and exacerbating EAP inflammation. In this article, we provide new theories for the pathogenesis of CP/CPPS and propose new prevention and therapy methods.


Asunto(s)
Enfermedades Autoinmunes , Modelos Animales de Enfermedad , Interleucina-1beta , Proteína con Dominio Pirina 3 de la Familia NLR , Prostatitis , Linfocitos T Reguladores , Células Th17 , Animales , Masculino , Prostatitis/inmunología , Prostatitis/metabolismo , Prostatitis/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Interleucina-1beta/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Ratones , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Factor de Transcripción STAT3/metabolismo , Inflamasomas/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL
11.
Int Immunopharmacol ; 141: 112891, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39153310

RESUMEN

In our investigation, we investigated the role of macrophage migration inhibitory factor (MIF), a key cytokine, in chronic nonbacterial prostatitis (CNP), an underexplored pathology. Elevated MIF expression was observed in the serum of individuals with chronic prostatitis-like symptoms (CP-LS) as well as in serum and tissue samples from experimental autoimmune prostatitis (EAP) mouse model. Treatment with ISO-1, a specific MIF antagonist, effectively mitigated prostatic inflammation and macrophage infiltration, thereby emphasizing the critical role of MIF in orchestrating immune responses within the prostate microenvironment. Further analyses revealed that MIF stimulates the PI3K/AKT and NLRP3 inflammasome pathways, which are integral to inflammation and cellular immunity. Pharmacological inhibition of the PI3K/AKT pathway by LY294002 substantially reduced prostatic inflammation and macrophage infiltration, potentially by inhibiting NLRP3 inflammasome activation. These findings collectively suggest that MIF is a potential diagnostic marker for CNP and suggest that targeting MIF or its downstream signalling pathways, PI3K/AKT and NLRP3, might represent a novel therapeutic strategy for this condition.

12.
Free Radic Biol Med ; 223: 237-249, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094710

RESUMEN

Chronic prostatitis-induced excessive inflammation and oxidative stress (OS) damage substantially affect men's quality of life. However, its treatment remains a major clinical challenge. Therefore, the identification of drugs that can decrease chronic prostatitis and oxidative stress targets is urgent and essential. CXCR4 is a classic chemokine receptor that is crucially associated with the occurrence and development of inflammation. This investigation aimed to elucidate how CXCR4 affects prostatitis regression and progression. The effect of CXCR4 on chronic prostatitis was evaluated by HE staining, immunohistochemistry, immunofluorescence, PCR, and TUNEL analyses. Furthermore, CXCR4 influence on metabolism was also evaluated by monitoring body weight, body temperature, food intake, and LC/MS. Additionally, chromatin immunoprecipitation, Western blot, and double luciferase reporter gene assays were carried out to elucidate the mechanism by which CXCR4 modulates Fads2 transcription by PPARγ. Lastly, ROS, DHE, mito-tracker, and ATP were utilized to validate the α-linolenic acid's protective effect against OS in prostate epithelial cells. It was revealed that the inhibition of CXCR4 can effectively alleviate prostatitis in mice. Furthermore, downregulating CXCR4 expression can markedly reduce the inflammatory cell infiltration in mouse prostates, decrease the elevated levels of DNA damage markers,MDA and 4-HNE, and mitigate apoptosis of prostatic epithelial cells. Moreover, treatment of CXCR4 knockdown mice with a PPARγ inhibitor revealed different degrees of changes in the above phenotypes. Mechanistically, the PPARγ protein translocates to the nucleus and serves as a transcription factor to regulate Fads2 expression, thereby altering PUFA metabolism. Additionally, in vitro experiments indicated that α-linolenic acid can effectively alleviate OS damage and RWPE-1 cell apoptosis by protecting mitochondrial function and enhancing the antioxidant capacity of prostatic epithelial cells. In conclusion, reducing the levels of CXCR4 can alleviate inflammation and OS damage in chronic prostatitis.

13.
Asian J Androl ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657119

RESUMEN

Tumor metabolic reprogramming is a hallmark of cancer development, and targeting metabolic vulnerabilities has been proven to be an effective approach for castration-resistant prostate cancer (CRPC) treatment. Nevertheless, treatment failure inevitably occurs, largely due to cellular heterogeneity, which cannot be deciphered by traditional bulk sequencing techniques. By employing computational pipelines for single-cell RNA sequencing, we demonstrated that epithelial cells within the prostate are more metabolically active and plastic than stromal cells. Moreover, we identified that neuroendocrine (NE) cells tend to have high metabolic rates, which might explain the high demand for nutrients and energy exhibited by neuroendocrine prostate cancer (NEPC), one of the most lethal variants of prostate cancer (PCa). Additionally, we demonstrated through computational and experimental approaches that variation in mitochondrial activity is the greatest contributor to metabolic heterogeneity among both tumor cells and nontumor cells. These results establish a detailed metabolic landscape of PCa, highlight a potential mechanism of disease progression, and emphasize the importance of future studies on tumor heterogeneity and the tumor microenvironment from a metabolic perspective.

14.
Int Immunopharmacol ; 130: 111682, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38394885

RESUMEN

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common inflammatory immune disease of the urogenital system. High glucose intake is considered to be a potential promoter of autoimmune diseases. However, the influence of high glucose intake on CP/CPPS is unknown. This research aimed to explore the influences of high glucose intake on experimental autoimmune prostatitis (EAP), a valid animal model of CP/CPPS, and the underlying mechanism. NOD mice received 20% glucose water or normal water treatment during EAP induction. EAP severity and Th17 cell responses were evaluated. Then, we explored the effects of an IL-17A neutralizing antibody, an inhibitor of TGF-ß, the reactive oxygen species (ROS) inhibitor NAC, and the mitochondrial ROS (mtROS) antioxidant MitoQ on glucose-fed EAP mice. The results demonstrated that high glucose intake aggravated EAP severity and promoted Th17 cell generation, which could be ameliorated by the neutralization of IL-17A. In vitro experiments showed that high dextrose concentrations promoted Th17 cell differentiation through mtROS-dependent TGF-ß activation. Treatment with TGF-ß blockade, NAC, or MitoQ suppressed Th17 cell generation both in vivo and in vitro, resulting in the amelioration of EAP manifestations caused by high glucose intake. This study revealed that high glucose intake exacerbates EAP through mtROS-dependent TGF-ß activation-mediated Th17 differentiation. Our results may provide insights into the molecular mechanisms underlying the detrimental effects of an environmental factor, such as high glucose intake, on CP/CPPS.


Asunto(s)
Enfermedades Autoinmunes , Prostatitis , Masculino , Humanos , Ratones , Animales , Prostatitis/inducido químicamente , Prostatitis/tratamiento farmacológico , Especies Reactivas de Oxígeno , Interleucina-17 , Células Th17 , Ratones Endogámicos NOD , Diferenciación Celular , Factor de Crecimiento Transformador beta , Glucosa , Modelos Animales de Enfermedad
15.
Int J Biol Sci ; 20(9): 3393-3411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993566

RESUMEN

Chronic prostatitis is one of the most common urologic diseases that troubles young men, with unclear etiology and ineffective treatment approach. Pyroptosis is a novel model of cell death, and its roles in chronic prostatitis are unknown. In this study, P2X7R, NEK7, and GSDMD-NT expression levels were detected in prostate tissues from benign prostate hyperplasia (BPH) patients and experiment autoimmune prostatitis (EAP) mice. P2X7R agonist, antagonist, NLRP3 inhibitor, and disulfiram were used to explore the roles of the P2X7R-NEK7-NLRP3 axis in prostate epithelial cell pyroptosis and chronic prostatitis development. We found that P2X7R, NEK7, and GSDMD-NT were highly expressed in the prostate epithelial cells of BPH patients with prostatic inflammation and EAP mice. Activation of P2X7R exacerbated prostatic inflammation and increased NLRP3 inflammasome component expressions and T helper 17 (Th17) cell proportion. Moreover, P2X7R-mediated potassium efflux promoted NEK7-NLRP3 interaction, and NLRP3 assembly and activation, which caused GSDMD-NT-mediated prostate epithelial cell pyroptosis to exacerbate EAP development. Disulfiram could effectively improve EAP by inhibiting GSDMD-NT-mediated prostate epithelial cell pyroptosis. In conclusion, the P2X7R-NEK7-NLRP3 axis could promote GSDMD-NT-mediated prostate epithelial cell pyroptosis and chronic prostatitis development, and disulfiram may be an effective drug to treat chronic prostatitis.


Asunto(s)
Células Epiteliales , Quinasas Relacionadas con NIMA , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión a Fosfato , Próstata , Prostatitis , Piroptosis , Animales , Humanos , Masculino , Ratones , Enfermedades Autoinmunes/metabolismo , Células Epiteliales/metabolismo , Gasderminas , Ratones Endogámicos C57BL , Quinasas Relacionadas con NIMA/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Próstata/metabolismo , Prostatitis/metabolismo , Piroptosis/efectos de los fármacos , Receptores Purinérgicos P2X7/metabolismo
16.
Int J Oncol ; 65(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38818827

RESUMEN

Clear cell renal cell carcinoma (ccRCC), the most common type of renal cell carcinoma (RCC), is not sensitive to traditional radiotherapy and chemotherapy. The polyphenolic compound Gallic acid (GA) can be naturally found in a variety of fruits, vegetables and plants. Autophagy, an intracellular catabolic process, regulates the lysosomal degradation of organelles and portions in cytoplasm. It was reported that autophagy and GA could affect the development of several cancers. Therefore, the aim of the present study was to evaluate the effects of GA on ccRCC development and clarify the role of autophagy in this process. In the present study, the effects of GA on the proliferation, migration and invasion of ccRCC cells were investigated in vitro by Cell Counting Kit­8, colony formation, flow cytometry, wound healing and Transwell migration assays, respectively. Additionally, the effects of GA on ccRCC growth and metastasis were evaluated using hematoxylin­eosin and immunohistochemical staining in vivo. Moreover, it was sought to explore the underlying molecular mechanisms using transmission electron microscopy, western blotting and reverse transcription­quantitative PCR analyses. In the present study, it was revealed that GA had a more potent viability inhibitory effect on ccRCC cells (786­O and ACHN) than the effect on normal renal tubular epithelial cell (HK­2), which demonstrated that GA selectively inhibits the viability of cancer cells. Furthermore, it was identified that GA dose­dependently inhibited the proliferation, migration and invasion of ccRCC cells in vitro and in vivo. It was demonstrated that GA promoted the release of autophagy markers, which played a role in regulating the PI3K/Akt/Atg16L1 signaling pathway. All the aforementioned data provided evidence for the great potential of GA in the treatment of ccRCC.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Autofagia , Carcinoma de Células Renales , Movimiento Celular , Proliferación Celular , Ácido Gálico , Neoplasias Renales , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Humanos , Ácido Gálico/farmacología , Autofagia/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Movimiento Celular/efectos de los fármacos , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Progresión de la Enfermedad , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Portadoras/metabolismo
17.
Transl Oncol ; 47: 102042, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924847

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a common urological malignancy that is involved in tumor genesis and development. However, few studies have focused on the predictive role of the global histone modification status in ccRCC. A total of 621 patients with complete transcript information and corresponding clinical profiles were obtained from TCGA-KIRC, GSE22541, and EMTAB3267 cohorts. A total of 122 histone modification relevant pathways were derived from MSigDB, and their activation status was quantified using GSVA. Differentially expressed genes (DEGs) were identified and filtrated using univariate Cox regression analysis. The signature was built relied on the least absolute shrinkage and selection operator (LASSO) regression analysis, and evaluated from survival difference, chemotherapy response, and activated pathways. A novel nomogram was established to quantify the probability of death in different patients. Seven risky and fifty-eight protective genes were used in LASSO analysis, and six genes were used to build the histone modification gene (HiMG) signature, which showed significant independent prognostic potential in all three cohorts. The nomogram showed acceptable incremental predictions. CKS2 (p = 0.004) and PD1 (p = 0.002) expression were significantly higher in grade 3 ccRCC than in grades 1-2. CKS2 siRNA in renal cancer cells caused reductions in cellular proliferation, migration, and invasion. Patients with low HiMG may be potential responders to rapamycin, erlotinib and FH535, while AZD6482 and CHIR-99,021 may be more suitable for patients with high HiMG levels. ccRCC histone modification distribution and a clinical signature for prognosis prediction, clinical decision making, and molecular mechanism exploration, were established for risk stratification and personalized treatments.

18.
Int J Surg ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954665

RESUMEN

BACKGROUND: The main aim of this study was to examine the perioperative results of reoperations and suggest novel surgical approaches. Based on a substantial number of robotic and laparoscopic nephron-sparing surgery (NSS), we aim to propose novel surgical strategies that offer practical recommendations to surgeons. METHODS: Renal cell carcinoma patients with ipsilateral recurrent tumors, without evidence of metastasis, and who underwent primary NSS at our center between 2013 and 2023 were enrolled in this study, and all received the second time surgery. We conducted an analysis to evaluate perioperative outcomes and observed trends over a decade. Additionally, based on the findings from this study, we developed our surgical strategies. RESULTS: In the past decade, our center has successfully conducted a total of 2546 surgeries for renal cell carcinoma, out of which this study includes 15 patients who met the specified criteria. For reoperation, robotic-assisted surgery was applied in 5 cases (33.3%), laparoscopic surgery in 6 cases (40%), and open surgeries in 4 cases (26.7%). While 4 (26.7%) patients underwent NSS while radical nephrectomy was performed on 11 patients (73.3%). The median operative time was 215 minutes (IQR: 135-300), and the median estimated blood loss was 50 ml (IQR: 50-100). The median length of postoperative hospitalization was 6 days (IQR: 5-9). Furthermore, there has been a yearly increase in the application of robotic-assisted NSS at our institution. CONCLUSION: Reoperation following the pNSS is a secure and effective surgical approach. We introduce novel surgical strategies for primary surgery and reoperation, which offer valuable insights to surgeons in current study.

19.
Int Immunopharmacol ; 139: 112669, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39029231

RESUMEN

BACKGROUND: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is very common worldwide, and alcohol consumption is a notable contributing factor. Researches have shown that gut microbiota can be influenced by alcohol consumption and is an important mediator in regulating Th17 cell immunity. However, it is still unclear the exact mechanism by which alcohol exacerbates the CP/CPPS and the role of gut microbiota in this process. METHOD: We first constructed the most-commonly used animal model for CP/CPPS, the experimental autoimmune prostatitis (EAP) model, through immunoassay. Based on this, mice were divided into EAP group and alcohol-consuming EAP group. By 16S rRNA sequencing and non-targeted metabolomics analysis, differential gut microbiota and their metabolites between the two groups were identified. Subsequently, metabolomics detection targeting cholesterols was carried out to identify the exact difference in cholesterol. Furthermore, multiple methods such as flow cytometry and immunohistochemistry were used to detect the differentiation status of Th17 cells and severity of prostatitis treated with 27-hydroxycholesterol (the differential cholesterol) and its upstream regulatory factor-sterol regulatory element-binding protein 2 (SREBP2). Lastly, fecal transplantation was conducted to preliminary study on whether alcohol intake exacerbates EAP in immune receptor mice. RESULTS: Alcohol intake increased the proportion of Th17 cells and levels of related inflammatory factors. It also led to an altered gut bacterial richness and increased gut permeability. Further metabolomic analysis showed that there were significant differences in a variety of metabolites between EAP and alcohol-fed EAP mice. Metabolic pathway enrichment analysis showed that the pathways related to cholesterol synthesis and metabolism were significantly enriched, which was subsequently confirmed by detecting the expression of metabolic enzymes. By targeting cholesterol synthesis, 27-hydroxycholesterol was significantly increased in alcohol-fed EAP mice. Subsequent mechanistic research showed that supplementation with 27-hydroxycholesterol could aggravate EAP and promote Th17 cell differentiation both in vivo and in vitro, which is regulated by SREBP2. In addition, we observed that fecal transplantation from mice with alcohol intake aggravated EAP in immunized recipient mice fed a normal diet. CONCLUSION: Our study is the first to show that alcohol intake promotes Th17 cell differentiation and exacerbates EAP through microbiota-derived cholesterol biosynthesis.


Asunto(s)
Consumo de Bebidas Alcohólicas , Enfermedades Autoinmunes , Diferenciación Celular , Colesterol , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Prostatitis , Células Th17 , Animales , Masculino , Células Th17/inmunología , Prostatitis/inmunología , Prostatitis/microbiología , Prostatitis/metabolismo , Prostatitis/inducido químicamente , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/inducido químicamente , Ratones , Diferenciación Celular/efectos de los fármacos , Consumo de Bebidas Alcohólicas/efectos adversos , Colesterol/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
20.
Imeta ; 2(4): e147, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38868222

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a heterogeneous tumor with different genetic and molecular alterations. Schemes for ccRCC classification system based on multiomics are urgent, to promote further biological insights. Two hundred and fifty-five ccRCC patients with paired data of clinical information, transcriptome expression profiles, copy number alterations, DNA methylation, and somatic mutations were collected for identification. Bioinformatic analyses were performed based on our team's recently developed R package "MOVICS." With 10 state-of-the-art algorithms, we identified the multiomics subtypes (MoSs) for ccRCC patients. MoS1 is an immune exhausted subtype, presented the poorest prognosis, and might be caused by an exhausted immune microenvironment, activated hypoxia features, but can benefit from PI3K/AKT inhibitors. MoS2 is an immune "cold" subtype, which represented more mutation of VHL and PBRM1, favorable prognosis, and is more suitable for sunitinib therapy. MoS3 is the immune "hot" subtype, and can benefit from the anti-PD-1 immunotherapy. We successfully verified the different molecular features of the three MoSs in external cohorts GSE22541, GSE40435, and GSE53573. Patients that received Nivolumab therapy helped us to confirm that MoS3 is suitable for anti-PD-1 therapy. E-MTAB-3267 cohort also supported the fact that MoS2 patients can respond more to sunitinib treatment. We also confirm that SETD2 is a tumor suppressor in ccRCC, along with the decreased SETD2 protein level in advanced tumor stage, and knock-down of SETD2 leads to the promotion of cell proliferation, migration, and invasion. In summary, we provide novel insights into ccRCC molecular subtypes based on robust clustering algorithms via multiomics data, and encourage future precise treatment of ccRCC patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA