Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
medRxiv ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38434717

RESUMEN

Polygenic risk scores (PRS) are summaries of an individual's personalized genetic risk for a trait or disease. However, PRS often perform poorly for phenotype prediction when the ancestry of the target population does not match the population in which GWAS effect sizes were estimated. For many populations this can be addressed by performing GWAS in the target population. However, admixed individuals (whose genomes can be traced to multiple ancestral populations) lie on an ancestry continuum and are not easily represented as a discrete population. Here, we propose slaPRS (stacking local ancestry PRS), which incorporates multiple ancestry GWAS to alleviate the ancestry dependence of PRS in admixed samples. slaPRS uses ensemble learning (stacking) to combine local population specific PRS in regions across the genome. We compare slaPRS to single population PRS and a method that combines single population PRS globally. In simulations, slaPRS outperformed existing approaches and reduced the ancestry dependence of PRS in African Americans. In lipid traits from African British individuals (UK Biobank), slaPRS again improved on single population PRS while performing comparably to the globally combined PRS. slaPRS provides a data-driven and flexible framework to incorporate multiple population-specific GWAS and local ancestry in samples of admixed ancestry.

2.
G3 (Bethesda) ; 13(4)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36759699

RESUMEN

Population genetics has adapted as technological advances in next-generation sequencing have resulted in an exponential increase of genetic data. A common approach to efficiently analyze genetic variation present in large sequencing data is through the allele frequency spectrum, defined as the distribution of allele frequencies in a sample. While the frequency spectrum serves to summarize patterns of genetic variation, it implicitly assumes mutation types (A→C vs C→T) as interchangeable. However, mutations of different types arise and spread due to spatial and temporal variation in forces such as mutation rate and biased gene conversion that result in heterogeneity in the distribution of allele frequencies across sites. In this work, we explore the impact of this simplification on multiple aspects of population genetic modeling. As a site's mutation rate is strongly affected by flanking nucleotides, we defined a mutation subtype by the base pair change and adjacent nucleotides (e.g. AAA→ATA) and systematically assessed the heterogeneity in the frequency spectrum across 96 distinct 3-mer mutation subtypes using n = 3556 whole-genome sequenced individuals of European ancestry. We observed substantial variation across the subtype-specific frequency spectra, with some of the variation being influenced by molecular factors previously identified for single base mutation types. Estimates of model parameters from demographic inference performed for each mutation subtype's AFS individually varied drastically across the 96 subtypes. In local patterns of variation, a combination of regional subtype composition and local genomic factors shaped the regional frequency spectrum across genomic regions. Our results illustrate how treating variants in large sequencing samples as interchangeable may confound population genetic frameworks and encourages us to consider the unique evolutionary mechanisms of analyzed polymorphisms.


Asunto(s)
Genética de Población , Tasa de Mutación , Humanos , Frecuencia de los Genes , Mutación , Nucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA