Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Public Health ; 24(1): 1171, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671366

RESUMEN

BACKGROUND: When formulating and evaluating COVID-19 vaccination strategies, an emphasis has been placed on preventing severe disease that overburdens healthcare systems and leads to mortality. However, more conventional outcomes such as quality-adjusted life years (QALYs) and inequality indicators are warranted as additional information for policymakers. METHODS: We adopted a mathematical transmission model to describe the infectious disease dynamics of SARS-COV-2, including disease mortality and morbidity, and to evaluate (non)pharmaceutical interventions. Therefore, we considered temporal immunity levels, together with the distinct transmissibility of variants of concern (VOCs) and their corresponding vaccine effectiveness. We included both general and age-specific characteristics related to SARS-CoV-2 vaccination. Our scenario study is informed by data from Belgium, focusing on the period from August 2021 until February 2022, when vaccination for children aged 5-11 years was initially not yet licensed and first booster doses were administered to adults. More specifically, we investigated the potential impact of an earlier vaccination programme for children and increased or reduced historical adult booster dose uptake. RESULTS: Through simulations, we demonstrate that increasing vaccine uptake in children aged 5-11 years in August-September 2021 could have led to reduced disease incidence and ICU occupancy, which was an essential indicator for implementing non-pharmaceutical interventions and maintaining healthcare system functionality. However, an enhanced booster dose regimen for adults from November 2021 onward could have resulted in more substantial cumulative QALY gains, particularly through the prevention of elevated levels of infection and disease incidence associated with the emergence of Omicron VOC. In both scenarios, the need for non-pharmaceutical interventions could have decreased, potentially boosting economic activity and mental well-being. CONCLUSIONS: When calculating the impact of measures to mitigate disease spread in terms of life years lost due to COVID-19 mortality, we highlight the impact of COVID-19 on the health-related quality of life of survivors. Our study underscores that disease-related morbidity could constitute a significant part of the overall health burden. Our quantitative findings depend on the specific setup of the interventions under review, which is open to debate or should be contextualised within future situations.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Años de Vida Ajustados por Calidad de Vida , SARS-CoV-2 , Humanos , COVID-19/prevención & control , COVID-19/epidemiología , COVID-19/mortalidad , Bélgica/epidemiología , Niño , Vacunas contra la COVID-19/administración & dosificación , Preescolar , Adulto , Factores de Edad , Modelos Teóricos , Adolescente , Programas de Inmunización , Persona de Mediana Edad , Vacunación/estadística & datos numéricos , Anciano , Adulto Joven
2.
PLoS Comput Biol ; 18(8): e1009980, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35994497

RESUMEN

Superspreading events play an important role in the spread of several pathogens, such as SARS-CoV-2. While the basic reproduction number of the original Wuhan SARS-CoV-2 is estimated to be about 3 for Belgium, there is substantial inter-individual variation in the number of secondary cases each infected individual causes-with most infectious individuals generating no or only a few secondary cases, while about 20% of infectious individuals is responsible for 80% of new infections. Multiple factors contribute to the occurrence of superspreading events: heterogeneity in infectiousness, individual variations in susceptibility, differences in contact behavior, and the environment in which transmission takes place. While superspreading has been included in several infectious disease transmission models, research into the effects of different forms of superspreading on the spread of pathogens remains limited. To disentangle the effects of infectiousness-related heterogeneity on the one hand and contact-related heterogeneity on the other, we implemented both forms of superspreading in an individual-based model describing the transmission and spread of SARS-CoV-2 in a synthetic Belgian population. We considered its impact on viral spread as well as on epidemic resurgence after a period of social distancing. We found that the effects of superspreading driven by heterogeneity in infectiousness are different from the effects of superspreading driven by heterogeneity in contact behavior. On the one hand, a higher level of infectiousness-related heterogeneity results in a lower risk of an outbreak persisting following the introduction of one infected individual into the population. Outbreaks that did persist led to fewer total cases and were slower, with a lower peak which occurred at a later point in time, and a lower herd immunity threshold. Finally, the risk of resurgence of an outbreak following a period of lockdown decreased. On the other hand, when contact-related heterogeneity was high, this also led to fewer cases in total during persistent outbreaks, but caused outbreaks to be more explosive in regard to other aspects (such as higher peaks which occurred earlier, and a higher herd immunity threshold). Finally, the risk of resurgence of an outbreak following a period of lockdown increased. We found that these effects were conserved when testing combinations of infectiousness-related and contact-related heterogeneity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Número Básico de Reproducción , COVID-19/epidemiología , Control de Enfermedades Transmisibles/métodos , Brotes de Enfermedades , Humanos
3.
PLoS Comput Biol ; 17(3): e1008688, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690626

RESUMEN

Outbreaks of SARS-CoV-2 are threatening the health care systems of several countries around the world. The initial control of SARS-CoV-2 epidemics relied on non-pharmaceutical interventions, such as social distancing, teleworking, mouth masks and contact tracing. However, as pre-symptomatic transmission remains an important driver of the epidemic, contact tracing efforts struggle to fully control SARS-CoV-2 epidemics. Therefore, in this work, we investigate to what extent the use of universal testing, i.e., an approach in which we screen the entire population, can be utilized to mitigate this epidemic. To this end, we rely on PCR test pooling of individuals that belong to the same households, to allow for a universal testing procedure that is feasible with the limited testing capacity. We evaluate two isolation strategies: on the one hand pool isolation, where we isolate all individuals that belong to a positive PCR test pool, and on the other hand individual isolation, where we determine which of the individuals that belong to the positive PCR pool are positive, through an additional testing step. We evaluate this universal testing approach in the STRIDE individual-based epidemiological model in the context of the Belgian COVID-19 epidemic. As the organisation of universal testing will be challenging, we discuss the different aspects related to sample extraction and PCR testing, to demonstrate the feasibility of universal testing when a decentralized testing approach is used. We show through simulation, that weekly universal testing is able to control the epidemic, even when many of the contact reductions are relieved. Finally, our model shows that the use of universal testing in combination with stringent contact reductions could be considered as a strategy to eradicate the virus.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/epidemiología , COVID-19/prevención & control , Epidemias/prevención & control , SARS-CoV-2 , Bélgica/epidemiología , COVID-19/transmisión , Prueba de Ácido Nucleico para COVID-19/estadística & datos numéricos , Prueba de Ácido Nucleico para COVID-19/tendencias , Biología Computacional , Simulación por Computador , Trazado de Contacto/métodos , Trazado de Contacto/estadística & datos numéricos , Trazado de Contacto/tendencias , Reacciones Falso Negativas , Composición Familiar , Estudios de Factibilidad , Humanos , Tamizaje Masivo/métodos , Tamizaje Masivo/estadística & datos numéricos , Tamizaje Masivo/tendencias , Modelos Estadísticos , Cuarentena/métodos , Cuarentena/estadística & datos numéricos , Cuarentena/tendencias , Viaje
4.
Bioinformatics ; 35(10): 1763-1765, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30295730

RESUMEN

SUMMARY: Virus sequence data are an essential resource for reconstructing spatiotemporal dynamics of viral spread as well as to inform treatment and prevention strategies. However, the potential benefit of these applications critically depends on accurate and correctly annotated alignments of genetically heterogeneous data. VIRULIGN was built for fast codon-correct alignments of large datasets, with standardized and formalized genome annotation and various alignment export formats. AVAILABILITY AND IMPLEMENTATION: VIRULIGN is freely available at https://github.com/rega-cev/virulign as an open source software project. SUPPLEMENTARY INFORMATION: Supplementary data is available at Bioinformatics online.


Asunto(s)
Genoma Viral , Programas Informáticos , Codón
5.
Artículo en Inglés | MEDLINE | ID: mdl-31109980

RESUMEN

Viral pathogens causing global disease burdens are often characterized by high rates of evolutionary changes. The extensive viral diversity at baseline can shorten the time to escape from therapeutic or immune selective pressure and alter mutational pathways. The impact of genotypic background on the barrier to resistance can be difficult to capture, particularly for agents in experimental stages or that are recently approved or expanded into new patient populations. We developed an evolutionary model-based counting method to quickly quantify the population genetic potential to resistance and assess population differences. We demonstrate its applicability to HIV-1 integrase inhibitors, as their increasing use globally contrasts with limited availability of non-B subtype resistant sequence data and corresponding knowledge gap. A large sequence data set encompassing most prevailing HIV-1 subtypes and resistance-associated mutations of currently approved integrase inhibitors was investigated. A complex interplay between codon predominance, polymorphisms, and associated evolutionary costs resulted in a subtype-dependent varied genetic potential for 15 resistance mutations against integrase inhibitors. While we confirm the lower genetic barrier of subtype B for G140S, we convincingly discard a similar effect previously suggested for G140C. A supplementary analysis for HIV-1 reverse transcriptase inhibitors identified a lower genetic barrier for K65R in subtype C through differential codon usage not reported before. To aid evolutionary interpretations of genomic differences for antiviral strategies, we advanced existing counting methods with increased sensitivity to identify subtype dependencies of resistance emergence. Future applications include novel HIV-1 drug classes or vaccines, as well as other viral pathogens.


Asunto(s)
Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/genética , Integrasas/metabolismo , Genotipo , Infecciones por VIH/virología , Transcriptasa Inversa del VIH/metabolismo , Humanos , Mutación/efectos de los fármacos , Mutación/genética , Polimorfismo Genético/efectos de los fármacos , Polimorfismo Genético/genética
6.
Spat Spatiotemporal Epidemiol ; 49: 100654, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38876557

RESUMEN

BACKGROUND: Spatial modeling of disease risk using primary care registry data is promising for public health surveillance. However, it remains unclear to which extent challenges such as spatially disproportionate sampling and practice-specific reporting variation affect statistical inference. METHODS: Using lower respiratory tract infection data from the INTEGO registry, modeled with a logistic model incorporating patient characteristics, a spatially structured random effect at municipality level, and an unstructured random effect at practice level, we conducted a case and simulation study to assess the impact of these challenges on spatial trend estimation. RESULTS: Even with spatial imbalance and practice-specific reporting variation, the model performed well. Performance improved with increasing spatial sample balance and decreasing practice-specific variation. CONCLUSION: Our findings indicate that, with correction for reporting efforts, primary care registries are valuable for spatial trend estimation. The diversity of patient locations within practice populations plays an important role.


Asunto(s)
Atención Primaria de Salud , Sistema de Registros , Humanos , Atención Primaria de Salud/estadística & datos numéricos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Análisis Espacial , Infecciones del Sistema Respiratorio/epidemiología , Anciano , Adolescente , Modelos Logísticos , Niño , Modelos Estadísticos , Adulto Joven , Preescolar
7.
Epidemics ; 44: 100701, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37379776

RESUMEN

Mathematical modelling studies have shown that repetitive screening can be used to mitigate SARS-CoV-2 transmission in primary schools while keeping schools open. However, not much is known about how transmission progresses within schools and whether there is a risk of importation to households. During the academic year 2020-2021, a prospective surveillance study using repetitive screening was conducted in a primary school and associated households in Liège (Belgium). SARS-CoV-2 screening was performed via throat washing either once or twice a week. We used genomic and epidemiological data to reconstruct the observed school outbreaks using two different models. The outbreaker2 model combines information on the generation time and contact patterns with a model of sequence evolution. For comparison we also used SCOTTI, a phylogenetic model based on the structured coalescent. In addition, we performed a simulation study to investigate how the accuracy of estimated positivity rates in a school depends on the proportion of a school that is sampled in a repetitive screening strategy. We found no difference in SARS-CoV-2 positivity between children and adults and children were not more often asymptomatic compared to adults. Both models for outbreak reconstruction revealed that transmission occurred mainly within the school environment. Uncertainty in outbreak reconstruction was lowest when including genomic as well as epidemiological data. We found that observed weekly positivity rates are a good approximation to the true weekly positivity rate, especially in children, even when only 25% of the school population is sampled. These results indicate that, in addition to reducing infections as shown in modelling studies, repetitive screening in school settings can lead to a better understanding of the extent of transmission in schools during a pandemic and importation risk at the community level.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Humanos , SARS-CoV-2/genética , Filogenia , Estudios Prospectivos , COVID-19/epidemiología , Genómica , Brotes de Enfermedades , Instituciones Académicas
8.
Front Microbiol ; 13: 889643, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722303

RESUMEN

Emerging infectious diseases are one of the main threats to public health, with the potential to cause a pandemic when the infectious agent manages to spread globally. The first major pandemic to appear in the 20th century was the influenza pandemic of 1918, caused by the influenza A H1N1 strain that is characterized by a high fatality rate. Another major pandemic was caused by the human immunodeficiency virus (HIV), that started early in the 20th century and remained undetected until 1981. The ongoing HIV pandemic demonstrated a high mortality and morbidity rate, with discrepant impacts in different regions around the globe. The most recent major pandemic event, is the ongoing pandemic of COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has caused over 5.7 million deaths since its emergence, 2 years ago. The aim of this work is to highlight the main determinants of the emergence, epidemic response and available countermeasures of these three pandemics, as we argue that such knowledge is paramount to prepare for the next pandemic. We analyse these pandemics' historical and epidemiological contexts and the determinants of their emergence. Furthermore, we compare pharmaceutical and non-pharmaceutical interventions that have been used to slow down these three pandemics and zoom in on the technological advances that were made in the progress. Finally, we discuss the evolution of epidemiological modelling, that has become an essential tool to support public health policy making and discuss it in the context of these three pandemics. While these pandemics are caused by distinct viruses, that ignited in different time periods and in different regions of the globe, our work shows that many of the determinants of their emergence and countermeasures used to halt transmission were common. Therefore, it is important to further improve and optimize such approaches and adapt it to future threatening emerging infectious diseases.

9.
Elife ; 112022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35787310

RESUMEN

SARS-CoV-2 remains a worldwide emergency. While vaccines have been approved and are widely administered, there is an ongoing debate whether children should be vaccinated or prioritized for vaccination. Therefore, in order to mitigate the spread of more transmissible SARS-CoV-2 variants among children, the use of non-pharmaceutical interventions is still warranted. We investigate the impact of different testing strategies on the SARS-CoV-2 infection dynamics in a primary school environment, using an individual-based modelling approach. Specifically, we consider three testing strategies: (1) symptomatic isolation, where we test symptomatic individuals and isolate them when they test positive, (2) reactive screening, where a class is screened once one symptomatic individual was identified, and (3) repetitive screening, where the school in its entirety is screened on regular time intervals. Through this analysis, we demonstrate that repetitive testing strategies can significantly reduce the attack rate in schools, contrary to a reactive screening or a symptomatic isolation approach. However, when a repetitive testing strategy is in place, more cases will be detected and class and school closures are more easily triggered, leading to a higher number of school days lost per child. While maintaining the epidemic under control with a repetitive testing strategy, we show that absenteeism can be reduced by relaxing class and school closure thresholds.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Niño , Humanos , Instituciones Académicas
10.
Virus Evol ; 8(1): veac029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35478717

RESUMEN

The Zika virus (ZIKV) disease caused a public health emergency of international concern that started in February 2016. The overall number of ZIKV-related cases increased until November 2016, after which it declined sharply. While the evaluation of the potential risk and impact of future arbovirus epidemics remains challenging, intensified surveillance efforts along with a scale-up of ZIKV whole-genome sequencing provide an opportunity to understand the patterns of genetic diversity, evolution, and spread of ZIKV. However, a classification system that reflects the true extent of ZIKV genetic variation is lacking. Our objective was to characterize ZIKV genetic diversity and phylodynamics, identify genomic footprints of differentiation patterns, and propose a dynamic classification system that reflects its divergence levels. We analysed a curated dataset of 762 publicly available sequences spanning the full-length coding region of ZIKV from across its geographical span and collected between 1947 and 2021. The definition of genetic groups was based on comprehensive evolutionary dynamics analyses, which included recombination and phylogenetic analyses, within- and between-group pairwise genetic distances comparison, detection of selective pressure, and clustering analyses. Evidence for potential recombination events was detected in a few sequences. However, we argue that these events are likely due to sequencing errors as proposed in previous studies. There was evidence of strong purifying selection, widespread across the genome, as also detected for other arboviruses. A total of 50 sites showed evidence of positive selection, and for a few of these sites, there was amino acid (AA) differentiation between genetic clusters. Two main genetic clusters were defined, ZA and ZB, which correspond to the already characterized 'African' and 'Asian' genotypes, respectively. Within ZB, two subgroups, ZB.1 and ZB.2, represent the Asiatic and the American (and Oceania) lineages, respectively. ZB.1 is further subdivided into ZB.1.0 (a basal Malaysia sequence sampled in the 1960s and a recent Indian sequence), ZB.1.1 (South-Eastern Asia, Southern Asia, and Micronesia sequences), and ZB.1.2 (very similar sequences from the outbreak in Singapore). ZB.2 is subdivided into ZB.2.0 (basal American sequences and the sequences from French Polynesia, the putative origin of South America introduction), ZB.2.1 (Central America), and ZB.2.2 (Caribbean and North America). This classification system does not use geographical references and is flexible to accommodate potential future lineages. It will be a helpful tool for studies that involve analyses of ZIKV genomic variation and its association with pathogenicity and serve as a starting point for the public health surveillance and response to on-going and future epidemics and to outbreaks that lead to the emergence of new variants.

11.
Sci Rep ; 11(1): 14696, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34282252

RESUMEN

Model comparisons have been widely used to guide intervention strategies to control infectious diseases. Agreement between different models is crucial for providing robust evidence for policy-makers because differences in model properties can influence their predictions. In this study, we compared models implemented by two individual-based model simulators for HIV epidemiology in a heterosexual population with Herpes simplex virus type-2 (HSV-2). For each model simulator, we constructed four models, starting from a simplified basic model and stepwise including more model complexity. For the resulting eight models, the predictions of the impact of behavioural interventions on the HIV epidemic in Yaoundé-Cameroon were compared. The results show that differences in model assumptions and model complexity can influence the size of the predicted impact of the intervention, as well as the predicted qualitative behaviour of the HIV epidemic after the intervention. These differences in predictions of an intervention were also observed for two models that agreed in their predictions of the HIV epidemic in the absence of that intervention. Without additional data, it is impossible to determine which of these two models is the most reliable. These findings highlight the importance of making more data available for the calibration and validation of epidemiological models.


Asunto(s)
Infecciones por VIH/epidemiología , Herpes Genital/epidemiología , Modelos Estadísticos , Adolescente , Adulto , Camerún/epidemiología , Coinfección/epidemiología , Simulación por Computador , Estudios Transversales , Femenino , VIH-1/fisiología , Herpesvirus Humano 2/fisiología , Humanos , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Factores Socioeconómicos , Adulto Joven
12.
Nat Commun ; 12(1): 1524, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750778

RESUMEN

The COVID-19 pandemic caused many governments to impose policies restricting social interactions. A controlled and persistent release of lockdown measures covers many potential strategies and is subject to extensive scenario analyses. Here, we use an individual-based model (STRIDE) to simulate interactions between 11 million inhabitants of Belgium at different levels including extended household settings, i.e., "household bubbles". The burden of COVID-19 is impacted by both the intensity and frequency of physical contacts, and therefore, household bubbles have the potential to reduce hospital admissions by 90%. In addition, we find that it is crucial to complete contact tracing 4 days after symptom onset. Assumptions on the susceptibility of children affect the impact of school reopening, though we find that business and leisure-related social mixing patterns have more impact on COVID-19 associated disease burden. An optimal deployment of the mitigation policies under study require timely compliance to physical distancing, testing and self-isolation.


Asunto(s)
COVID-19/transmisión , Trazado de Contacto , Transmisión de Enfermedad Infecciosa/prevención & control , Composición Familiar , Cuarentena , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Bélgica/epidemiología , COVID-19/epidemiología , Niño , Preescolar , Control de Enfermedades Transmisibles/métodos , Política de Salud , Hospitalización , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , Modelos Teóricos , Pandemias , SARS-CoV-2/aislamiento & purificación , Instituciones Académicas , Adulto Joven
13.
Sci Rep ; 10(1): 6728, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317732

RESUMEN

Multi-agent coordination is prevalent in many real-world applications. However, such coordination is challenging due to its combinatorial nature. An important observation in this regard is that agents in the real world often only directly affect a limited set of neighbouring agents. Leveraging such loose couplings among agents is key to making coordination in multi-agent systems feasible. In this work, we focus on learning to coordinate. Specifically, we consider the multi-agent multi-armed bandit framework, in which fully cooperative loosely-coupled agents must learn to coordinate their decisions to optimize a common objective. We propose multi-agent Thompson sampling (MATS), a new Bayesian exploration-exploitation algorithm that leverages loose couplings. We provide a regret bound that is sublinear in time and low-order polynomial in the highest number of actions of a single agent for sparse coordination graphs. Additionally, we empirically show that MATS outperforms the state-of-the-art algorithm, MAUCE, on two synthetic benchmarks, and a novel benchmark with Poisson distributions. An example of a loosely-coupled multi-agent system is a wind farm. Coordination within the wind farm is necessary to maximize power production. As upstream wind turbines only affect nearby downstream turbines, we can use MATS to efficiently learn the optimal control mechanism for the farm. To demonstrate the benefits of our method toward applications we apply MATS to a realistic wind farm control task. In this task, wind turbines must coordinate their alignments with respect to the incoming wind vector in order to optimize power production. Our results show that MATS improves significantly upon state-of-the-art coordination methods in terms of performance, demonstrating the value of using MATS in practical applications with sparse neighbourhood structures.

14.
PLoS Negl Trop Dis ; 13(5): e0007231, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31067235

RESUMEN

In recent years, an increasing number of outbreaks of Dengue, Chikungunya and Zika viruses have been reported in Asia and the Americas. Monitoring virus genotype diversity is crucial to understand the emergence and spread of outbreaks, both aspects that are vital to develop effective prevention and treatment strategies. Hence, we developed an efficient method to classify virus sequences with respect to their species and sub-species (i.e. serotype and/or genotype). This tool provides an easy-to-use software implementation of this new method and was validated on a large dataset assessing the classification performance with respect to whole-genome sequences and partial-genome sequences. Available online: http://krisp.org.za/tools.php.


Asunto(s)
Virus Chikungunya/aislamiento & purificación , Biología Computacional/métodos , Virus del Dengue/aislamiento & purificación , Virus Zika/aislamiento & purificación , Fiebre Chikungunya/virología , Virus Chikungunya/clasificación , Virus Chikungunya/genética , Dengue/virología , Virus del Dengue/clasificación , Virus del Dengue/genética , Genoma Viral , Genotipo , Filogenia , Virus Zika/clasificación , Virus Zika/genética , Infección por el Virus Zika/virología
15.
Viruses ; 10(10)2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30340326

RESUMEN

Dengue virus (DENV) is estimated to cause 390 million infections per year worldwide. A quarter of these infections manifest clinically and are associated with a morbidity and mortality that put a significant burden on the affected regions. Reports of increased frequency, intensity, and extended geographical range of outbreaks highlight the virus's ongoing global spread. Persistent transmission in endemic areas and the emergence in territories formerly devoid of transmission have shaped DENV's current genetic diversity and divergence. This genetic layout is hierarchically organized in serotypes, genotypes, and sub-genotypic clades. While serotypes are well defined, the genotype nomenclature and classification system lack consistency, which complicates a broader analysis of their clinical and epidemiological characteristics. We identify five key challenges: (1) Currently, there is no formal definition of a DENV genotype; (2) Two different nomenclature systems are used in parallel, which causes significant confusion; (3) A standardized classification procedure is lacking so far; (4) No formal definition of sub-genotypic clades is in place; (5) There is no consensus on how to report antigenic diversity. Therefore, we believe that the time is right to re-evaluate DENV genetic diversity in an essential effort to provide harmonization across DENV studies.


Asunto(s)
Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Dengue/virología , Virus del Dengue/genética , Variación Genética , Genotipo , Humanos , Filogenia , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA