Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell ; 181(3): 574-589.e14, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32259485

RESUMEN

Sensory neurons initiate defensive reflexes that ensure airway integrity. Dysfunction of laryngeal neurons is life-threatening, causing pulmonary aspiration, dysphagia, and choking, yet relevant sensory pathways remain poorly understood. Here, we discover rare throat-innervating neurons (∼100 neurons/mouse) that guard the airways against assault. We used genetic tools that broadly cover a vagal/glossopharyngeal sensory neuron atlas to map, ablate, and control specific afferent populations. Optogenetic activation of vagal P2RY1 neurons evokes a coordinated airway defense program-apnea, vocal fold adduction, swallowing, and expiratory reflexes. Ablation of vagal P2RY1 neurons eliminates protective responses to laryngeal water and acid challenge. Anatomical mapping revealed numerous laryngeal terminal types, with P2RY1 neurons forming corpuscular endings that appose laryngeal taste buds. Epithelial cells are primary airway sentinels that communicate with second-order P2RY1 neurons through ATP. These findings provide mechanistic insights into airway defense and a general molecular/genetic roadmap for internal organ sensation by the vagus nerve.


Asunto(s)
Nervio Glosofaríngeo/fisiología , Faringe/inervación , Nervio Vago/fisiología , Vías Aferentes , Animales , Femenino , Regulación de la Expresión Génica/genética , Nervio Glosofaríngeo/metabolismo , Laringe/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Células Receptoras Sensoriales/metabolismo , Nervio Vago/metabolismo
2.
Cell ; 166(1): 209-21, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27238020

RESUMEN

Neural inputs from internal organs are essential for normal autonomic function. The vagus nerve is a key body-brain connection that monitors the digestive, cardiovascular, and respiratory systems. Within the gastrointestinal tract, vagal sensory neurons detect gut hormones and organ distension. Here, we investigate the molecular diversity of vagal sensory neurons and their roles in sensing gastrointestinal inputs. Genetic approaches allowed targeted investigation of gut-to-brain afferents involved in homeostatic responses to ingested nutrients (GPR65 neurons) and mechanical distension of the stomach and intestine (GLP1R neurons). Optogenetics, in vivo ganglion imaging, and genetically guided anatomical mapping provide direct links between neuron identity, peripheral anatomy, central anatomy, conduction velocity, response properties in vitro and in vivo, and physiological function. These studies clarify the roles of vagal afferents in mediating particular gut hormone responses. Moreover, genetic control over gut-to-brain neurons provides a molecular framework for understanding neural control of gastrointestinal physiology.


Asunto(s)
Vías Nerviosas , Neuronas/metabolismo , Células Receptoras Sensoriales/metabolismo , Nervio Vago/metabolismo , Animales , Ganglios/metabolismo , Motilidad Gastrointestinal , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Ratones , Optogenética , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Estómago/inervación
3.
Cell ; 161(3): 622-633, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25892222

RESUMEN

Breathing is essential for survival and under precise neural control. The vagus nerve is a major conduit between lung and brain required for normal respiration. Here, we identify two populations of mouse vagus nerve afferents (P2ry1, Npy2r), each a few hundred neurons, that exert powerful and opposing effects on breathing. Genetically guided anatomical mapping revealed that these neurons densely innervate the lung and send long-range projections to different brainstem targets. Npy2r neurons are largely slow-conducting C fibers, while P2ry1 neurons are largely fast-conducting A fibers that contact pulmonary endocrine cells (neuroepithelial bodies). Optogenetic stimulation of P2ry1 neurons acutely silences respiration, trapping animals in exhalation, while stimulating Npy2r neurons causes rapid, shallow breathing. Activating P2ry1 neurons did not impact heart rate or gastric pressure, other autonomic functions under vagal control. Thus, the vagus nerve contains intermingled sensory neurons constituting genetically definable labeled lines with different anatomical connections and physiological roles.


Asunto(s)
Respiración , Células Receptoras Sensoriales/fisiología , Nervio Vago/citología , Animales , Tronco Encefálico/fisiología , Pulmón/inervación , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/citología , Nervio Vago/fisiología
4.
Nature ; 630(8018): 926-934, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898273

RESUMEN

Krause corpuscles, which were discovered in the 1850s, are specialized sensory structures found within the genitalia and other mucocutaneous tissues1-4. The physiological properties and functions of Krause corpuscles have remained unclear since their discovery. Here we report the anatomical and physiological properties of Krause corpuscles of the mouse clitoris and penis and their roles in sexual behaviour. We observed a high density of Krause corpuscles in the clitoris compared with the penis. Using mouse genetic tools, we identified two distinct somatosensory neuron subtypes that innervate Krause corpuscles of both the clitoris and penis and project to a unique sensory terminal region of the spinal cord. In vivo electrophysiology and calcium imaging experiments showed that both Krause corpuscle afferent types are A-fibre rapid-adapting low-threshold mechanoreceptors, optimally tuned to dynamic, light-touch and mechanical vibrations (40-80 Hz) applied to the clitoris or penis. Functionally, selective optogenetic activation of Krause corpuscle afferent terminals evoked penile erection in male mice and vaginal contraction in female mice, while genetic ablation of Krause corpuscles impaired intromission and ejaculation of males and reduced sexual receptivity of females. Thus, Krause corpuscles of the clitoris and penis are highly sensitive mechanical vibration detectors that mediate sexually dimorphic mating behaviours.


Asunto(s)
Clítoris , Mecanorreceptores , Pene , Conducta Sexual Animal , Tacto , Vibración , Animales , Femenino , Masculino , Ratones , Clítoris/inervación , Clítoris/fisiología , Eyaculación/fisiología , Mecanorreceptores/metabolismo , Mecanorreceptores/fisiología , Optogenética , Erección Peniana/fisiología , Pene/inervación , Pene/fisiología , Conducta Sexual Animal/fisiología , Médula Espinal/fisiología , Médula Espinal/citología , Tacto/fisiología , Vagina/fisiología , Neuronas/fisiología
5.
Nature ; 627(8005): 830-838, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448588

RESUMEN

Airway integrity must be continuously maintained throughout life. Sensory neurons guard against airway obstruction and, on a moment-by-moment basis, enact vital reflexes to maintain respiratory function1,2. Decreased lung capacity is common and life-threatening across many respiratory diseases, and lung collapse can be acutely evoked by chest wall trauma, pneumothorax or airway compression. Here we characterize a neuronal reflex of the vagus nerve evoked by airway closure that leads to gasping. In vivo vagal ganglion imaging revealed dedicated sensory neurons that detect airway compression but not airway stretch. Vagal neurons expressing PVALB mediate airway closure responses and innervate clusters of lung epithelial cells called neuroepithelial bodies (NEBs). Stimulating NEBs or vagal PVALB neurons evoked gasping in the absence of airway threats, whereas ablating NEBs or vagal PVALB neurons eliminated gasping in response to airway closure. Single-cell RNA sequencing revealed that NEBs uniformly express the mechanoreceptor PIEZO2, and targeted knockout of Piezo2 in NEBs eliminated responses to airway closure. NEBs were dispensable for the Hering-Breuer inspiratory reflex, which indicated that discrete terminal structures detect airway closure and inflation. Similar to the involvement of Merkel cells in touch sensation3,4, NEBs are PIEZO2-expressing epithelial cells and, moreover, are crucial for an aspect of lung mechanosensation. These findings expand our understanding of neuronal diversity in the airways and reveal a dedicated vagal pathway that detects airway closure to help preserve respiratory function.


Asunto(s)
Pulmón , Reflejo , Respiración , Mecánica Respiratoria , Nervio Vago , Animales , Femenino , Masculino , Ratones , Células Epiteliales/metabolismo , Pulmón/citología , Pulmón/inervación , Pulmón/fisiología , Mecanorreceptores/metabolismo , Parvalbúminas/metabolismo , Reflejo/fisiología , Células Receptoras Sensoriales/metabolismo , Nervio Vago/fisiología , Rendimiento Pulmonar/fisiología , Mecánica Respiratoria/fisiología
6.
Nature ; 615(7953): 660-667, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890237

RESUMEN

Pathogen infection causes a stereotyped state of sickness that involves neuronally orchestrated behavioural and physiological changes1,2. On infection, immune cells release a 'storm' of cytokines and other mediators, many of which are detected by neurons3,4; yet, the responding neural circuits and neuro-immune interaction mechanisms that evoke sickness behaviour during naturalistic infections remain unclear. Over-the-counter medications such as aspirin and ibuprofen are widely used to alleviate sickness and act by blocking prostaglandin E2 (PGE2) synthesis5. A leading model is that PGE2 crosses the blood-brain barrier and directly engages hypothalamic neurons2. Here, using genetic tools that broadly cover a peripheral sensory neuron atlas, we instead identified a small population of PGE2-detecting glossopharyngeal sensory neurons (petrosal GABRA1 neurons) that are essential for influenza-induced sickness behaviour in mice. Ablating petrosal GABRA1 neurons or targeted knockout of PGE2 receptor 3 (EP3) in these neurons eliminates influenza-induced decreases in food intake, water intake and mobility during early-stage infection and improves survival. Genetically guided anatomical mapping revealed that petrosal GABRA1 neurons project to mucosal regions of the nasopharynx with increased expression of cyclooxygenase-2 after infection, and also display a specific axonal targeting pattern in the brainstem. Together, these findings reveal a primary airway-to-brain sensory pathway that detects locally produced prostaglandins and mediates systemic sickness responses to respiratory virus infection.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Dinoprostona , Nasofaringe , Infecciones por Orthomyxoviridae , Células Receptoras Sensoriales , Animales , Humanos , Ratones , Conducta Animal , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Tronco Encefálico/fisiopatología , Dinoprostona/metabolismo , Ingestión de Líquidos , Ingestión de Alimentos , Gripe Humana/complicaciones , Gripe Humana/metabolismo , Movimiento , Nasofaringe/inervación , Orthomyxoviridae/patogenicidad , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Células Receptoras Sensoriales/metabolismo , Tasa de Supervivencia
7.
Nature ; 618(7963): 193-200, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225986

RESUMEN

Odorants are detected as smell in the nasal epithelium of mammals by two G-protein-coupled receptor families, the odorant receptors and the trace amine-associated receptors1,2 (TAARs). TAARs emerged following the divergence of jawed and jawless fish, and comprise a large monophyletic family of receptors that recognize volatile amine odorants to elicit both intraspecific and interspecific innate behaviours such as attraction and aversion3-5. Here we report cryo-electron microscopy structures of mouse TAAR9 (mTAAR9) and mTAAR9-Gs or mTAAR9-Golf trimers in complex with ß-phenylethylamine, N,N-dimethylcyclohexylamine or spermidine. The mTAAR9 structures contain a deep and tight ligand-binding pocket decorated with a conserved D3.32W6.48Y7.43 motif, which is essential for amine odorant recognition. In the mTAAR9 structure, a unique disulfide bond connecting the N terminus to ECL2 is required for agonist-induced receptor activation. We identify key structural motifs of TAAR family members for detecting monoamines and polyamines and the shared sequence of different TAAR members that are responsible for recognition of the same odour chemical. We elucidate the molecular basis of mTAAR9 coupling to Gs and Golf by structural characterization and mutational analysis. Collectively, our results provide a structural basis for odorant detection, receptor activation and Golf coupling of an amine olfactory receptor.


Asunto(s)
Aminas Biogénicas , Odorantes , Percepción Olfatoria , Poliaminas , Receptores Odorantes , Animales , Ratones , Aminas Biogénicas/análisis , Aminas Biogénicas/química , Aminas Biogénicas/metabolismo , Microscopía por Crioelectrón , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/ultraestructura , Odorantes/análisis , Percepción Olfatoria/fisiología , Poliaminas/análisis , Poliaminas/química , Poliaminas/metabolismo , Receptores de Amina Biogénica/química , Receptores de Amina Biogénica/genética , Receptores de Amina Biogénica/metabolismo , Receptores de Amina Biogénica/ultraestructura , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/ultraestructura , Olfato/fisiología , Espermidina/análisis , Espermidina/química , Espermidina/metabolismo
8.
Nature ; 609(7926): 320-326, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36045291

RESUMEN

The nervous system uses various coding strategies to process sensory inputs. For example, the olfactory system uses large receptor repertoires and is wired to recognize diverse odours, whereas the visual system provides high acuity of object position, form and movement1-5. Compared to external sensory systems, principles that underlie sensory processing by the interoceptive nervous system remain poorly defined. Here we developed a two-photon calcium imaging preparation to understand internal organ representations in the nucleus of the solitary tract (NTS), a sensory gateway in the brainstem that receives vagal and other inputs from the body. Focusing on gut and upper airway stimuli, we observed that individual NTS neurons are tuned to detect signals from particular organs and are topographically organized on the basis of body position. Moreover, some mechanosensory and chemosensory inputs from the same organ converge centrally. Sensory inputs engage specific NTS domains with defined locations, each containing heterogeneous cell types. Spatial representations of different organs are further sharpened in the NTS beyond what is achieved by vagal axon sorting alone, as blockade of brainstem inhibition broadens neural tuning and disorganizes visceral representations. These findings reveal basic organizational features used by the brain to process interoceptive inputs.


Asunto(s)
Tronco Encefálico , Sensación , Tronco Encefálico/anatomía & histología , Tronco Encefálico/citología , Tronco Encefálico/fisiología , Calcio/metabolismo , Postura/fisiología , Sensación/fisiología , Células Receptoras Sensoriales/fisiología , Núcleo Solitario/anatomía & histología , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Nervio Vago/fisiología
9.
Nature ; 592(7853): 262-266, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33658716

RESUMEN

Internal state controls olfaction through poorly understood mechanisms. Odours that represent food, mates, competitors and predators activate parallel neural circuits that may be flexibly shaped by physiological need to alter behavioural outcome1. Here we identify a neuronal mechanism by which hunger selectively promotes attraction to food odours over other olfactory cues. Optogenetic activation of hypothalamic agouti-related peptide (AGRP) neurons enhances attraction to food odours but not to pheromones, and branch-specific activation and inhibition reveal a key role for projections to the paraventricular thalamus. Mice that lack neuropeptide Y (NPY) or NPY receptor type 5 (NPY5R) fail to prefer food odours over pheromones after fasting, and hunger-dependent food-odour attraction is restored by cell-specific NPY rescue in AGRP neurons. Furthermore, acute NPY injection immediately rescues food-odour preference without additional training, indicating that NPY is required for reading olfactory circuits during behavioural expression rather than writing olfactory circuits during odour learning. Together, these findings show that food-odour-responsive neurons comprise an olfactory subcircuit that listens to hunger state through thalamic NPY release, and more generally, provide mechanistic insights into how internal state regulates behaviour.


Asunto(s)
Alimentos , Hambre/fisiología , Neuropéptido Y/metabolismo , Odorantes , Proteína Relacionada con Agouti/metabolismo , Animales , Femenino , Hipotálamo/citología , Hipotálamo/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Optogenética , Feromonas/metabolismo , Receptores de Neuropéptido Y/metabolismo
11.
Nature ; 541(7636): 176-181, 2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28002412

RESUMEN

Respiratory dysfunction is a notorious cause of perinatal mortality in infants and sleep apnoea in adults, but the mechanisms of respiratory control are not clearly understood. Mechanical signals transduced by airway-innervating sensory neurons control respiration; however, the physiological significance and molecular mechanisms of these signals remain obscured. Here we show that global and sensory neuron-specific ablation of the mechanically activated ion channel Piezo2 causes respiratory distress and death in newborn mice. Optogenetic activation of Piezo2+ vagal sensory neurons causes apnoea in adult mice. Moreover, induced ablation of Piezo2 in sensory neurons of adult mice causes decreased neuronal responses to lung inflation, an impaired Hering-Breuer mechanoreflex, and increased tidal volume under normal conditions. These phenotypes are reproduced in mice lacking Piezo2 in the nodose ganglion. Our data suggest that Piezo2 is an airway stretch sensor and that Piezo2-mediated mechanotransduction within various airway-innervating sensory neurons is critical for establishing efficient respiration at birth and maintaining normal breathing in adults.


Asunto(s)
Apnea/fisiopatología , Canales Iónicos/metabolismo , Pulmón/fisiología , Pulmón/fisiopatología , Mecanotransducción Celular/fisiología , Reflejo/fisiología , Animales , Animales Recién Nacidos , Apnea/genética , Muerte , Femenino , Canales Iónicos/deficiencia , Canales Iónicos/genética , Masculino , Mecanotransducción Celular/genética , Ratones , Ganglio Nudoso/metabolismo , Reflejo/genética , Respiración , Células Receptoras Sensoriales/metabolismo , Volumen de Ventilación Pulmonar
12.
Nature ; 507(7491): 238-42, 2014 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-24487620

RESUMEN

Hunger is a hard-wired motivational state essential for survival. Agouti-related peptide (AgRP)-expressing neurons in the arcuate nucleus (ARC) at the base of the hypothalamus are crucial to the control of hunger. They are activated by caloric deficiency and, when naturally or artificially stimulated, they potently induce intense hunger and subsequent food intake. Consistent with their obligatory role in regulating appetite, genetic ablation or chemogenetic inhibition of AgRP neurons decreases feeding. Excitatory input to AgRP neurons is important in caloric-deficiency-induced activation, and is notable for its remarkable degree of caloric-state-dependent synaptic plasticity. Despite the important role of excitatory input, its source(s) has been unknown. Here, through the use of Cre-recombinase-enabled, cell-specific neuron mapping techniques in mice, we have discovered strong excitatory drive that, unexpectedly, emanates from the hypothalamic paraventricular nucleus, specifically from subsets of neurons expressing thyrotropin-releasing hormone (TRH) and pituitary adenylate cyclase-activating polypeptide (PACAP, also known as ADCYAP1). Chemogenetic stimulation of these afferent neurons in sated mice markedly activates AgRP neurons and induces intense feeding. Conversely, acute inhibition in mice with caloric-deficiency-induced hunger decreases feeding. Discovery of these afferent neurons capable of triggering hunger advances understanding of how this intense motivational state is regulated.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Hambre/fisiología , Vías Nerviosas/fisiología , Neuronas/metabolismo , Núcleo Hipotalámico Paraventricular/fisiología , Proteína Relacionada con Agouti/deficiencia , Animales , Apetito/efectos de los fármacos , Apetito/fisiología , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Mapeo Encefálico , Rastreo Celular , Clozapina/análogos & derivados , Clozapina/farmacología , Dependovirus/genética , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Femenino , Privación de Alimentos , Hambre/efectos de los fármacos , Integrasas/metabolismo , Masculino , Ratones , Vías Nerviosas/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neuronas/efectos de los fármacos , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Fragmentos de Péptidos/deficiencia , Fragmentos de Péptidos/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Virus de la Rabia/genética , Respuesta de Saciedad/fisiología , Hormona Liberadora de Tirotropina/metabolismo
13.
Nature ; 502(7471): 368-71, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24089208

RESUMEN

Animals display a repertoire of different social behaviours. Appropriate behavioural responses depend on sensory input received during social interactions. In mice, social behaviour is driven by pheromones, chemical signals that encode information related to age, sex and physiological state. However, although mice show different social behaviours towards adults, juveniles and neonates, sensory cues that enable specific recognition of juvenile mice are unknown. Here we describe a juvenile pheromone produced by young mice before puberty, termed exocrine-gland secreting peptide 22 (ESP22). ESP22 is secreted from the lacrimal gland and released into tears of 2- to 3-week-old mice. Upon detection, ESP22 activates high-affinity sensory neurons in the vomeronasal organ, and downstream limbic neurons in the medial amygdala. Recombinant ESP22, painted on mice, exerts a powerful inhibitory effect on adult male mating behaviour, which is abolished in knockout mice lacking TRPC2, a key signalling component of the vomeronasal organ. Furthermore, knockout of TRPC2 or loss of ESP22 production results in increased sexual behaviour of adult males towards juveniles, and sexual responses towards ESP22-deficient juveniles are suppressed by ESP22 painting. Thus, we describe a pheromone of sexually immature mice that controls an innate social behaviour, a response pathway through the accessory olfactory system and a new role for vomeronasal organ signalling in inhibiting sexual behaviour towards young. These findings provide a molecular framework for understanding how a sensory system can regulate behaviour.


Asunto(s)
Feromonas/metabolismo , Conducta Sexual Animal , Maduración Sexual , Órgano Vomeronasal/metabolismo , Envejecimiento , Amígdala del Cerebelo/citología , Animales , Femenino , Aparato Lagrimal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Feromonas/farmacología , Células Receptoras Sensoriales/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Canales Catiónicos TRPC/deficiencia , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Lágrimas/metabolismo , Órgano Vomeronasal/citología
14.
Annu Rev Physiol ; 76: 151-75, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-23988175

RESUMEN

Mammalian pheromones control a myriad of innate social behaviors and acutely regulate hormone levels. Responses to pheromones are highly robust, reproducible, and stereotyped and likely involve developmentally predetermined neural circuits. Here, I review several facets of pheromone transduction in mammals, including (a) chemosensory receptors and signaling components of the main olfactory epithelium and vomeronasal organ involved in pheromone detection; (b) pheromone-activated neural circuits subject to sex-specific and state-dependent modulation; and (c) the striking chemical diversity of mammalian pheromones, which range from small, volatile molecules and sulfated steroids to large families of proteins. Finally, I review (d) molecular mechanisms underlying various behavioral and endocrine responses, including modulation of puberty and estrous; control of reproduction, aggression, suckling, and parental behaviors; individual recognition; and distinguishing of own species from predators, competitors, and prey. Deconstruction of pheromone transduction mechanisms provides a critical foundation for understanding how odor response pathways generate instinctive behaviors.


Asunto(s)
Mamíferos/fisiología , Feromonas/fisiología , Animales , Conducta/fisiología , Conducta Animal/fisiología , Humanos , Odorantes , Bulbo Olfatorio/fisiología , Mucosa Olfatoria/fisiología , Vías Olfatorias/anatomía & histología , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Feromonas Humanas/fisiología , Olfato/fisiología
15.
Proc Natl Acad Sci U S A ; 110(48): 19579-84, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218586

RESUMEN

Carrion smell is strongly repugnant to humans and triggers distinct innate behaviors in many other species. This smell is mainly carried by two small aliphatic diamines, putrescine and cadaverine, which are generated by bacterial decarboxylation of the basic amino acids ornithine and lysine. Depending on the species, these diamines may also serve as feeding attractants, oviposition attractants, or social cues. Behavioral responses to diamines have not been investigated in zebrafish, a powerful model system for studying vertebrate olfaction. Furthermore, olfactory receptors that detect cadaverine and putrescine have not been identified in any species so far. Here, we show robust olfactory-mediated avoidance behavior of zebrafish to cadaverine and related diamines, and concomitant activation of sparse olfactory sensory neurons by these diamines. The large majority of neurons activated by low concentrations of cadaverine expresses a particular olfactory receptor, trace amine-associated receptor 13c (TAAR13c). Structure-activity analysis indicates TAAR13c to be a general diamine sensor, with pronounced selectivity for odd chains of medium length. This receptor can also be activated by decaying fish extracts, a physiologically relevant source of diamines. The identification of a sensitive zebrafish olfactory receptor for these diamines provides a molecular basis for studying neural circuits connecting sensation, perception, and innate behavior.


Asunto(s)
Conducta Apetitiva/efectos de los fármacos , Cadaverina/metabolismo , Putrescina/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Receptores Odorantes/fisiología , Pez Cebra/fisiología , Animales , Western Blotting , Cadaverina/química , Cadaverina/farmacología , Cromatografía Liquida , Clonación Molecular , Inmunohistoquímica , Espectrometría de Masas , Filogenia , Putrescina/química , Putrescina/farmacología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
16.
Proc Natl Acad Sci U S A ; 109(33): 13410-5, 2012 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-22837392

RESUMEN

Some chemoreceptors of the trace amine-associated receptor (TAAR) family detect innately aversive odors and are proposed to activate hardwired olfactory circuits. However, the wiring of TAAR neurons, the regulatory mechanisms of Taar gene choice, and the subcellular localization of TAAR proteins remain unknown. Here, we reveal similarities between neurons expressing TAARs and odorant receptors (ORs), but also unexpected differences. Like ORs, TAARs seem to be monoallelically expressed and localized both in cilia, the site of odor detection, and in axons, where they may participate in guidance. TAAR neurons project to discrete glomeruli predominantly localized to a confined bulb region. Taar expression involves different regulatory logic than OR expression, as neurons choosing a Taar5 knockout allele frequently express a second Taar without silencing the deleted allele. Moreover, the epigenetic signature of OR gene choice is absent from Taar genes. The unique molecular and anatomical features of the TAAR neurons suggest that they constitute a distinct olfactory subsystem.


Asunto(s)
Dendritas/metabolismo , Bulbo Olfatorio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/metabolismo , Alelos , Animales , Axones/metabolismo , Eliminación de Gen , Heterocromatina/metabolismo , Ratones , Ratones Endogámicos C57BL , Familia de Multigenes , Moléculas de Adhesión de Célula Nerviosa/metabolismo
17.
Proc Natl Acad Sci U S A ; 108(27): 11235-40, 2011 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21690383

RESUMEN

Predator-prey relationships provide a classic paradigm for the study of innate animal behavior. Odors from carnivores elicit stereotyped fear and avoidance responses in rodents, although sensory mechanisms involved are largely unknown. Here, we identified a chemical produced by predators that activates a mouse olfactory receptor and produces an innate behavioral response. We purified this predator cue from bobcat urine and identified it to be a biogenic amine, 2-phenylethylamine. Quantitative HPLC analysis across 38 mammalian species indicates enriched 2-phenylethylamine production by numerous carnivores, with some producing >3,000-fold more than herbivores examined. Calcium imaging of neuronal responses in mouse olfactory tissue slices identified dispersed carnivore odor-selective sensory neurons that also responded to 2-phenylethylamine. Two prey species, rat and mouse, avoid a 2-phenylethylamine odor source, and loss-of-function studies involving enzymatic depletion of 2-phenylethylamine from a carnivore odor indicate it to be required for full avoidance behavior. Thus, rodent olfactory sensory neurons and chemosensory receptors have the capacity for recognizing interspecies odors. One such cue, carnivore-derived 2-phenylethylamine, is a key component of a predator odor blend that triggers hard-wired aversion circuits in the rodent brain. These data show how a single, volatile chemical detected in the environment can drive an elaborate danger-associated behavioral response in mammals.


Asunto(s)
Carnívoros/fisiología , Odorantes/análisis , Conducta Predatoria/fisiología , Animales , Reacción de Prevención/fisiología , Conducta Animal/fisiología , Carnívoros/orina , Lynx/orina , Masculino , Ratones , Neuronas Receptoras Olfatorias/fisiología , Fenetilaminas/orina , Ratas , Ratas Sprague-Dawley
18.
Science ; 385(6708): eadk1679, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088603

RESUMEN

Neuroimmune cross-talk participates in intestinal tissue homeostasis and host defense. However, the matrix of interactions between arrays of molecularly defined neuron subsets and of immunocyte lineages remains unclear. We used a chemogenetic approach to activate eight distinct neuronal subsets, assessing effects by deep immunophenotyping, microbiome profiling, and immunocyte transcriptomics in intestinal organs. Distinct immune perturbations followed neuronal activation: Nitrergic neurons regulated T helper 17 (TH17)-like cells, and cholinergic neurons regulated neutrophils. Nociceptor neurons, expressing Trpv1, elicited the broadest immunomodulation, inducing changes in innate lymphocytes, macrophages, and RORγ+ regulatory T (Treg) cells. Neuroanatomical, genetic, and pharmacological follow-up showed that Trpv1+ neurons in dorsal root ganglia decreased Treg cell numbers via the neuropeptide calcitonin gene-related peptide (CGRP). Given the role of these neurons in nociception, these data potentially link pain signaling with gut Treg cell function.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Ganglios Espinales , Neuroinmunomodulación , Nociceptores , Linfocitos T Reguladores , Canales Catiónicos TRPV , Células Th17 , Animales , Ratones , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/genética , Neuronas Colinérgicas/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Microbioma Gastrointestinal , Intestinos/inmunología , Intestinos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Nocicepción , Nociceptores/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células Th17/inmunología , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética
19.
Mol Metab ; 84: 101945, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653401

RESUMEN

OBJECTIVE: Glucose dependent insulinotropic polypeptide (GIP) is well established as an incretin hormone, boosting glucose-dependent insulin secretion. However, whilst anorectic actions of its sister-incretin glucagon-like peptide-1 (GLP-1) are well established, a physiological role for GIP in appetite regulation is controversial, despite the superior weight loss seen in preclinical models and humans with GLP-1/GIP dual receptor agonists compared with GLP-1R agonism alone. METHODS: We generated a mouse model in which GIP expressing K-cells can be activated through hM3Dq Designer Receptor Activated by Designer Drugs (DREADD, GIP-Dq) to explore physiological actions of intestinally-released GIP. RESULTS: In lean mice, Dq-stimulation of GIP expressing cells increased plasma GIP to levels similar to those found postprandially. The increase in GIP was associated with improved glucose tolerance, as expected, but also triggered an unexpected robust inhibition of food intake. Validating that this represented a response to intestinally-released GIP, the suppression of food intake was prevented by injecting mice peripherally or centrally with antagonistic GIPR-antibodies, and was reproduced in an intersectional model utilising Gip-Cre/Villin-Flp to limit Dq transgene expression to K-cells in the intestinal epithelium. The effects of GIP cell activation were maintained in diet induced obese mice, in which chronic K-cell activation reduced food intake and attenuated body weight gain. CONCLUSIONS: These studies establish a physiological gut-brain GIP-axis regulating food intake in mice, adding to the multi-faceted metabolic effects of GIP which need to be taken into account when developing GIPR-targeted therapies for obesity and diabetes.


Asunto(s)
Peso Corporal , Ingestión de Alimentos , Polipéptido Inhibidor Gástrico , Animales , Polipéptido Inhibidor Gástrico/metabolismo , Ratones , Masculino , Ratones Endogámicos C57BL , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de la Hormona Gastrointestinal/genética , Péptido 1 Similar al Glucagón/metabolismo , Mucosa Intestinal/metabolismo , Obesidad/metabolismo , Incretinas/metabolismo
20.
Curr Biol ; 34(6): 1206-1221.e6, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38320553

RESUMEN

The physiological performance of any sensory organ is determined by its anatomy and physical properties. Consequently, complex sensory structures with elaborate features have evolved to optimize stimulus detection. Understanding these structures and their physical nature forms the basis for mechanistic insights into sensory function. Despite its crucial role as a sensor for pheromones and other behaviorally instructive chemical cues, the vomeronasal organ (VNO) remains a poorly characterized mammalian sensory structure. Fundamental principles of its physico-mechanical function, including basic aspects of stimulus sampling, remain poorly explored. Here, we revisit the classical vasomotor pump hypothesis of vomeronasal stimulus uptake. Using advanced anatomical, histological, and physiological methods, we demonstrate that large parts of the lateral mouse VNO are composed of smooth muscle. Vomeronasal smooth muscle tissue comprises two subsets of fibers with distinct topography, structure, excitation-contraction coupling, and, ultimately, contractile properties. Specifically, contractions of a large population of noradrenaline-sensitive cells mediate both transverse and longitudinal lumen expansion, whereas cholinergic stimulation targets an adluminal group of smooth muscle fibers. The latter run parallel to the VNO's rostro-caudal axis and are ideally situated to mediate antagonistic longitudinal constriction of the lumen. This newly discovered arrangement implies a novel mode of function. Single-cell transcriptomics and pharmacological profiling reveal the receptor subtypes involved. Finally, 2D/3D tomography provides non-invasive insight into the intact VNO's anatomy and mechanics, enables measurement of luminal fluid volume, and allows an assessment of relative volume change upon noradrenergic stimulation. Together, we propose a revised conceptual framework for mouse vomeronasal pumping and, thus, stimulus sampling.


Asunto(s)
Órgano Vomeronasal , Ratones , Animales , Órgano Vomeronasal/fisiología , Mamíferos , Feromonas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA