Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Pulm Med ; 24(1): 11, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167022

RESUMEN

BACKGROUND: Pneumocystis jirovecii pneumonia (PCP) could be fatal to patients without human immunodeficiency virus (HIV) infection. Current diagnostic methods are either invasive or inaccurate. We aimed to establish an accurate and non-invasive radiomics-based way to identify the risk of PCP infection in non-HIV patients with computed tomography (CT) manifestation of pneumonia. METHODS: This is a retrospective study including non-HIV patients hospitalized for suspected PCP from January 2010 to December 2022 in one hospital. The patients were randomized in a 7:3 ratio into training and validation cohorts. Computed tomography (CT)-based radiomics features were extracted automatically and used to construct a radiomics model. A diagnostic model with traditional clinical and CT features was also built. The area under the curve (AUC) were calculated and used to evaluate the diagnostic performance of the models. The combination of the radiomics features and serum ß-D-glucan levels was also evaluated for PCP diagnosis. RESULTS: A total of 140 patients (PCP: N = 61, non-PCP: N = 79) were randomized into training (N = 97) and validation (N = 43) cohorts. The radiomics model consisting of nine radiomic features performed significantly better (AUC = 0.954; 95% CI: 0.898-1.000) than the traditional model consisting of serum ß-D-glucan levels (AUC = 0.752; 95% CI: 0.597-0.908) in identifying PCP (P = 0.002). The combination of radiomics features and serum ß-D-glucan levels showed an accuracy of 95.8% for identifying PCP infection (positive predictive value: 95.7%, negative predictive value: 95.8%). CONCLUSIONS: Radiomics showed good diagnostic performance in differentiating PCP from other types of pneumonia in non-HIV patients. A combined diagnostic method including radiomics and serum ß-D-glucan has the potential to provide an accurate and non-invasive way to identify the risk of PCP infection in non-HIV patients with CT manifestation of pneumonia. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05701631).


Asunto(s)
Infecciones por VIH , Pneumocystis carinii , Neumonía por Pneumocystis , beta-Glucanos , Humanos , Neumonía por Pneumocystis/diagnóstico por imagen , Estudios Retrospectivos , Radiómica , Infecciones por VIH/complicaciones , Glucanos , Tomografía
2.
Infect Drug Resist ; 17: 779-790, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444771

RESUMEN

Objective: Bloodstream infection (BSI) is characterized by high mortality, especially among these increasing super-elderly patients (≥85 years), and this study was conducted to understand the species distribution, typical clinical features and risk factors for poor prognosis of super-elderly patients with BSI. Methods: Based on previous work, this retrospective study was performed by reviewing an ongoing prospective medical database in a comprehensive tertiary center in China, and all super-elderly patients with BSI in the past 6 years were enrolled in this study. Results: Out of 5944 adult-patients with BSI, there were totally 431 super-elderly patients (≥85 years old) enrolled in this study and age ≥90 years accounted for 31.1% (134/431). Among these 431 super-elderly patients with BSI, 40 patients (9.3%) were diagnosed with BSI and the remained 401 super-elderly patients (90.7%) were defined as hospital-acquired BSI. The typical feature of these super-elderly patients with BSI was the high proportion of patients with various comorbidities, such as cardiovascular disease (83.8%), ischemic cerebrovascular disease (63.3%) and pulmonary infection (61.0%). The other typical feature was that most (60.1%) of these patients had been hospitalized for long time (≥28 days) prior to the onset of BSI, and most patients had received various invasive treatments, such as indwelling central venous catheter (53.1%) and indwelling urinary catheter (47.1%). Unfortunately, due to these adverse features above, both the 7-day short-term mortality (13.2%, 57/431) and the 30-day long-term mortality (24.8%, 107/431) were high. The multivariate analysis showed that both chronic liver failure (OR 7.9, 95% CI 2.3-27.8, P=0.001) and indwelling urinary catheter (OR 2.3, 95% CI 1.1-4.7, P=0.023) were independent risk factors for 7-day short-term mortality, but not for 30-day long-term mortality. In addition, the microbiology results showed that the most common species were associated with nosocomial infection or self-opportunistic infection, such as Staphylococcus hominis (18.3%), Staphylococcus epidermidis (11.8%), Escherichia coli (9.7%), Klebsiella pneumoniae (9.3%) and Candida albicans (8.6%, fungi). Conclusion: Super-elderly patients with BSI had typical features, regardless of the pathogenic species distribution and their drug resistance, or clinical features and their risk factors for poor prognosis. These typical features deserved attention and could be used for the prevention and treatment of BSI among super-elderly patients.

3.
ACS Appl Mater Interfaces ; 16(11): 13858-13868, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38441545

RESUMEN

Large volume strain and slow kinetics are the main obstacles to the application of high-specific-capacity alloy-type metal tellurides in potassium-ion storage systems. Herein, Bi2Te3-x nanocrystals with abundant Te-vacancies embedded in nitrogen-doped porous carbon nanofibers (Bi2Te3-x@NPCNFs) are proposed to address these challenges. In particular, a hierarchical porous fiber structure can be achieved by the polyvinylpyrrolidone-etching method and is conducive to increasing the Te-vacancy concentration. The unique porous structure together with defect engineering modulates the potassium storage mechanism of Bi2Te3, suppresses structural distortion, and accelerates K+ diffusion capacity. The meticulously designed Bi2Te3-x@NPCNFs electrode exhibits ultrastable cycling stability (over 3500 stable cycles at 1.0 A g-1 with a capacity degradation of only 0.01% per cycle) and outstanding rate capability (109.5 mAh g-1 at 2.0 A g-1). Furthermore, the systematic ex situ characterization confirms that the Bi2Te3-x@NPCNFs electrode undergoes an "intercalation-conversion-step alloying" mechanism for potassium storage. Kinetic analysis and density functional theory calculations reveal the excellent pseudocapacitive performance, attractive K+ adsorption, and fast K+ diffusion ability of the Bi2Te3-x@NPCNFs electrode, which is essential for fast potassium-ion storage. Impressively, the assembled Bi2Te3-x@NPCNFs//activated-carbon potassium-ion hybrid capacitors achieve considerable energy/power density (energy density up to 112 Wh kg-1 at a power density of 1000 W kg-1) and excellent cycling stability (1600 cycles at 10.0 A g-1), indicating their potential practical applications.

4.
Nanomicro Lett ; 16(1): 77, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38190031

RESUMEN

Metal tellurides (MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity and large volume variation. The evolution mechanisms, dissolution properties, and corresponding manipulation strategies of intermediates (K-polytellurides, K-pTex) are rarely mentioned. Herein, we propose a novel structural engineering strategy to confine ultrafine CoTe2 nanodots in hierarchical nanogrid-in-nanofiber carbon substrates (CoTe2@NC@NSPCNFs) for smooth immobilization of K-pTex and highly reversible conversion of CoTe2 by manipulating the intense electrochemical reaction process. Various in situ/ex situ techniques and density functional theory calculations have been performed to clarify the formation, transformation, and dissolution of K-pTex (K5Te3 and K2Te), as well as verifying the robust physical barrier and the strong chemisorption of K5Te3 and K2Te on S, N co-doped dual-type carbon substrates. Additionally, the hierarchical nanogrid-in-nanofiber nanostructure increases the chemical anchoring sites for K-pTex, provides sufficient volume buffer space, and constructs highly interconnected conductive microcircuits, further propelling the battery reaction to new heights (3500 cycles at 2.0 A g-1). Furthermore, the full cells further demonstrate the potential for practical applications. This work provides new insights into manipulating K-pTex in the design of ultralong-cycling MTe anodes for advanced PIBs.

5.
Exp Biol Med (Maywood) ; 249: 10104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708425

RESUMEN

Seawater-drowning-induced acute lung injury (SD-ALI) is a life-threatening disorder characterized by increased alveolar-capillary permeability, an excessive inflammatory response, and refractory hypoxemia. Perfluorocarbons (PFCs) are biocompatible compounds that are chemically and biologically inert and lack toxicity as oxygen carriers, which could reduce lung injury in vitro and in vivo. The aim of our study was to explore whether the vaporization of PFCs could reduce the severity of SD-ALI in canines and investigate the underlying mechanisms. Eighteen beagle dogs were randomly divided into three groups: the seawater drowning (SW), perfluorocarbon (PFC), and control groups. The dogs in the SW group were intratracheally administered seawater to establish the animal model. The dogs in the PFC group were treated with vaporized PFCs. Probe-based confocal laser endomicroscopy (pCLE) was performed at 3 h. The blood gas, volume air index (VAI), pathological changes, and wet-to-dry (W/D) lung tissue ratios were assessed. The expression of heme oxygenase-1 (HO-1), nuclear respiratory factor-1 (NRF1), and NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasomes was determined by means of quantitative real-time polymerase chain reaction (qRT-PCR) and immunological histological chemistry. The SW group showed higher lung injury scores and W/D ratios, and lower VAI compared to the control group, and treatment with PFCs could reverse the change of lung injury score, W/D ratio and VAI. PFCs deactivated NLRP3 inflammasomes and reduced the release of caspase-1, interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) by enhancing the expression of HO-1 and NRF1. Our results suggest that the vaporization of PFCs could attenuate SD-ALI by deactivating NLRP3 inflammasomes via the HO-1/NRF1 pathway.


Asunto(s)
Lesión Pulmonar Aguda , Fluorocarburos , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Fluorocarburos/farmacología , Perros , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Agua de Mar , Masculino , Ahogamiento/metabolismo , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/metabolismo , Pulmón/efectos de los fármacos
6.
Biomed Pharmacother ; 174: 116558, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38603887

RESUMEN

Human adenovirus (HAdV) infection is a major cause of respiratory disease, yet no antiviral drugs have been approved for its treatment. Herein, we evaluated the antiviral and anti-inflammatory effects of cyclin-dependent protein kinase (CDK) inhibitor indirubin-3'-monoxime (IM) against HAdV infection in cells and a transgenic mouse model. After evaluating its cytotoxicity, cytopathic effect reduction, antiviral replication kinetics, and viral yield reduction assays were performed to assess the anti-HAdV activity of IM. Quantitative real-time polymerase chain reaction (qPCR), quantitative reverse transcription PCR (qRT-PCR), and western blotting were used to assess the effects of IM on HAdV DNA replication, transcription, and protein expression, respectively. IM significantly inhibited HAdV DNA replication as well as E1A and Hexon transcription, in addition to significantly suppressing the phosphorylation of the RNA polymerase II C-terminal domain (CTD). IM mitigated body weight loss, reduced viral burden, and lung injury, decreasing cytokine and chemokine secretion to a greater extent than cidofovir. Altogether, IM inhibits HAdV replication by downregulating CTD phosphorylation to suppress viral infection and corresponding innate immune reactions as a promising therapeutic agent.


Asunto(s)
Adenovirus Humanos , Antiinflamatorios , Antivirales , Indoles , Oximas , Replicación Viral , Indoles/farmacología , Animales , Oximas/farmacología , Humanos , Antivirales/farmacología , Adenovirus Humanos/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antiinflamatorios/farmacología , Ratones , Ratones Transgénicos , Infecciones por Adenovirus Humanos/tratamiento farmacológico , Infecciones por Adenovirus Humanos/virología , Células A549 , Citocinas/metabolismo , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA