Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Med Res Rev ; 44(2): 632-685, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37983964

RESUMEN

Imbalances in protein and noncoding RNA levels in vivo lead to the occurrence of many diseases. In addition to the use of small molecule inhibitors and agonists to restore these imbalances, recently emerged targeted degradation technologies provide a new direction for disease treatment. Targeted degradation technology directly degrades target proteins or RNA by utilizing the inherent degradation pathways, thereby eliminating the functions of pathogenic proteins (or RNA) to treat diseases. Compared with traditional therapies, targeted degradation technology which avoids the principle of traditional inhibitor occupation drive, has higher efficiency and selectivity, and widely expands the range of drug targets. It is one of the most promising and hottest areas for future drug development. Herein, we systematically introduced the in vivo degradation systems applied to degrader design: ubiquitin-proteasome system, lysosomal degradation system, and RNA degradation system. We summarized the development progress, structural characteristics, and limitations of novel chimeric design technologies based on different degradation systems. In addition, due to the lack of clear ligand-binding pockets, about 80% of disease-associated proteins cannot be effectively intervened with through traditional therapies. We deeply elucidated how to use targeted degradation technology to discover and design molecules for representative undruggable targets including transcription factors, small GTPases, and phosphatases. Overall, this review provides a comprehensive and systematic overview of targeted degradation technology-related research advances and a new guidance for the chimeric design of undruggable targets.


Asunto(s)
Sistemas de Liberación de Medicamentos , Desarrollo de Medicamentos , Humanos , Complejo de la Endopetidasa Proteasomal , ARN , Tecnología
2.
Apoptosis ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652339

RESUMEN

Chronic inflammatory and immune responses play key roles in the development and progression of chronic obstructive pulmonary disease (COPD). PANoptosis, as a unique inflammatory cell death modality, is involved in the pathogenesis of many inflammatory diseases. We aim to identify critical PANoptosis-related biomarkers and explore their potential effects on respiratory tract diseases and immune infiltration landscapes in COPD. Total microarray data consisting of peripheral blood and lung tissue datasets associated with COPD were obtained from the GEO database. PANoptosis-associated genes in COPD were identified by intersecting differentially expressed genes (DEGs) with genes involved in pyroptosis, apoptosis, and necroptosis after normalizing and removing the batch effect. Furthermore, GO, KEGG, PPI network, WGCNA, LASSO-COX, and ROC curves analysis were conducted to screen and verify hub genes, and the correlation between PYCARD and infiltrated immune cells was analyzed. The effect of PYCARD on respiratory tract diseases and the potential small-molecule agents for the treatment of COPD were identified. PYCARD expression was verified in the lung tissue of CS/LPS-induced COPD mice. PYCARD was a critical PANoptosis-related gene in all COPD patients. PYCARD was positively related to NOD-like receptor signaling pathway and promoted immune cell infiltration. Moreover, PYCARD was significantly activated in COPD mice mainly by targeting PANoptosis. PANoptosis-related gene PYCARD is a potential biomarker for COPD diagnosis and treatment.

3.
Chemistry ; 29(54): e202301553, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37370192

RESUMEN

Multiple-spiro/fused-heterocyclic frameworks containing indazolone are structurally unique and represent a class of potentially dominant skeletons. In this work, we successfully fulfilled Rh(III)-catalyst mediated substrate- and pH- controlled strategies to construct four novel types of complicated penta-spiro/fused-heterocyclic frameworks via C-H activation/[4+1] and [4+2] annulation cascades. This method had mild reaction conditions, a broad scope of substrates, moderate to good yields, and valuable applications, which could realize for the first time the generation of the novel di-spiro-heterocyclic and multiple fused-heterocyclic products with unique structures. More importantly, novel spiro[cyclohexane-indazolo[1,2-a]indazole] scaffold constructed by this method exhibited potent antitumor activity against a variety of refractory solid tumors and hematological malignancies in vitro. Overall, our work provided new insights into the construction of complex and diverse multiple spiro/fused-heterocyclic systems and offered novel valuable lead compounds for the discovery of antitumor drugs.


Asunto(s)
Neoplasias , Rubiaceae , Catálisis
4.
Chemistry ; 29(54): e202302677, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37732554

RESUMEN

Invited for the cover of this issue are Xuewu Liang, Hong Liu and co-workers at the Shanghai Institute of Materia Medica and Shenyang Pharmaceutical University. The image depicts how a rhodium-catalyzed methodology leads to novel penta-spiro/fused-heterocyclic frameworks with potent antitumor activity through C-H activation/[4+1] and [4+2] annulation cascades. Read the full text of the article at 10.1002/chem. 202301553.

5.
Med Res Rev ; 41(4): 2388-2422, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33763890

RESUMEN

Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a key adaptor protein that regulates the NF-κB pathway, in which MALT1 functions as a scaffold protein and protease to trigger downstream signals. The abnormal expression of MALT1 is closely associated with lymphomagenesis and other diseases, including solid tumors and autoimmune diseases. MALT1 is the only protease in the underlying pathogenesis of these diseases, and its proteolytic activity can be pharmacologically regulated. Therefore, MALT1 is a potential and promising target for anti-lymphoma and other MALT1-related disease treatments. Currently, the development of MALT1 inhibitors is still in its early stages. This review presents an overview of MALT1, particularly its X-ray structures and biological functions, and elaborates on the pathogenesis of diseases associated with its dysregulation. We then summarize previously reported MALT1 inhibitors, focusing on their molecular structure, biological activity, structure-activity relationship, and limitations. Finally, we propose future research directions to accelerate the discovery of novel MALT1 inhibitors with clinical applications. Overall, this review provides a comprehensive and systematic overview of MALT1-related research advances and serves as a theoretical basis for drug discovery and research.


Asunto(s)
Enfermedades Autoinmunes , Linfoma , Humanos , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , FN-kappa B , Proteínas de Neoplasias/genética
6.
Trop Anim Health Prod ; 52(4): 1655-1660, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31853785

RESUMEN

To further understand the genetic structure that is associated with insulin (INS) and thyroid hormones (TH), including triiodothyronine (T3) and thyroxine (T4), in Chinese Holstein cows, we conducted a genome-wide association study (GWAS) of thyroid hormones and insulin in cows. We conducted GWAS analysis on 1217 Chinese Holstein cows raised in southern China and found 19 significant single nucleotide polymorphisms (SNPs) in this study: 10 SNPs were associated with INS, 5 SNPs were associated with T3, and 4 SNPs were associated with T4. In our study, the GWAS method was used for preliminary screening on related genes of traits, and due to insufficient relevant literature, a functional analysis of genes could only be based on human studies. We observed that DGKB from Bos taurus chromosome (BTA)4 is strongly associated with insulin secretion. We found that EXOC4 gene was significantly correlated with T3 and T4 traits. Another significant SNP was located in the CYP7A1 gene, which has been confirmed to be affected by thyroid hormones.


Asunto(s)
Bovinos/genética , Estudio de Asociación del Genoma Completo/veterinaria , Insulina/sangre , Tiroxina/sangre , Triyodotironina/sangre , Animales , Bovinos/sangre , China , Femenino , Fenotipo , Polimorfismo de Nucleótido Simple , Hormonas Tiroideas
7.
Bioorg Med Chem ; 26(12): 3145-3157, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29859750

RESUMEN

The over-expression of aminopeptidase N on diverse malignant cells is associated with the tumor angiogenesis and metastasis. In this report, one new series of leucine ureido derivatives containing the triazole moiety was designed, synthesized and evaluated as APN inhibitors. Among them, compound 13v showed the best APN inhibition with an IC50 value of 0.089 ±â€¯0.007 µM, which was two orders of magnitude lower than that of bestatin (IC50 = 9.4 ±â€¯0.5 µM). Compound 13v also showed dose-dependent anti-angiogenesis activities. Even at the lower concentration (10 µM), compound 13v presented similar anti-angiogenesis activity compared with bestatin at 100 µM in both the human umbilical vein endothelial cells (HUVECs) capillary tube formation assay and the rat thoracic aorta rings test. Moreover, compared with bestatin, 13v exhibited comparable, if not better in vivo anti-metastasis activity in a mouse H22 pulmonary metastasis model.


Asunto(s)
Antineoplásicos/química , Antígenos CD13/antagonistas & inhibidores , Leucina/análogos & derivados , Inhibidores de Proteasas/química , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Sitios de Unión , Antígenos CD13/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Química Clic , Modelos Animales de Enfermedad , Células Endoteliales de la Vena Umbilical Humana , Humanos , Leucina/farmacología , Leucina/uso terapéutico , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Ratones , Simulación del Acoplamiento Molecular , Neovascularización Fisiológica/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Estructura Terciaria de Proteína , Relación Estructura-Actividad
8.
Bioorg Med Chem ; 25(9): 2666-2675, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28336407

RESUMEN

Histone deacetylase inhibitors (HDACIs) are promising in the treatment of various diseases, among which cancer treatment has achieved the most success. We have previously developed series of HDACIs combining N-hydroxycinnamamide bioactive fragment and indole bioactive fragment, which showed moderate to potent antitumor activities. Herein, further structural derivatization based on our previous structure-activity relationship (SAR) got 25 novel compounds. Most compounds showed much more potent histone deacetylases (HDACs) inhibitory activity than their parent compound 1 and even the positive control SAHA. What's more, compared with the approved HDACs inhibitor SAHA, compounds 6i, 6k, 6q and 6t displayed better in vitro antiproliferation against multiple tumor cell lines. It is worth noting that though the 4-hydroxycinnamic acid-based compound 2 showed HDAC1/3 dual selectivity, its 4-hydroxy-3-methoxycinnamic acid-based analog 6t turned out to be a pan-HDACs inhibitor as SAHA, indicating that the 3-methoxy group on the N-hydroxycinnamamide fragment could dramatically influence the HDACs isoform selectivity of this series of compounds.


Asunto(s)
Antineoplásicos/farmacología , Cinamatos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Antineoplásicos/síntesis química , Dominio Catalítico , Línea Celular Tumoral , Cinamatos/síntesis química , Inhibidores de Histona Desacetilasas/síntesis química , Humanos , Ácidos Hidroxámicos/síntesis química , Isoenzimas/antagonistas & inhibidores , Simulación del Acoplamiento Molecular
9.
Bioorg Med Chem ; 25(12): 2981-2994, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28511906

RESUMEN

As a hot topic of epigenetic studies, histone deacetylases (HDACs) are related to lots of diseases, especially cancer. Further researches indicated that different HDAC isoforms played various roles in a wide range of tumor types. Herein a novel series of HDAC inhibitors with isatin-based caps and o-phenylenediamine-based zinc binding groups have been designed and synthesized through scaffold hopping strategy. Among these compounds, the most potent compound 9n exhibited similar if not better HDAC inhibition and antiproliferative activities against multiple tumor cell lines compared with the positive control entinostat (MS-275). Additionally, compared with MS-275 (IC50 values for HDAC1, 2 and 3 were 0.163, 0.396 and 0.605µM, respectively), compound 9n with IC50 values of 0.032, 0.256 and 0.311µM for HDAC1, 2 and 3 respectively, showed a moderate HDAC1 selectivity.


Asunto(s)
Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Isatina/análogos & derivados , Isatina/farmacología , Fenilendiaminas/química , Fenilendiaminas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Histona Desacetilasa 1/antagonistas & inhibidores , Histona Desacetilasa 1/química , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Humanos , Isatina/síntesis química , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Fenilendiaminas/síntesis química , Zinc/metabolismo
10.
Bioorg Med Chem ; 24(12): 2660-72, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27137359

RESUMEN

JAKs inhibitors were widely applied in the treatment of immunodeficiency diseases, inflammation and cancers. We designed and synthesized a novel series of 4-aminopyrazole derivatives, which showed inhibitory potency against various JAKs. The in vitro protein kinase inhibition experiment indicated that compounds 17k, 17l, 17m and 17n could inhibit JAKs effectively. Among them, compound 17m possessed the highest protein kinase inhibitory rates (%) at 10µM, which were 97, 96 and 100 to JAK1, JAK2 and JAK3, respectively. Further evaluation revealed that the IC50 values of 17m against JAK1, JAK2 and JAK3 were 0.67µM, 0.098µM and 0.039µM, respectively. Moreover, western blotting results showed compound 17m could inhibit the phosphorylation of JAK2 in Hela cells effectively. The data supports the further investigation of these compounds as novel JAKs inhibitors.


Asunto(s)
Quinasas Janus/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/química , Pirazoles/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Diseño de Fármacos , Células HeLa , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Quinasas Janus/metabolismo , Simulación del Acoplamiento Molecular , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/síntesis química , Pirazoles/síntesis química , Pirimidinas/síntesis química
11.
Animals (Basel) ; 14(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38200897

RESUMEN

The objective of this study was to investigate the effects of composite alkali-stored spent Hypsizygus marmoreus substrate (SHMS) on carcass quality, rumen fermentation, and rumen microbial diversity in goats. Twenty-four 6-month-old Chuanzhong black goats with similar body weights (20 ± 5 kg) were selected and randomly divided into four groups (n = 6 per group) and received four treatments: 0% (control group, CG); 20% (low-addition group, LG); 30% (moderate-addition group, MG); and 40% (high-addition group, HG) of SHMS-replaced silage corn and oat hay. The experiment lasted for 74 days (including a 14 d adaptation period and a 60 d treatment period). The results of this study showed that MG and HG significantly improved the marble score of goat meat (p < 0.05). The flesh color score significantly increased in each group (p < 0.05). The fat color scores significantly increased in LG and MG (p < 0.05). There were no significant effects on the pH value or shear force of the longissimus dorsi in each group (p > 0.05). The cooking loss in MG was higher than that in CG (p < 0.05). The histidine and tyrosine contents in each group of muscles significantly increased (p < 0.05), with no significant effect on fatty acids (p > 0.05). The rumen pH of MG significantly decreased (p < 0.05), while the total volatile fatty acids (TVFAs) and ammoniacal nitrogen (NH3-N) increased by 44.63% and 54.50%, respectively. The addition of the SHMS altered both the alpha and beta diversities of the rumen microbiota and significant differences in the composition and structure of the four microbial communities. The dominant bacterial phylum in each group were Firmicutes and Bacteroidetes, with Prevotella 1 as the dominant bacterial genus. Correlation analysis revealed that rumen bacteria are closely related to the animal carcass quality and rumen fermentation. In the PICRUSt prediction, 21 significantly different pathways were found, and the correlation network showed a positive correlation between the Prevotella 1 and 7 metabolic pathways, while the C5-branched dibasic acid metabolism was positively correlated with nine bacteria. In summary, feeding goats with an SHMS diet can improve the carcass quality, promote rumen fermentation, and alter the microbial structure. The research results can provide a scientific reference for the utilization of SHMS as feed in the goat industry.

12.
J Med Chem ; 67(4): 2884-2906, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38349664

RESUMEN

Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) has emerged as a novel and promising therapeutic target for the treatment of lymphomas and autoimmune diseases. Herein, we reported a new class of MALT1 inhibitors featuring a novel "2-thioxo-2,3-dihydrothiazolo[4,5-d]pyrimidin-7(6H)-one" scaffold developed by structure-based drug design. Structure-activity relationship studies finally led to the discovery of MALT1 inhibitor 10m, which covalently and potently inhibited MALT1 protease with the IC50 value of 1.7 µM. 10m demonstrated potent and selective antiproliferative activity against ABC-DLBCL and powerful ability to induce HBL1 apoptosis. 10m also effectively downregulated the activities of MALT1 and its downstream signal pathways. Furthermore, 10m induced upregulation of mTOR and PI3K-Akt signals and exhibited a synergistic antitumor effect with Rapamycin in HBL1 cells. More importantly, 10m remarkably suppressed the tumor growth both in the implanted HBL1 and TMD8 xenograft models. Collectively, this work provides valuable MALT1 inhibitors with a distinct core structure.


Asunto(s)
Caspasas , Linfoma de Células B Grandes Difuso , Humanos , Caspasas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Línea Celular Tumoral , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas , Transducción de Señal , FN-kappa B/metabolismo
13.
J Med Chem ; 67(7): 5642-5661, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38547240

RESUMEN

Inflammatory bowel disease (IBD) is a multifactorial chronic inflammation of the intestine and has become a global public health concern. A farnesoid X receptor (FXR) was recently reported to play a key role in hepatic-intestinal circulation, intestinal metabolism, immunity, and microbial regulation, and thus, it becomes a promising therapeutic target for IBD. In this study, we identified a series of nonbile acid FXR agonists, in which 33 novel compounds were designed and synthesized by the structure-based drug design strategy from our previously identified hit compound. Compound 33 exhibited a potent FXR agonistic activity, high intestinal distribution, good anti-inflammatory activity, and the ability to repair the colon epithelium in a DSS-induced acute enteritis model. Based on the results of RNA-seq analysis, we further investigated the therapeutic potential of the combination of compound 33 with 5-ASA. Overall, the results indicated that compound 33 is a promising drug candidate for IBD treatment.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Receptores Citoplasmáticos y Nucleares , Humanos , Receptores Citoplasmáticos y Nucleares/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Intestinos , Colon , Mucosa Intestinal/metabolismo
14.
Bioorg Med Chem Lett ; 23(17): 4948-52, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23860593

RESUMEN

Most zinc metalloproteases are over-expressed in tumor cells and play a critical role in the genesis, development, and metastasis of tumors. Novel zinc binding groups (ZBGs) represent a novel strategy to obtain optimal potency and selectivity for zinc metalloproteases inhibitors. Here we described the design, synthesis, and biological studies of novel ß-dicarbonyl derivatives as aminopeptidase N (APN/CD13) inhibitors. The results demonstrated that some compounds exhibited moderate to good inhibitory activities against APN with compound 5c being the most potent, suggesting that 5c could serve as new lead for the future APN inhibitor development. The results further confirm our design rationale of ß-dicarbonyl moiety as a new ZBG, which may provide a new direction for the design and discovery of zinc metalloproteases inhibitors as new anti-tumor agents.


Asunto(s)
Antígenos CD13/antagonistas & inhibidores , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Antígenos CD13/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Zinc/metabolismo
15.
Acta Pharm Sin B ; 13(12): 4918-4933, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045061

RESUMEN

As a novel and promising antitumor target, AXL plays an important role in tumor growth, metastasis, immunosuppression and drug resistance of various malignancies, which has attracted extensive research interest in recent years. In this study, by employing the structure-based drug design and bioisosterism strategies, we designed and synthesized in total 54 novel AXL inhibitors featuring a fused-pyrazolone carboxamide scaffold, of which up to 20 compounds exhibited excellent AXL kinase and BaF3/TEL-AXL cell viability inhibitions. Notably, compound 59 showed a desirable AXL kinase inhibitory activity (IC50: 3.5 nmol/L) as well as good kinase selectivity, and it effectively blocked the cellular AXL signaling. In turn, compound 59 could potently inhibit BaF3/TEL-AXL cell viability (IC50: 1.5 nmol/L) and significantly suppress GAS6/AXL-mediated cancer cell invasion, migration and wound healing at the nanomolar level. More importantly, compound 59 oral administration showed good pharmacokinetic profile and in vivo antitumor efficiency, in which we observed significant AXL phosphorylation suppression, and its antitumor efficacy at 20 mg/kg (qd) was comparable to that of BGB324 at 50 mg/kg (bid), the most advanced AXL inhibitor. Taken together, this work provided a valuable lead compound as a potential AXL inhibitor for the further antitumor drug development.

16.
J Med Chem ; 65(2): 1243-1264, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33586434

RESUMEN

It remains a big challenge to develop HDAC inhibitors effective for solid tumors. Previous studies have suggested that the feedback activation of JAK-STAT3 pathway represents a key mechanism leading to resistance to HDAC inhibitors in breast cancer, suggesting the therapeutic promise of JAK/HDAC dual inhibitors. In this work, we discovered a series of pyrrolo[2,3-d]pyrimidine-based derivatives as potent JAK and HDAC dual inhibitors. Especially, compounds 15d and 15h potently inhibited JAK1/2/3 and HDAC1/6 and displayed antiproliferative and proapoptotic activities in triple-negative breast cancer cell lines. Besides, compounds 15d and 15h also diminished the activation of LIFR-JAK-STAT signaling triggered by tumor-associated fibroblasts, which suggests that these compounds could potentially overcome the drug resistance caused by the tumor microenvironment. More importantly, compound 15d effectively inhibited the tumor growth in MDA-MB-231 xenograft tumor model. Overall, this work provides valuable leads and novel antitumor mechanisms for the treatment of the SAHA-resistant triple-negative breast cancers.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de las Cinasas Janus/farmacología , Pirimidinas/química , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Relación Estructura-Actividad , Células Tumorales Cultivadas , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Med Chem ; 65(18): 11949-11969, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36053746

RESUMEN

As a complex pathogenesis driven by immune inflammatory factors and intestinal microbiota, the treatment of inflammatory bowel disease (IBD) may rely on the comprehensive regulation of these important pathogenic factors to reach a favorable therapeutic effect. In the current study, we discovered a series of imidazo[4,5-c]quinoline derivatives that potently and simultaneously inhibited two primary proinflammatory signaling pathways JAK/STAT and NF-κB. Especially, lead compound 8l showed potent inhibitory activities against interferon-stimulated genes (IC50: 3.3 nM) and NF-κB pathways (IC50: 150.7 nM) and decreased the release of various proinflammatory factors at the nanomolar level, including IL-6, IL-8, IL-1ß, TNF-α, IL-12, and IFN-γ. In vivo, 8l produced a strong anti-inflammatory activity in both dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute enteritis models and restored the structural composition of gut microbiota. Collectively, this study provided valuable lead compounds for the treatment of IBD and revealed the great anti-inflammatory potential of the simultaneous suppression of JAK/STAT and NF-κB signals.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Sulfato de Dextran , Homeostasis , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Interferones , Interleucina-12 , Interleucina-6 , Interleucina-8 , FN-kappa B/metabolismo , Transducción de Señal , Ácido Trinitrobencenosulfónico/farmacología , Ácido Trinitrobencenosulfónico/uso terapéutico , Factor de Necrosis Tumoral alfa
18.
J Med Chem ; 64(13): 9217-9237, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34181850

RESUMEN

Development of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) inhibitors is of great value and significance in the treatment of neoplastic disorders and inflammatory and autoimmune diseases. However, there is a lack of effective MALT1 inhibitors in clinic. Herein, a novel class of potent 5-oxo-1-thioxo-4,5-dihydro-1H-thiazolo[3,4-a]quinazoline-based MALT1 inhibitors and their covalent derivatives were first identified and designed through high-throughput screening. We demonstrated that compounds 15c, 15e, and 20c effectively inhibited the MALT1 protease and displayed selective cytotoxicity to activated B cell-like diffuse large B cell lymphoma with low single-digit micromolar potency. Furthermore, compound 20c specifically repressed NF-κB signaling and induced cell apoptosis in MALT1-dependent TMD8 cells in a dose-dependent manner. More importantly, 20c showed good pharmacokinetic properties and antitumor efficacy with no significant toxicity in the TMD8 xenograft tumor model. Collectively, this study provides valuable lead compounds of MALT1 inhibitors for further structural optimization and antitumor mechanism study.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Estructura Molecular , Proteína 1 de la Translocación del Linfoma del Tejido Linfático Asociado a Mucosas/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
19.
J Med Chem ; 62(8): 3898-3923, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-30901208

RESUMEN

Concurrent inhibition of Janus kinase (JAK) and histone deacetylase (HDAC) could potentially improve the efficacy of the HDAC inhibitors in the treatment of cancers and resolve the problem of HDAC inhibitor resistance in some tumors. Here, a novel series of pyrimidin-2-amino-pyrazol hydroxamate derivatives as JAK and HDAC dual inhibitors was designed, synthesized, and evaluated, among which 8m possessed potent and balanced activities against both JAK2 and HDAC6 with half-maximal inhibitory concentration at the nanomolar level. 8m exhibited improved antiproliferative and proapoptotic activities over SAHA and ruxolitinib in several hematological cell lines. Remarkably, 8m exhibited more potent antiproliferation effect than the combination of SAHA and ruxolitinib in HEL cells bearing JAK2V617F mutation. Pharmacokinetic studies in mice showed that 8m possessed good bioavailability after intraperitoneal administration. Finally, 8m showed antitumor efficacy with no significant toxicity in a HEL xenograft model. Collectively, the results confirm the therapeutic potential of JAK and HDAC dual inhibitors in hematological malignancies and provide valuable leads for further structural optimization and antitumor mechanism study.


Asunto(s)
Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/química , Quinasas Janus/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Animales , Sitios de Unión , Dominio Catalítico , Evaluación Preclínica de Medicamentos , Semivida , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/patología , Inhibidores de Histona Desacetilasas/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Humanos , Quinasas Janus/metabolismo , Masculino , Ratones , Ratones Desnudos , Simulación del Acoplamiento Molecular , Nitrilos , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/química , Pirazoles/metabolismo , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Curr Drug Targets ; 19(5): 487-500, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-27928945

RESUMEN

BACKGROUND: JAK/STAT signal pathway, a requisite part in the signaling process of growth factors and cytokines, has become attractive targets for numerous immune, inflammatory and hematopoietic diseases. OBJECTIVE: Herein, we present a review of the JAK/STAT signal pathway, the structure, biological function, mechanism of the JAKs and STATs along with a summary of the up-to-date clinical or approved JAK inhibitors which are involved in the treatment of various kinds of tumors and other immunity indications. Moreover, kinds of recently discovered JAKs inhibitors with potent activity or promising selectivity are also briefly discussed. CONCLUSION: Research and development of isoform selective JAK inhibitors has become a hot topic in this field. With the assistance of high throughput screening and rational drug design, more and more JAK inhibitors with improved selective profiles will be discovered as biological probes and even therapeutic agents.


Asunto(s)
Enfermedades Hematológicas/metabolismo , Enfermedades del Sistema Inmune/metabolismo , Inflamación/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Ensayos Clínicos como Asunto , Enfermedades Hematológicas/tratamiento farmacológico , Humanos , Enfermedades del Sistema Inmune/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Quinasas Janus/química , Quinasas Janus/metabolismo , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/uso terapéutico , Factores de Transcripción STAT/química , Factores de Transcripción STAT/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA