Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Sci ; 127(Pt 13): 2956-66, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24706949

RESUMEN

Chromatin insulators are DNA-protein complexes that are situated throughout the genome that are proposed to contribute to higher-order organization and demarcation into distinct transcriptional domains. Mounting evidence in different species implicates RNA and RNA-binding proteins as regulators of chromatin insulator activities. Here, we identify the Drosophila hnRNP M homolog Rumpelstiltskin (Rump) as an antagonist of gypsy chromatin insulator enhancer-blocking and barrier activities. Despite ubiquitous expression of Rump, decreasing Rump levels leads to improvement of barrier activity only in tissues outside of the central nervous system (CNS). Furthermore, rump mutants restore insulator body localization in an insulator mutant background only in non-CNS tissues. Rump associates physically with core gypsy insulator proteins, and chromatin immunoprecipitation and sequencing analysis of Rump demonstrates extensive colocalization with a subset of insulator sites across the genome. The genome-wide binding profile and tissue specificity of Rump contrast with that of Shep, a recently identified RNA-binding protein that antagonizes gypsy insulator activity primarily in the CNS. Our findings indicate parallel roles for RNA-binding proteins in mediating tissue-specific regulation of chromatin insulator activity.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Animales , Cromatina/genética , Drosophila , Proteínas de Drosophila/genética , Femenino , Ribonucleoproteínas Nucleares Heterogéneas/genética , Masculino , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
2.
Nucleic Acids Res ; 41(5): 2963-80, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23358822

RESUMEN

Chromatin insulators are functionally conserved DNA-protein complexes situated throughout the genome that organize independent transcriptional domains. Previous work implicated RNA as an important cofactor in chromatin insulator activity, although the precise mechanisms are not yet understood. Here we identify the exosome, the highly conserved major cellular 3' to 5' RNA degradation machinery, as a physical interactor of CP190-dependent chromatin insulator complexes in Drosophila. Genome-wide profiling of exosome by ChIP-seq in two different embryonic cell lines reveals extensive and specific overlap with the CP190, BEAF-32 and CTCF insulator proteins. Colocalization occurs mainly at promoters but also boundary elements such as Mcp, Fab-8, scs and scs', which overlaps with a promoter. Surprisingly, exosome associates primarily with promoters but not gene bodies of active genes, arguing against simple cotranscriptional recruitment to RNA substrates. Similar to insulator proteins, exosome is also significantly enriched at divergently transcribed promoters. Directed ChIP of exosome in cell lines depleted of insulator proteins shows that CTCF is required specifically for exosome association at Mcp and Fab-8 but not other sites, suggesting that alternate mechanisms must also contribute to exosome chromatin recruitment. Taken together, our results reveal a novel positive relationship between exosome and chromatin insulators throughout the genome.


Asunto(s)
Cromatina/metabolismo , Drosophila melanogaster/genética , Exosomas/genética , Genoma de los Insectos , Animales , Sitios de Unión , Factor de Unión a CCCTC , Células Cultivadas , Mapeo Cromosómico , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/metabolismo , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Sitio de Iniciación de la Transcripción , Transcripción Genética
3.
RNA Biol ; 11(9): 1171-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483042

RESUMEN

RNA interference (RNAi) is a eukaryotic gene-silencing system. Although the biochemistry of RNAi is relatively well defined, how this pathway is regulated remains incompletely understood. To identify genes involved in regulating the RNAi pathway, we screened for genetic mutations in Drosophila that alter the efficiency of RNAi. We identified the Drosophila homolog of the mammalian CR6-interacting factor 1 (CRIF1), also known as growth arrest and DNA-damage-inducible 45-gamma interacting protein (Gadd45GIP1), as a potential new regulator of the RNAi pathway. Loss-of-function mutants of Drosophila CRIF1 (dCRIF) are deficient in RNAi-mediated target gene knock-down, in the biogenesis of small interfering RNA (siRNA) molecules, and in antiviral immunity. Moreover, we show that dCRIF may function by interacting with, and stabilizing, the RNase III enzyme Dicer-2. Our results suggest that dCRIF may play an important role in regulating the RNAi pathway.


Asunto(s)
Animales Modificados Genéticamente/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , ARN Helicasas/química , Interferencia de ARN , ARN Interferente Pequeño/genética , Ribonucleasa III/química , Glándulas Salivales/inmunología , Animales , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Northern Blotting , Western Blotting , Células Cultivadas , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/virología
4.
FASEB J ; 25(1): 232-41, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20847228

RESUMEN

Heterochromatin is a form of highly compacted chromatin associated with epigenetic gene silencing and chromosome organization. We have previously shown that unphosphorylated nuclear signal transducer and activator of transcription (STAT) physically interacts with heterochromatin protein 1 (HP1) to promote heterochromatin stability. To understand whether STAT and heterochromatin are important for maintenance of genome stability, we genetically manipulated the levels of unphosphorylated STAT and HP1 [encoded by Su(var)205] in Drosophila and examined the effects on chromosomal morphology and resistance to DNA damage under conditions of genotoxic stress. Here we show that, compared with wild-type controls, Drosophila mutants with reduced levels of unphosphorylated STAT or heterochromatin are more sensitive to radiation-induced cell cycle arrest, have higher levels of spontaneous and radiation-induced DNA damage, and exhibit defects in chromosomal compaction and segregation during mitosis. Conversely, animals with increased levels of heterochromatin exhibit less DNA damage and increased survival rate after irradiation. These results suggest that maintaining genome stability by heterochromatin formation and correct chromosomal packaging is essential for normal cellular functions and for survival of animals under genotoxic stress.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Inestabilidad Genómica , Heterocromatina/metabolismo , Factores de Transcripción STAT/metabolismo , Animales , Animales Modificados Genéticamente , Ciclo Celular/efectos de la radiación , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Rotura Cromosómica , Cromosomas de Insectos/genética , Cromosomas de Insectos/metabolismo , Daño del ADN , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Heterocromatina/genética , Histonas/metabolismo , Inmunohistoquímica , Larva/genética , Larva/metabolismo , Larva/efectos de la radiación , Masculino , Mitosis , Mutación , Fosforilación , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción STAT/genética
5.
Nat Cell Biol ; 10(4): 489-96, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18344984

RESUMEN

STAT (Signal transducer and activator of transcription) is a potent transcription factor and its aberrant activation by phosphorylation is associated with human cancers. We have shown previously that overactivation of JAK, which phosphorylates STAT, disrupts heterochromatin formation globally in Drosophila melanogaster. However, it remains unclear how this effect is mediated and whether STAT is involved. Here, we demonstrate that Drosophila STAT (STAT92E) is involved in controlling heterochromatin protein 1 (HP1) distribution and heterochromatin stability. We found, unexpectedly, that loss of STAT92E, had the same effects as overactivation of JAK in disrupting heterochromatin formation and heterochromatic gene silencing, whereas overexpression of STAT92E had the opposite effects. We have further shown that the unphosphorylated or 'transcriptionally inactive' form of STAT92E is localized on heterochromatin in association with HP1, and is required for stabilizing HP1 localization and histone H3 Lys 9 methylation (H3mK9) . However, activation by phosphorylation reduces heterochromatin-associated STAT92E, causing HP1 displacement and heterochromatin destabilization. Thus, reducing levels of unphosphorylated STAT92E, either by loss of STAT92E or increased phosphorylation, causes heterochromatin instability. These results suggest that activation of STAT by phosphorylation controls both access to chromatin and activity of the transcription machinery.


Asunto(s)
Inestabilidad Cromosómica , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Heterocromatina/metabolismo , Factores de Transcripción STAT/metabolismo , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Cicloheximida/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/metabolismo , Silenciador del Gen , Humanos , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Lisina/metabolismo , Inhibidores de la Síntesis de la Proteína/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción STAT/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA