Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 38(20): 4843-4845, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36040169

RESUMEN

SUMMARY: Reliable and integrated data are prerequisites for effective research on the recent coronavirus disease 2019 (COVID-19) pandemic. The CovidGraph project integrates and connects heterogeneous COVID-19 data in a knowledge graph, referred to as 'CovidGraph'. It provides easy access to multiple data sources through a single point of entry and enables flexible data exploration. AVAILABILITY AND IMPLEMENTATION: More information on CovidGraph is available from the project website: https://healthecco.org/covidgraph/. Source code and documentation are provided on GitHub: https://github.com/covidgraph. SUPPLEMENTARY INFORMATION: Supplementary data is available at Bioinformatics online.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Humanos , Almacenamiento y Recuperación de la Información , Programas Informáticos
2.
PLoS One ; 13(1): e0191719, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29370245

RESUMEN

Magnetic resonance imaging (MRI) at ultra-high fields (UHF), such as 7 T, provides an enhanced signal-to-noise ratio and has led to unprecedented high-resolution anatomic images and brain activation maps. Although a variety of radio frequency (RF) coil architectures have been developed for imaging at UHF conditions, they usually are specialized for small volumes of interests (VoI). So far, whole-body coil resonators are not available for commercial UHF human whole-body MRI systems. The goal of the present study was the development and validation of a transmit and receive system for large VoIs that operates at a 7 T human whole-body MRI system. A Metamaterial Ring Antenna System (MRAS) consisting of several ring antennas was developed, since it allows for the imaging of extended VoIs. Furthermore, the MRAS not only requires lower intensities of the irradiated RF energy, but also provides a more confined and focused injection of excitation energy on selected body parts. The MRAS consisted of several antennas with 50 cm inner diameter, 10 cm width and 0.5 cm depth. The position of the rings was freely adjustable. Conformal resonant right-/left-handed metamaterial was used for each ring antenna with two quadrature feeding ports for RF power. The system was successfully implemented and demonstrated with both a silicone oil and a water-NaCl-isopropanol phantom as well as in vivo by acquiring whole-body images of a crab-eating macaque. The potential for future neuroimaging applications was demonstrated by the acquired high-resolution anatomic images of the macaque's head. Phantom and in vivo measurements of crab-eating macaques provided high-resolution images with large VoIs up to 40 cm in xy-direction and 45 cm in z-direction. The results of this work demonstrate the feasibility of the MRAS system for UHF MRI as proof of principle. The MRAS shows a substantial potential for MR imaging of larger volumes at 7 T UHF. This new technique may provide new diagnostic potential in spatially extended pathologies such as searching for spread-out tumor metastases or monitoring systemic inflammatory processes.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Magnetismo , Animales , Diseño de Equipo , Macaca fascicularis , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen
3.
Artículo en Inglés | MEDLINE | ID: mdl-22254370

RESUMEN

We propose an adaptive RF antenna system for the excitation (and manipulation) of the fundamental circular waveguide mode (TE(11)) in the context of high-field (7T) traveling-wave magnetic resonance imaging (MRI). The system consists of <> composite right-/left-handed (CRLH) meta-material ring antennas that fully conforms to the inner surface of the MRI bore. The specific use of CRLH metamaterials is motivated by its inherent dispersion engineering capabilities, which is needed when designing resonant ring structures for virtually any predefined diameter operating at the given Larmor frequency (i.e. 298 MHz). Each functional group of the RF antenna system consists of a pair of subsequently spaced and correspondingly fed CRLH ring antennas, allowing for the unidirectional excitation of propagating, circularly polarized B(1) mode fields. The same functional group is also capable to simultaneously mold an incoming, counter-propagating mode. Given these functionalities we are proposing now a compound scheme (i.e. periodically arranged multiple antenna pairs)--termed as "MetaBore"--that is apt to provide a tailored RF power distribution as well as full wave reflection compensation virtually at any desired location along the bore.


Asunto(s)
Aumento de la Imagen/instrumentación , Imagen por Resonancia Magnética/instrumentación , Magnetismo/instrumentación , Imagen de Cuerpo Entero/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA