Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Hum Mol Genet ; 24(23): 6603-13, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26358774

RESUMEN

Cohen Syndrome (CS) is a rare autosomal recessive disorder, with defective glycosylation secondary to mutations in the VPS13B gene, which encodes a protein of the Golgi apparatus. Besides congenital neutropenia, retinopathy and intellectual deficiency, CS patients are faced with truncal obesity. Metabolism investigations showed abnormal glucose tolerance tests and low HDL values in some patients, and these could be risk factors for the development of diabetes mellitus and/or cardiovascular complications. To understand the mechanisms involved in CS fat storage, we used two models of adipogenesis differentiation: (i) SGBS pre-adipocytes with VPS13B invalidation thanks to siRNA delivery and (ii) CS primary fibroblasts. In both models, VPS13B invalidation led to accelerated differentiation into fat cells, which was confirmed by the earlier and increased expression of specific adipogenic genes, consequent to the increased response of cells to insulin stimulation. At the end of the differentiation protocol, these fat cells exhibited decreased AKT2 phosphorylation after insulin stimulation, which suggests insulin resistance. This study, in association with the in-depth analysis of the metabolic status of the patients, thus allowed us to recommend appropriate nutritional education to prevent the occurrence of diabetes mellitus and to put forward recommendations for the follow-up of CS patients, in particular with regard to the development of metabolic syndrome. We also suggest replacing the term obesity by abnormal fat distribution in CS, which should reduce the number of inappropriate diagnoses in patients who are referred only on the basis of intellectual deficiency associated with obesity.


Asunto(s)
Adipogénesis , Distribución de la Grasa Corporal , Diabetes Mellitus Tipo 2/fisiopatología , Dedos/anomalías , Insulina/fisiología , Discapacidad Intelectual/fisiopatología , Microcefalia/fisiopatología , Hipotonía Muscular/fisiopatología , Miopía/fisiopatología , Obesidad/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/fisiopatología , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/etiología , Femenino , Dedos/fisiopatología , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Microcefalia/complicaciones , Persona de Mediana Edad , Modelos Biológicos , Hipotonía Muscular/complicaciones , Mutación , Miopía/complicaciones , Obesidad/complicaciones , Degeneración Retiniana , Riesgo , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Adulto Joven
2.
mSphere ; : e0032224, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189782

RESUMEN

Expansion microscopy (ExM) is an innovative approach to achieve super-resolution images without using super-resolution microscopes, based on the physical expansion of the sample. The advent of ExM has unlocked the detail of super-resolution images for a broader scientific circle, lowering the cost and entry skill requirements for the field. One of its branches, ultrastructure expansion microscopy (U-ExM), has become popular among research groups studying apicomplexan parasites, including the acute stage of Toxoplasma gondii infection. Here, we show that the chronic cyst-forming stage of Toxoplasma, however, resists U-ExM expansion, impeding precise protein localization. We then solve the in vitro cyst's resistance to denaturation required for successful U-ExM. As the cyst's main structural protein CST1 contains a mucin domain, we added an enzymatic digestion step using the pan-mucinase StcE prior to the expansion protocol. This allowed full expansion of the cysts in fibroblasts and primary neuronal cell culture without disrupting immunofluorescence analysis of parasite proteins. Using StcE-enhanced U-ExM, we clarified the localization of the GRA2 protein, which is important for establishing a normal cyst, observing GRA2 granules spanning across the CST1 cyst wall. The StcE-U-ExM protocol allows accurate pinpointing of proteins in the bradyzoite cyst, which will greatly facilitate investigation of the underlying biology of cyst formation and its vulnerabilities. IMPORTANCE: Toxoplasma gondii is an intracellular parasite capable of establishing long-term chronic infection in nearly all warm-blooded animals. During the chronic stage, parasites encapsulate to form cysts predominantly in neurons and skeletal muscle. Current anti-Toxoplasma drugs do not eradicate chronic parasites, leaving a reservoir of infection. The cyst is critical for disease transmission and pathology, yet it is harder to study, with the function of many chronic-stage proteins still unknown. Ultrastructure expansion microscopy, a new method to overcome the light microscopy's diffraction limit by physically expanding the sample, allowed in-depth studies of acute Toxoplasma infection. We show that Toxoplasma cysts resist expansion using standard protocol, but an additional enzymatic digestion with the mucinase StcE allows full expansion. This protocol offers new avenues for examining the chronic stage, including precise spatial organization of cyst-specific proteins, linking these locations to morphological structures, and detailed investigations of components of the durable cyst wall.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA