Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(9): 1572-1587.e11, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35452622

RESUMEN

The large number of spike substitutions in Omicron lineage variants (BA.1, BA.1.1., and BA.2) could jeopardize the efficacy of SARS-CoV-2 vaccines. We evaluated in mice the protective efficacy of the Moderna mRNA-1273 vaccine against BA.1 before or after boosting. Whereas two doses of mRNA-1273 vaccine induced high levels of neutralizing antibodies against historical WA1/2020 strains, lower levels against BA.1 were associated with breakthrough infection and inflammation in the lungs. A primary vaccination series with mRNA-1273.529, an Omicron-matched vaccine, potently neutralized BA.1 but inhibited historical or other SARS-CoV-2 variants less effectively. However, boosting with either mRNA-1273 or mRNA-1273.529 vaccines increased neutralizing titers and protection against BA.1 and BA.2 infection. Nonetheless, the neutralizing antibody titers were higher, and lung viral burden and cytokines were slightly lower in mice boosted with mRNA-1273.529 and challenged with BA.1. Thus, boosting with mRNA-1273 or mRNA-1273.529 enhances protection against Omicron infection with limited differences in efficacy measured.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ratones , SARS-CoV-2/genética , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
2.
Nat Immunol ; 25(3): 537-551, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38337035

RESUMEN

A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Vacunas , Cricetinae , Animales , Ratones , Linfocitos T CD8-positivos , SARS-CoV-2 , COVID-19/prevención & control , Anticuerpos Neutralizantes , Anticuerpos ampliamente neutralizantes , Pan troglodytes
4.
Nature ; 630(8018): 950-960, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749479

RESUMEN

Immune imprinting is a phenomenon in which prior antigenic experiences influence responses to subsequent infection or vaccination1,2. The effects of immune imprinting on serum antibody responses after boosting with variant-matched SARS-CoV-2 vaccines remain uncertain. Here we characterized the serum antibody responses after mRNA vaccine boosting of mice and human clinical trial participants. In mice, a single dose of a preclinical version of mRNA-1273 vaccine encoding Wuhan-1 spike protein minimally imprinted serum responses elicited by Omicron boosters, enabling generation of type-specific antibodies. However, imprinting was observed in mice receiving an Omicron booster after two priming doses of mRNA-1273, an effect that was mitigated by a second booster dose of Omicron vaccine. In both SARS-CoV-2-infected and uninfected humans who received two Omicron-matched boosters after two or more doses of the prototype mRNA-1273 vaccine, spike-binding and neutralizing serum antibodies cross-reacted with Omicron variants as well as more distantly related sarbecoviruses. Because serum neutralizing responses against Omicron strains and other sarbecoviruses were abrogated after pre-clearing with Wuhan-1 spike protein, antibodies induced by XBB.1.5 boosting in humans focus on conserved epitopes targeted by the antecedent mRNA-1273 primary series. Thus, the antibody response to Omicron-based boosters in humans is imprinted by immunizations with historical mRNA-1273 vaccines, but this outcome may be beneficial as it drives expansion of cross-neutralizing antibodies that inhibit infection of emerging SARS-CoV-2 variants and distantly related sarbecoviruses.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , SARS-CoV-2 , Vacunas de ARNm , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , China , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Reacciones Cruzadas/inmunología , Epítopos de Linfocito B/inmunología , Vacunas de ARNm/administración & dosificación , Vacunas de ARNm/genética , Vacunas de ARNm/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación
5.
J Virol ; 97(11): e0090623, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37843369

RESUMEN

IMPORTANCE: It is well known that influenza A viruses (IAV) initiate host cell infection by binding to sialic acid, a sugar molecule present at the ends of various sugar chains called glycoconjugates. These sugar chains can vary in chain length, structure, and composition. However, it remains unknown if IAV strains preferentially bind to sialic acid on specific glycoconjugate type(s) for host cell infection. Here, we utilized CRISPR gene editing to abolish sialic acid on different glycoconjugate types in human lung cells, and evaluated human versus avian IAV infections. Our studies show that both human and avian IAV strains can infect human lung cells by utilizing any of the three major sialic acid-containing glycoconjugate types, specifically N-glycans, O-glycans, and glycolipids. Interestingly, simultaneous elimination of sialic acid on all three major glycoconjugate types in human lung cells dramatically decreased human IAV infection, yet had little effect on avian IAV infection. These studies show that avian IAV strains effectively utilize other less prevalent glycoconjugates for infection, whereas human IAV strains rely on a limited repertoire of glycoconjugate types. The remarkable ability of avian IAV strains to utilize diverse glycoconjugate types may allow for easy transmission into new host species.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Pulmón , Receptores de Superficie Celular , Animales , Humanos , Proteínas Portadoras/metabolismo , Glicoconjugados/metabolismo , Virus de la Influenza A/metabolismo , Pulmón/virología , Ácido N-Acetilneuramínico/metabolismo , Polisacáridos/metabolismo , Azúcares/metabolismo , Gripe Aviar/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo
6.
PLoS Pathog ; 17(5): e1009517, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33970958

RESUMEN

It is well documented that influenza A viruses selectively package 8 distinct viral ribonucleoprotein complexes (vRNPs) into each virion; however, the role of host factors in genome assembly is not completely understood. To evaluate the significance of cellular factors in genome assembly, we generated a reporter virus carrying a tetracysteine tag in the NP gene (NP-Tc virus) and assessed the dynamics of vRNP localization with cellular components by fluorescence microscopy. At early time points, vRNP complexes were preferentially exported to the MTOC; subsequently, vRNPs associated on vesicles positive for cellular factor Rab11a and formed distinct vRNP bundles that trafficked to the plasma membrane on microtubule networks. In Rab11a deficient cells, however, vRNP bundles were smaller in the cytoplasm with less co-localization between different vRNP segments. Furthermore, Rab11a deficiency increased the production of non-infectious particles with higher RNA copy number to PFU ratios, indicative of defects in specific genome assembly. These results indicate that Rab11a+ vesicles serve as hubs for the congregation of vRNP complexes and enable specific genome assembly through vRNP:vRNP interactions, revealing the importance of Rab11a as a critical host factor for influenza A virus genome assembly.


Asunto(s)
Genoma Viral , Virus de la Influenza A/genética , Gripe Humana/virología , Ribonucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus , Proteínas de Unión al GTP rab/metabolismo , Células A549 , Células HEK293 , Humanos , Virus de la Influenza A/aislamiento & purificación , Gripe Humana/genética , Ribonucleoproteínas/genética , Proteínas Virales/genética , Replicación Viral , Proteínas de Unión al GTP rab/genética
7.
J Enzyme Inhib Med Chem ; 38(1): 2212326, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37190931

RESUMEN

Class II histone deacetylases (HDACs) are considered as potential targets to treat Alzheimer's disease (AD). Previously, C-3 substituted phenothiazine-containing compounds with class II HDAC-inhibiting activities was found to promote neurite outgrowth. This study replaced phenothiazine moiety with phenoxazine that contains many C-3 and C-4 substituents. Some resulting compounds bearing the C-4 substituent on a phenoxazine ring displayed potent class II HDAC inhibitory activities. Structure-activity relationship (SAR) of these compounds that inhibited HDAC isoenzymes was disclosed. Molecular modelling analysis demonstrates that the potent activities of C-4 substituted compounds probably arise from π-π stacked interactions between these compounds and class IIa HDAC enzymes. One of these, compound 7d exhibited the most potent class II HDAC inhibition (IC50= 3-870 nM). Notably, it protected neuron cells from H2O2-induced neuron damage at sub-µM concentrations, but with no significant cytotoxicity. These findings show that compound 7d is a lead compound for further development of anti-neurodegenerative agents.


Asunto(s)
Antineoplásicos , Ácidos Hidroxámicos , Ácidos Hidroxámicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Peróxido de Hidrógeno/farmacología , Relación Estructura-Actividad , Histona Desacetilasas/metabolismo , Antineoplásicos/farmacología , Histona Desacetilasa 1/farmacología , Proliferación Celular
8.
PLoS Pathog ; 16(9): e1008842, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32898178

RESUMEN

Signaling through retinoic acid inducible gene I (RIG-I) like receptors (RLRs) is tightly regulated, with activation occurring upon sensing of viral nucleic acids, and suppression mediated by negative regulators. Under homeostatic conditions aberrant activation of melanoma differentiation-associated protein-5 (MDA5) is prevented through editing of endogenous dsRNA by RNA editing enzyme Adenosine Deaminase Acting on RNA (ADAR1). In addition, ADAR1 is postulated to play pro-viral and antiviral roles during viral infections that are dependent or independent of RNA editing activity. Here, we investigated the importance of ADAR1 isoforms in modulating influenza A virus (IAV) replication and revealed the opposing roles for ADAR1 isoforms, with the nuclear p110 isoform restricting versus the cytoplasmic p150 isoform promoting IAV replication. Importantly, we demonstrate that p150 is critical for preventing sustained RIG-I signaling, as p150 deficient cells showed increased IFN-ß expression and apoptosis during IAV infection, independent of RNA editing activity. Taken together, the p150 isoform of ADAR1 is important for preventing sustained RIG-I induced IFN-ß expression and apoptosis during viral infection.


Asunto(s)
Adenosina Desaminasa/metabolismo , Apoptosis , Proteína 58 DEAD Box/metabolismo , Virus de la Influenza A/fisiología , Gripe Humana/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Replicación Viral , Células A549 , Adenosina Desaminasa/genética , Proteína 58 DEAD Box/genética , Células HEK293 , Humanos , Gripe Humana/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de Unión al ARN/genética , Receptores Inmunológicos
9.
Bioorg Chem ; 121: 105675, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35182882

RESUMEN

Fms-like tyrosine kinase 3 (FLT3) is considered a promising therapeutic target for acute myeloid leukemia (AML) in the clinical. However, monotherapy with FLT3 inhibitor is usually accompanied by drug resistance. Dual inhibitors might be therapeutically beneficial to patients with AML due to their ability to overcome drug resistance. Mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) phosphorylate eukaryotic translation initiation factor 4E (eIF4E), which brings together the RAS/RAF/ERK and PI3K/AKT/mTOR oncogenic pathways. Therefore, dual inhibition of FLT3 and MNK2 might have an additive effect against AML. Herein, a structure-based virtual screening approach was performed to identify dual inhibitors of FLT3 and MNK2 from the ChemDiv database. Compound K783-0308 was identified as a dual inhibitor of FLT3 and MNK2 with IC50 values of 680 and 406 nM, respectively. In addition, the compound showed selectivity for both FLT3 and MNK2 in a panel of 82 kinases. The structure-activity relationship analysis and common interactions revealed interactions between K783-0308 analogs and FLT3 and MNK2. Furthermore, K783-0308 inhibited MV-4-11 and MOLM-13 AML cell growth and induced G0/G1 cell cycle arrest. Taken together, the dual inhibitor K783-0308 showed promising results and can be potentially optimized as a lead compound for AML treatment.


Asunto(s)
Leucemia Mieloide Aguda , Tirosina Quinasa 3 Similar a fms , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Fosfatidilinositol 3-Quinasas , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas
10.
J Nat Prod ; 84(4): 1096-1103, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33600175

RESUMEN

Type 2 diabetes mellitus (T2DM) is associated with pancreatic ß-cell dysfunction and insulin resistance. Islet amyloid polypeptide (IAPP) aggregation is found to induce islet ß-cell death in T2DM patients. Recently, we demonstrated that yakuchinone B derivative 1 exhibited inhibitory activity against IAPP aggregation. Thus, in this study, a series of synthesized yakuchinone B-inspired compounds were tested for their anti-IAPP aggregation activity. Four of these compounds, 4e-h, showed greater activity than the lead compound 1, in the sub-µM range (IC50 = 0.7-0.8 µM). The molecular docking analysis revealed crucial hydrogen bonds between the compounds and residues S19 and N22 and important hydrophobic interactions with residue I26. Notably, compounds 4g and 4h significantly protected ß-cells against IAPP-induced toxicity with EC50 values of 0.1 and 0.2 µM, respectively. In contrast, the protective activities of compounds 4e and 4f were weak. Overall, these results suggest that the compounds exhibiting IAPP aggregation-inhibiting activity have the potential to treat T2DM.


Asunto(s)
Diarilheptanoides/síntesis química , Polipéptido Amiloide de los Islotes Pancreáticos/antagonistas & inhibidores , Animales , Línea Celular , Resistencia a la Insulina , Células Secretoras de Insulina/efectos de los fármacos , Simulación del Acoplamiento Molecular , Agregación Patológica de Proteínas/tratamiento farmacológico , Ratas
11.
J Nat Prod ; 84(1): 1-10, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33393294

RESUMEN

Acute myeloid leukemia (AML) is an aggressive disease with a poor prognosis and a high degree of relapse seen in patients. Overexpression of FMS-like tyrosine kinase 3 (FLT3) is associated with up to 70% of AML patients. Wild-type FLT3 induces proliferation and inhibits apoptosis in AML cells, while uncontrolled proliferation of FLT3 kinase activity is also associated with FLT3 mutations. Therefore, inhibiting FLT3 activity is a promising AML therapy. Flavonoids are a group of phytochemicals that can target protein kinases, suggesting their potential antitumor activities. In this study, several plant-derived flavonoids have been identified with FLT3 inhibitory activity. Among these compounds, compound 40 (5,7,4'-trihydroxy-6-methoxyflavone) exhibited the most potent inhibition against not only FLT3 (IC50 = 0.44 µM) but also FLT3-D835Y and FLT3-ITD mutants (IC50 = 0.23 and 0.39 µM, respectively). The critical interactions between the FLT3 binding site and the compounds were identified by performing a structure-activity relationship analysis. Furthermore, the results of cellular assays revealed that compounds 28, 31, 32, and 40 exhibited significant cytotoxicity against two human AML cell lines (MOLM-13 and MV-4-11), and compounds 31, 32, and 40 resulted in cell apoptosis and G0/G1 cell cycle arrest. Collectively, these flavonoids have the potential to be further optimized as FLT3 inhibitors and provide valuable chemical information for the development of new AML drugs.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Flavonoides/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Tirosina Quinasa 3 Similar a fms/uso terapéutico , Antineoplásicos/química , Humanos , Leucemia Mieloide Aguda/genética , Inhibidores de Proteínas Quinasas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/química , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/farmacología
12.
J Enzyme Inhib Med Chem ; 36(1): 98-108, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33167727

RESUMEN

The STE20 kinase family is a complex signalling cascade that regulates cytoskeletal organisation and modulates the stress response. This signalling cascade includes various kinase mediators, such as TAOK1 and MAP4K5. The dysregulation of the STE20 kinase pathway is linked with cancer malignancy. A small-molecule inhibitor targeting the STE20 kinase pathway has therapeutic potential. In this study, a structure-based virtual screening (SBVS) approach was used to identify potential dual TAOK1 and MAP4K5 inhibitors. Enzymatic assays confirmed three potential dual inhibitors (>50% inhibition) from our virtual screening, and analysis of the TAOK1 and MAP4K5 binding sites indicated common interactions for dual inhibition. Compound 1 revealed potent inhibition of colorectal and lung cancer cell lines. Furthermore, compound 1 arrested cancer cells in the G0/G1 phase, which suggests the induction of apoptosis. Altogether, we show that the STE20 signalling mediators TAOK1 and MAP4K5 are promising targets for drug research.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas
13.
J Nat Prod ; 83(10): 2967-2975, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33026809

RESUMEN

Excessive eIF4E phosphorylation by mitogen-activated protein kinase (MAPK)-interacting kinases 1 and 2 (MNK1 and MNK2; collectively, MNKs) has been associated with oncogenesis. The overexpression of eIF4E in acute myeloid leukemia (AML) is related to cancer cell growth and survival. Thus, the inhibition of MNKs and eIF4E phosphorylation are potential therapeutic strategies for AML. Herein, a structure-based virtual screening approach was performed to identify potential MNK inhibitors from natural products. Three flavonoids, apigenin, hispidulin, and luteolin, showed MNK2 inhibitory activity with IC50 values of 308, 252, and 579 nM, respectively. A structure-activity relationship analysis was performed to disclose the molecular interactions. Furthermore, luteolin exhibited substantial inhibitory efficacy against MNK1 (IC50 = 179 nM). Experimental results from cellular assays showed that hispidulin and luteolin inhibited the growth of MOLM-13 and MV4-11 AML cells by downregulating eIF4E phosphorylation and arresting the cell cycle at the G0/G1 phase. Therefore, hispidulin and luteolin showed promising results as lead compounds for the potential treatment for AML.


Asunto(s)
Flavonoides , Péptidos y Proteínas de Señalización Intracelular , Leucemia Mieloide Aguda , Proteínas Serina-Treonina Quinasas , Ciclo Celular , Línea Celular Tumoral , Humanos , Estructura Molecular , Fosforilación , Inhibidores de Proteínas Quinasas , Relación Estructura-Actividad
14.
Nanotechnology ; 29(43): 435501, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30073973

RESUMEN

We present a novel method to trap nanoparticles in double nanohole (DNH) nanoapertures integrated on top of solid-state nanopores (ssNP). The nanoparticles were propelled by an electrophoretic force from the cis towards the trans side of the nanopore but were trapped in the process when they reached the vicinity of the DNH-ssNP interface. The self-induced back action (SIBA) plasmonic force existing between the tips of the DNH opposed the electrophoretic force and enabled simultaneous optical and electrical sensing of a single nanoparticle for seconds. The novel SIBA actuated nanopore electrophoresis (SANE) sensor was fabricated using two-beam GFIS FIB. Firstly, Ne FIB milling was used to create the DNH features and was combined with end pointing to stop milling at the metal-dielectric interface. Subsequently, He FIB was used to drill a 25 nm nanopore through the center of the DNH. Proof of principle experiments to demonstrate the potential utility of the SANE sensor were performed with 20 nm silica and Au nanoparticles. The addition of optical trapping to electrical sensing extended translocation times by four orders of magnitude. The extended electrical measurement times revealed newly observed high frequency charge transients that were attributed to bobbing of the nanoparticle driven by the competing optical and electrical forces. Frequency analysis of this bobbing behavior hinted at the possibility of distinguishing single from multi-particle trapping events. We also discuss how SANE sensor measurement characteristics differ between silica and Au nanoparticles due to differences in their physical properties and how to estimate the charge around a nanoparticle. These measurements show promise for the SANE sensor as an enabling tool for selective detection of biomolecules and quantification of their interactions.

15.
Molecules ; 22(11)2017 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-29113055

RESUMEN

Hispidulin is a naturally occurring flavone known to have various Central nervous system (CNS) activities. Proposed synthetic approaches to synthesizing hispidulin have proven unsatisfactory due to their low feasibility and poor overall yields. To solve these problems, this study developed a novel scheme for synthesizing hispidulin, which had an improved overall yield as well as more concise reaction steps compared to previous methods reported. Additionally, using the same synthetic strategy, d-labelled hispidulin was synthesized to investigate its metabolic stability against human liver microsome. This work may produce new chemical entities for enriching the library of hispidulin-derived compounds.


Asunto(s)
Flavonas , Microsomas Hepáticos/metabolismo , Deuterio/química , Deuterio/farmacocinética , Deuterio/farmacología , Flavonas/síntesis química , Flavonas/química , Flavonas/farmacocinética , Flavonas/farmacología , Humanos , Marcaje Isotópico/métodos
16.
J Nat Prod ; 78(8): 1969-76, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26275107

RESUMEN

A new method is applied to synthesize hispidulin, a natural flavone with a broad spectrum of biological activities. Hispidulin exhibits inhibitory activity against the oncogenic protein kinase Pim-1. Crystallographic analysis of Pim-1 bound to hispidulin reveals a binding mode distinct from that of quercetin, suggesting that the binding potency of flavonoids is determined by their hydrogen-bonding interactions with the hinge region of the kinase. Overall, this work may facilitate construction of a library of hispidulin-derived compounds for investigating the structure-activity relationship of flavone-based Pim-1 inhibitors.


Asunto(s)
Flavonas/síntesis química , Flavonas/farmacología , Proteínas Proto-Oncogénicas c-pim-1/antagonistas & inhibidores , Flavonas/química , Estructura Molecular , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Quercetina/química , Relación Estructura-Actividad
17.
Protein Sci ; 33(4): e4924, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501590

RESUMEN

Targeted delivery of small-molecule drugs via covalent attachments to monoclonal antibodies has proved successful in clinic. For this purpose, full-length antibodies are mainly used as drug-carrying vehicles. Despite their flexible conjugation sites and versatile biological activities, intact immunoglobulins with conjugated drugs, which feature relatively large molecular weights, tend to have restricted tissue distribution and penetration and low fractions of payloads. Linking small-molecule therapeutics to other formats of antibody may lead to conjugates with optimal properties. Here, we designed and synthesized ADP-ribosyl cyclase-enabled fragment antigen-binding (Fab) drug conjugates (ARC-FDCs) by utilizing CD38 catalytic activity. Through rapidly forming a stable covalent bond with a nicotinamide adenine dinucleotide (NAD+ )-based drug linker at its active site, CD38 genetically fused with Fab mediates robust site-specific drug conjugations via enzymatic reactions. Generated ARC-FDCs with defined drug-to-Fab ratios display potent and antigen-dependent cytotoxicity against breast cancer cells. This work demonstrates a new strategy for developing site-specific FDCs. It may be applicable to different antibody scaffolds for therapeutic conjugations, leading to novel targeted agents.


Asunto(s)
Antígenos CD , NAD+ Nucleosidasa , ADP-Ribosil Ciclasa , ADP-Ribosil Ciclasa 1 , Antígenos CD/química , NAD+ Nucleosidasa/química , Preparaciones Farmacéuticas , NAD/química
18.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293221

RESUMEN

Although vaccines have reduced COVID-19 disease burden, their efficacy in helminth infection endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal hookworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of SARS-CoV-2. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared to animals immunized without Hpb infection. Helminth mediated suppression of spike-specific CD8+ T cell responses occurred independently of STAT6 signaling, whereas blockade of IL-10 rescued vaccine-induced CD8+ T cell responses. In mice, intestinal helminth infection impairs vaccine induced T cell responses via an IL-10 pathway and compromises protection against antigenically shifted SARS-CoV-2 variants.

19.
JCI Insight ; 9(3)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38175703

RESUMEN

Immunoglobulin (IG) replacement products are used routinely in patients with immune deficiency and other immune dysregulation disorders who have poor responses to vaccination and require passive immunity conferred by commercial antibody products. The binding, neutralizing, and protective activity of intravenously administered IG against SARS-CoV-2 emerging variants remains unknown. Here, we tested 198 different IG products manufactured from December 2019 to August 2022. We show that prepandemic IG had no appreciable cross-reactivity or neutralizing activity against SARS-CoV-2. Anti-spike antibody titers and neutralizing activity against SARS-CoV-2 WA1/2020 D614G increased gradually after the pandemic started and reached levels comparable to vaccinated healthy donors 18 months after the diagnosis of the first COVID-19 case in the United States in January 2020. The average time between production to infusion of IG products was 8 months, which resulted in poor neutralization of the variant strain circulating at the time of infusion. Despite limited neutralizing activity, IG prophylaxis with clinically relevant dosing protected susceptible K18-hACE2-transgenic mice against clinical disease, lung infection, and lung inflammation caused by the XBB.1.5 Omicron variant. Moreover, following IG prophylaxis, levels of XBB.1.5 infection in the lung were higher in FcγR-KO mice than in WT mice. Thus, IG replacement products with poor neutralizing activity against evolving SARS-CoV-2 variants likely confer protection to patients with immune deficiency disorders through Fc effector function mechanisms.


Asunto(s)
COVID-19 , Humanos , Animales , Ratones , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos , Reacciones Cruzadas , Ratones Transgénicos
20.
bioRxiv ; 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37205450

RESUMEN

We previously described a nasally delivered monovalent adenoviral-vectored SARS-CoV-2 vaccine (ChAd-SARS-CoV-2-S, targeting Wuhan-1 spike [S]; iNCOVACC®) that is currently used in India as a primary or booster immunization. Here, we updated the mucosal vaccine for Omicron variants by creating ChAd-SARS-CoV-2-BA.5-S, which encodes for a pre-fusion and surface-stabilized S protein of the BA.5 strain, and then tested monovalent and bivalent vaccines for efficacy against circulating variants including BQ.1.1 and XBB.1.5. Whereas monovalent ChAd-vectored vaccines effectively induced systemic and mucosal antibody responses against matched strains, the bivalent ChAd-vectored vaccine elicited greater breadth. However, serum neutralizing antibody responses induced by both monovalent and bivalent vaccines were poor against the antigenically distant XBB.1.5 Omicron strain and did not protect in passive transfer experiments. Nonetheless, nasally delivered bivalent ChAd-vectored vaccines induced robust antibody and spike-specific memory T cell responses in the respiratory mucosa, and conferred protection against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in the upper and lower respiratory tracts of both mice and hamsters. Our data suggest that a nasally delivered bivalent adenoviral-vectored vaccine induces protective mucosal and systemic immunity against historical and emerging SARS-CoV-2 strains without requiring high levels of serum neutralizing antibody.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA