RESUMEN
Fermi resonance is a phenomenon involving the hybridization of two coincidentally quasi-degenerate states that is observed in the vibrational or electronic spectra of molecules. Despite numerous examples in molecular systems, vibrational Fermi resonances in dispersive semiconducting systems remain largely unexplored due to the rarity of occurrence. Here we report a vibrational Fermi resonance in atomically thin black phosphorus. The Fermi resonance arises via anharmonic mixing of a fundamental Raman mode and a Davydov component of an infrared mode, leading to a doublet with mixed character. The extent of Fermi coupling can be modulated by the application of external biaxial strain. The consequences of Fermi hybridization are revealed by electronic resonance effects in the thickness-dependent and excitation-wavelength-dependent Raman spectrum, which is predicted by ab initio hybrid functional simulations including excitonic interactions. This work reveals new insight into electron-phonon coupling in black phosphorus and demonstrates a novel method for modulating Fermi resonances in 2D semiconductors.
RESUMEN
The practically unlimited high-dimensional composition space of high-entropy materials (HEMs) has emerged as an exciting platform for functional material design and discovery. However, the identification of stable and synthesizable HEMs and robust design rules remains a daunting challenge. Here, we propose a mixed enthalpy-entropy descriptor (MEED) that enables highly efficient, robust, high-throughput prediction of synthesizable HEMs across vast chemical spaces from first-principles. The MEED is based on two parameters: the relative formation enthalpy with respect to the most stable competing compound and the spread of the point-defect formation energy spectrum. The former measures the relative synthesizability of an HEM to its most stable competing phase, going beyond the conventional thermodynamic understanding. The latter gauges the relative entropy forming ability of an HEM, entailing no sampling over numerous alloy configurations. By applying the MEED to two structurally distinct representative material systems (i.e., 3D rocksalt carbides and 2D layered sulfides), we not only successfully identify all experimentally reported HEMs within these systems but also reveal a cutoff criterion for assessing their relative synthesizability within each system. By the MEED, tens of new high-entropy carbides and 2D high-entropy sulfides are also predicted, which have the potential for a wide variety of applications such as coating in aerospace devices, energy conversion and storage, and flexible electronics.
RESUMEN
Two-dimensional (2D) materials have been extensively implemented as surface-enhanced Raman scattering (SERS) substrates, enabling trace-molecule detection for broad applications. However, the accurate understanding of the mechanism remains elusive because most theoretical explanations are still phenomenological or qualitative based on simplified models and rough assumptions. To advance the development of 2D material-assisted SERS, it is vital to attain a comprehensive understanding of the enhancement mechanism and a quantitative assessment of the enhancement performance. Here, the microscopic chemical mechanism of 2D material-assisted SERS is quantitatively investigated. The frequency-dependent Raman scattering cross sections suggest that the 2D materials' SERS performance is strongly dependent on the excitation wavelengths and the molecule types. By analysis of the microscopic Raman scattering processes, the comprehensive contributions of SERS can be revealed. Beyond the widely postulated charge transfer mechanisms, the quantitative results conclusively demonstrate that the resonant transitions within 2D materials alone are also capable of enhancing the molecular Raman scattering through the diffusive scattering of phonons. Furthermore, all of these scattering routines will interfere with each other and determine the final SERS performance. Our results not only provide a complete picture of the SERS mechanisms but also demonstrate a systematic and quantitative approach to theoretically understand, predict, and promote the 2D materials SERS toward analytical applications.
RESUMEN
Exciton localization through nanoscale strain has been used to create highly efficient single-photon emitters (SPEs) in 2D materials. However, the strong Coulomb interactions between excitons can lead to nonradiative recombination through exciton-exciton annihilation, negatively impacting SPE performance. Here, we investigate the effect of Coulomb interactions on the brightness, single photon purity, and operating temperatures of strain-localized GaSe SPEs by using electrostatic doping. By gating GaSe to the charge neutrality point, the exciton-exciton annihilation nonradiative pathway is suppressed, leading to â¼60% improvement of emission intensity and an enhancement of the single photon purity g(2)(0) from 0.55 to 0.28. The operating temperature also increased from 4.5 K to 85 K consequently. This research provides insight into many-body interactions in excitons confined by nanoscale strain and lays the groundwork for the optimization of SPEs for optoelectronics and quantum photonics.
RESUMEN
The electronic structure and functionality of 2D materials is highly sensitive to structural morphology, not only opening the possibility for manipulating material properties but also making predictable and reproducible functionality challenging. Black phosphorus (BP), a corrugated orthorhombic 2D material, has in-plane optical absorption anisotropy critical for applications, such as directional photonics, plasmonics, and waveguides. Here, we use polarization-dependent photoemission electron microscopy to visualize the anisotropic optical absorption of BP with 54 nm spatial resolution. We find the edges of BP flakes have a shift in their optical polarization anisotropy from the flake interior due to the 1D confinement and symmetry reduction at flake edges that alter the electronic charge distributions and transition dipole moments of edge electronic states, confirmed with first-principles calculations. These results uncover previously hidden modification of the polarization-dependent absorbance at the edges of BP, highlighting the opportunity for selective excitation of edge states of 2D materials with polarized light.
RESUMEN
In van der Waals (vdW) heterostructures, the interlayer electron-phonon coupling (EPC) provides one unique channel to nonlocally engineer these elementary particles. However, limited by the stringent occurrence conditions, the efficient engineering of interlayer EPC remains elusive. Here we report a multitier engineering of interlayer EPC in WS2/boron nitride (BN) heterostructures, including isotope enrichments of BN substrates, temperature, and high-pressure tuning. The hyperfine isotope dependence of Raman intensities was unambiguously revealed. In combination with theoretical calculations, we anticipate that WS2/BN supercells could induce Brillouin-zone-folded phonons that contribute to the interlayer coupling, leading to a complex nature of broad Raman peaks. We further demonstrate the significance of a previously unexplored parameter, the interlayer spacing. By varying the temperature and high pressure, we effectively manipulated the strengths of EPC with on/off capabilities, indicating critical thresholds of the layer-layer spacing for activating and strengthening interlayer EPC. Our findings provide new opportunities to engineer vdW heterostructures with controlled interlayer coupling.
RESUMEN
Correction for 'Distinct spin-lattice and spin-phonon interactions in monolayer magnetic CrI3' by Lucas Webster et al., Phys. Chem. Chem. Phys., 2018, 20, 23546-23555, https://doi.org/10.1039/C8CP03599G.
RESUMEN
The strength of interlayer coupling critically affects the physical properties of 2D materials such as black phosphorus (BP), where the electronic structure depends sensitively on layer thickness. Rigid-layer vibrations reflect directly the interlayer coupling strength in 2D van der Waals solids, but measurement of these characteristic frequencies is made difficult by sample instability and small Raman scattering cross sections in atomically thin elemental crystals. Here, we overcome these challenges in BP by performing resonance-enhanced low-frequency Raman scattering under an argon-protective environment. Interlayer breathing modes for atomically thin BP were previously unobservable under conventional (nonresonant) excitation but became strongly enhanced when the excitation energy matched the sub-band electronic transitions of few-layer BP, down to bilayer thicknesses. The measured out-of-plane interlayer force constant was found to be 10.1 × 1019 N/m3 in BP, which is comparable to graphene. Accurate characterization of the interlayer coupling strength lays the foundation for future exploration of BP twisted structures and heterostructures.
RESUMEN
Understanding the charge interaction between molecules and two-dimensional (2D) materials is essential for the design of functional devices. Here, we report the bifacial Raman enhancement of molecules on monolayer graphene and hexagonal boron nitride ( h-BN). Taking advantage of the atomically thick layered structure, we show that both surfaces of 2D materials can interact with molecules and simultaneously enhance their Raman scattering. Different enhancement features were observed for monolayer graphene and h-BN. The intensity decrease of particular Raman modes of copper phthalocyanine (CuPc) on both surfaces of h-BN suggests that z-dipoles exist and are partially canceled out between the two interfaces, while the twice Raman intensities of the characteristic Raman modes of CuPc on both surfaces of graphene compared to that on one surface evidenced the charge transfer process. These results provide an approach to modify 2D materials by bifacial adsorption of molecules, and the findings can inspire the design of functional 2D material-based devices.
RESUMEN
Electron-phonon coupling in two-dimensional nanomaterials plays a fundamental role in determining their physical properties. Such interplay is particularly intriguing in semiconducting black phosphorus (BP) due to the highly anisotropic nature of its electronic structure and phonon dispersions. Here we report the direct observation of symmetry-dependent electron-phonon coupling in BP by performing the polarization-selective resonance Raman measurement in the visible and ultraviolet regimes, focusing on the out-of-plane Ag1 and in-plane Ag2 phonon modes. Their intrinsic resonance Raman excitation profiles (REPs) were extracted and quantitatively compared. The in-plane Ag2 mode exhibits remarkably strong resonance enhancement across the excitation wavelengths when the excitation polarization is parallel to the armchair (Ag2//AC) direction. In contrast, a dramatically weak resonance effect was observed for the same mode with the polarization parallel to zigzag (Ag2//ZZ) direction and for the out-of-plane Ag1 mode (Ag1//AC and Ag1//ZZ). Analysis on quantum perturbation theory and first-principles calculations on the anisotropic electron distributions in BP demonstrated that electron-phonon coupling considering the symmetry of the involved excited states and phonon vibration patterns is responsible for this phenomenon. Further analysis of the polarization-dependent REPs for Ag phonons allows us to resolve the existing controversies on the physical origin of Raman anomaly in BP and its dependence on excitation energy, sample thickness, phonon modes, and crystalline orientation. Our study gives deep insights into the underlying interplay between electrons and phonons in BP and paves the way for manipulating the electron-phonon coupling in anisotropic nanomaterials for future device applications.
RESUMEN
A bottom up method for the synthesis of unique tetracene-based nanoribbons, which incorporate cyclobutadiene moieties as linkers between the acene segments, is reported. These structures were achieved through the formal [2+2] cycloaddition reaction of ortho-functionalized tetracene precursor monomers. The formation mechanism and the electronic and magnetic properties of these nanoribbons were comprehensively studied by means of a multitechnique approach. Ultra-high vacuum scanning tunneling microscopy showed the occurrence of metal-coordinated nanostructures at room temperature and their evolution into nanoribbons through formal [2+2] cycloaddition at 475â K. Frequency-shift non-contact atomic force microscopy images clearly proved the presence of bridging cyclobutadiene moieties upon covalent coupling of activated tetracene molecules. Insight into the electronic and vibrational properties of the so-formed ribbons was obtained by scanning tunneling microscopy, Raman spectroscopy, and theoretical calculations. Magnetic properties were addressed from a computational point of view, allowing us to propose promising candidates to magnetic acene-based ribbons incorporating four-membered rings. The reported findings will increase the understanding and availability of new graphene-based nanoribbons with high potential in future spintronics.
RESUMEN
Two-dimensional materials such as layered transition-metal dichalcogenides (TMDs) are ideal platforms for studying defect behaviors, an essential step towards defect engineering for novel material functions. Here, we image the 3D lattice locations of selenium-vacancy V_{Se} defects and manipulate them using a scanning tunneling microscope (STM) near the surface of PdSe_{2}, a recently discovered pentagonal layered TMD. The V_{Se} show a characterisitc charging ring in a spatially resolved conductance map, based on which we can determine its subsurface lattice location precisely. Using the STM tip, not only can we reversibly switch the defect states between charge neutral and charge negative, but also trigger migrations of V_{Se} defects. This allows a demonstration of direct "writing" and "erasing" of atomic defects and tracing the diffusion pathways. First-principles calculations reveal a small diffusion barrier of V_{Se} in PdSe_{2}, which is much lower than S vacancy in MoS_{2} or an O vacancy in TiO_{2}. This finding opens an opportunity of defect engineering in PdSe_{2} for such as controlled phase transformations and resistive-switching memory device application.
RESUMEN
We apply the density-functional theory to study various phases (including non-magnetic (NM), anti-ferromagnetic (AFM), and ferromagnetic (FM)) in monolayer magnetic chromium triiodide (CrI3), a recently fabricated 2D magnetic material. It is found that: (1) the introduction of magnetism in monolayer CrI3 gives rise to metal-to-semiconductor transition; (2) the electronic band topologies as well as the nature of direct and indirect band gaps in either AFM or FM phases exhibit delicate dependence on the magnetic ordering and spin-orbit coupling; and (3) the phonon modes involving Cr atoms are particularly sensitive to the magnetic ordering, highlighting distinct spin-lattice and spin-phonon coupling in this magnet. First-principles simulations of the Raman spectra demonstrate that both frequencies and intensities of the Raman peaks strongly depend on the magnetic ordering. The polarization dependent A1g modes at 77 cm-1 and 130 cm-1 along with the Eg mode at about 50 cm-1 in the FM phase may offer a useful fingerprint to characterize this material. Our results not only provide a detailed guiding map for experimental characterization of CrI3, but also reveal how the evolution of magnetism can be tracked by its lattice dynamics and Raman response.
RESUMEN
Heteroatom doping is an efficient way to modify the chemical and electronic properties of graphene. In particular, boron doping is expected to induce a p-type (boron)-conducting behavior to pristine (nondoped) graphene, which could lead to diverse applications. However, the experimental progress on atomic scale visualization and sensing properties of large-area boron-doped graphene (BG) sheets is still very scarce. This work describes the controlled growth of centimeter size, high-crystallinity BG sheets. Scanning tunneling microscopy and spectroscopy are used to visualize the atomic structure and the local density of states around boron dopants. It is confirmed that BG behaves as a p-type conductor and a unique croissant-like feature is frequently observed within the BG lattice, which is caused by the presence of boron-carbon trimers embedded within the hexagonal lattice. More interestingly, it is demonstrated for the first time that BG exhibits unique sensing capabilities when detecting toxic gases, such as NO2 and NH3, being able to detect extremely low concentrations (e.g., parts per trillion, parts per billion). This work envisions that other attractive applications could now be explored based on as-synthesized BG.
RESUMEN
Electrical contact to low-dimensional (low-D) materials is a key to their electronic applications. Traditional metal contacts to low-D semiconductors typically create gap states that can pin the Fermi level (EF). However, low-D metals possessing a limited density of states at EF can enable gate-tunable work functions and contact barriers. Moreover, a seamless contact with native bonds at the interface, without localized interfacial states, can serve as an optimal electrode. To realize such a seamless contact, one needs to develop atomically precise heterojunctions from the atom up. Here, we demonstrate an all-carbon staircase contact to ultranarrow armchair graphene nanoribbons (aGNRs). The coherent heterostructures of width-variable aGNRs, consisting of 7, 14, 21, and up to 56 carbon atoms across the width, are synthesized by a surface-assisted self-assembly process with a single molecular precursor. The aGNRs exhibit characteristic vibrational modes in Raman spectroscopy. A combined scanning tunneling microscopy and density functional theory study reveals the native covalent-bond nature and quasi-metallic contact characteristics of the interfaces. Our electronic measurements of such seamless GNR staircase constitute a promising first step toward making low resistance contacts.
RESUMEN
Most studied two-dimensional (2D) materials exhibit isotropic behavior due to high lattice symmetry; however, lower-symmetry 2D materials such as phosphorene and other elemental 2D materials exhibit very interesting anisotropic properties. In this work, we report the atomic structure, electronic properties, and vibrational modes of few-layered PdSe2 exfoliated from bulk crystals, a pentagonal 2D layered noble transition metal dichalcogenide with a puckered morphology that is air-stable. Micro-absorption optical spectroscopy and first-principles calculations reveal a wide band gap variation in this material from 0 (bulk) to 1.3 eV (monolayer). The Raman-active vibrational modes of PdSe2 were identified using polarized Raman spectroscopy, and a strong interlayer interaction was revealed from large, thickness-dependent Raman peak shifts, agreeing with first-principles Raman simulations. Field-effect transistors made from the few-layer PdSe2 display tunable ambipolar charge carrier conduction with a high electron field-effect mobility of â¼158 cm2 V-1 s-1, indicating the promise of this anisotropic, air-stable, pentagonal 2D material for 2D electronics.
RESUMEN
van der Waals homo- and heterostructures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. We investigated the low-frequency interlayer shear and breathing Raman modes (<50 cm(-1)) in twisted bilayer MoS2 by Raman spectroscopy and first-principles modeling. Twisting significantly alters the interlayer stacking and coupling, leading to notable frequency and intensity changes of low-frequency modes. The frequency variation can be up to 8 cm(-1) and the intensity can vary by a factor of â¼5 for twisting angles near 0° and 60°, where the stacking is a mixture of high-symmetry stacking patterns and is thus sensitive to twisting. For twisting angles between 20° and 40°, the interlayer coupling is nearly constant because the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Note that for some samples, multiple breathing mode peaks appear, indicating nonuniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling. This research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2 and potentially other two-dimensional materials and heterostructures.
RESUMEN
Defect engineering has been a critical step in controlling the transport characteristics of electronic devices, and the ability to create, tune, and annihilate defects is essential to enable the range of next-generation devices. Whereas defect formation has been well-demonstrated in three-dimensional semiconductors, similar exploration of the heterogeneity in atomically thin two-dimensional semiconductors and the link between their atomic structures, defects, and properties has not yet been extensively studied. Here, we demonstrate the growth of MoSe2-x single crystals with selenium (Se) vacancies far beyond intrinsic levels, up to â¼20%, that exhibit a remarkable transition in electrical transport properties from n- to p-type character with increasing Se vacancy concentration. A new defect-activated phonon band at â¼250 cm(-1) appears, and the A1g Raman characteristic mode at 240 cm(-1) softens toward â¼230 cm(-1) which serves as a fingerprint of vacancy concentration in the crystals. We show that post-selenization using pulsed laser evaporated Se atoms can repair Se-vacant sites to nearly recover the properties of the pristine crystals. First-principles calculations reveal the underlying mechanisms for the corresponding vacancy-induced electrical and optical transitions.
RESUMEN
Orthorhombic black phosphorus (BP) and other layered materials, such as gallium telluride (GaTe) and tin selenide (SnSe), stand out among two-dimensional (2D) materials owing to their anisotropic in-plane structure. This anisotropy adds a new dimension to the properties of 2D materials and stimulates the development of angle-resolved photonics and electronics. However, understanding the effect of anisotropy has remained unsatisfactory to date, as shown by a number of inconsistencies in the recent literature. We use angle-resolved absorption and Raman spectroscopies to investigate the role of anisotropy on the electron-photon and electron-phonon interactions in BP. We highlight, both experimentally and theoretically, a nontrivial dependence between anisotropy and flake thickness and photon and phonon energies. We show that once understood, the anisotropic optical absorption appears to be a reliable and simple way to identify the crystalline orientation of BP, which cannot be determined from Raman spectroscopy without the explicit consideration of excitation wavelength and flake thickness, as commonly used previously.
RESUMEN
As a new two-dimensional layered material, black phosphorus (BP) is a very promising material for nanoelectronics and optoelectronics. We use Raman spectroscopy and first-principles theory to characterize and understand the low-frequency (LF) interlayer breathing modes (<100 cm(-1)) in few-layer BP for the first time. Using a laser polarization dependence study and group theory analysis, the breathing modes are assigned to Ag symmetry. Compared to the high-frequency (HF) Raman modes, the LF breathing modes are considerably more sensitive to interlayer coupling and, thus, their frequencies show a stronger dependence on the number of layers. Hence, they constitute an effective means to probe both the crystalline orientation and thickness of few-layer BP. Furthermore, the temperature dependence shows that in the temperature range -150 to 30 °C, the breathing modes have a weak anharmonic behavior, in contrast to the HF Raman modes that exhibit strong anharmonicity.