Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 15(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36500008

RESUMEN

The aim of this work is to investigate the effect of annealing and thickness on various physical properties in Co40Fe40Yb20 thin films. X-ray diffraction (XRD) was used to determine the amorphous structure of Co40Fe40Yb20 films. The maximum surface energy of 40 nm thin films at 300 °C is 34.54 mJ/mm2. The transmittance and resistivity decreased significantly as annealing temperatures and thickness increased. At all conditions, the 10 nm film had the highest hardness. The average hardness decreased as thickness increased, as predicted by the Hall-Petch effect. The highest low-frequency alternative-current magnetic susceptibility (χac) value was discovered when the film was annealed at 200 °C with 50 nm, and the optimal resonance frequency (ƒres) was in the low frequency range, indicating that the film has good applicability in the low frequency range. At annealed 200 °C and 50 nm, the maximum saturation magnetization (Ms) was discovered. Thermal disturbance caused the Ms to decrease when the temperature was raised to 300 °C. The optimum process conditions determined in this study are 200 °C and 50 nm, with the highest Ms, χac, strong adhesion, and low resistivity, which are suitable for magnetic applications, based on magnetic properties and surface energy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA