Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 578(7793): 166-171, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31996845

RESUMEN

Glioblastoma is a universally lethal form of brain cancer that exhibits an array of pathophysiological phenotypes, many of which are mediated by interactions with the neuronal microenvironment1,2. Recent studies have shown that increases in neuronal activity have an important role in the proliferation and progression of glioblastoma3,4. Whether there is reciprocal crosstalk between glioblastoma and neurons remains poorly defined, as the mechanisms that underlie how these tumours remodel the neuronal milieu towards increased activity are unknown. Here, using a native mouse model of glioblastoma, we develop a high-throughput in vivo screening platform and discover several driver variants of PIK3CA. We show that tumours driven by these variants have divergent molecular properties that manifest in selective initiation of brain hyperexcitability and remodelling of the synaptic constituency. Furthermore, secreted members of the glypican (GPC) family are selectively expressed in these tumours, and GPC3 drives gliomagenesis and hyperexcitability. Together, our studies illustrate the importance of functionally interrogating diverse tumour phenotypes driven by individual, yet related, variants and reveal how glioblastoma alters the neuronal microenvironment.


Asunto(s)
Neoplasias Encefálicas/enzimología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Glioblastoma/enzimología , Animales , Neoplasias Encefálicas/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/química , Fosfatidilinositol 3-Quinasa Clase I/genética , Modelos Animales de Enfermedad , Glioblastoma/patología , Glipicanos/metabolismo , Ratones
2.
Proc Natl Acad Sci U S A ; 109(2): E76-83, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22084095

RESUMEN

Release of substance P (SP) from nociceptive nerve fibers and activation of its receptor neurokinin 1 (NK1) are important effectors in the transmission of pain signals. Nonetheless, the role of SP in muscle pain remains unknown. Here we show that a single i.m. acid injection in mice lacking SP signaling by deletion of the tachykinin precursor 1 (Tac1) gene or coadministration of NK1 receptor antagonists produces long-lasting hyperalgesia rather than the transient hyperalgesia seen in control animals. The inhibitory effect of SP was found exclusively in neurons expressing acid-sensing ion channel 3, where SP enhances M-channel-like potassium currents through the NK1 receptor in a G protein-independent but tyrosine kinase-dependent manner. Furthermore, the SP signaling could alter action potential thresholds and modulate the expression of TTX-resistant sodium currents in medium-sized muscle nociceptors. Thus, i.m. SP mediates an unconventional NK1 receptor signal pathway to inhibit acid activation in muscle nociceptors, resulting in an unexpected antinociceptive effect against chronic mechanical hyperalgesia, here induced by repeated i.m. acid injection.


Asunto(s)
Analgésicos/metabolismo , Dolor Crónico/metabolismo , Dolor Musculoesquelético/metabolismo , Receptores de Neuroquinina-1/metabolismo , Sustancia P/metabolismo , Canales Iónicos Sensibles al Ácido , Potenciales de Acción/fisiología , Animales , Dolor Crónico/inducido químicamente , Electrofisiología , Ganglios Espinales/metabolismo , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Dolor Musculoesquelético/inducido químicamente , Neuroquinina A/genética , Antagonistas del Receptor de Neuroquinina-1 , Dimensión del Dolor , Técnicas de Placa-Clamp , Precursores de Proteínas/deficiencia , Precursores de Proteínas/genética , Canales de Sodio/genética , Taquicininas/deficiencia , Taquicininas/genética
3.
Eur J Neurosci ; 40(6): 2859-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24964151

RESUMEN

Glioblastoma (GBM) is by far the most common and most malignant primary adult brain tumor (World Health Organization grade IV), containing a fraction of stem-like cells that are highly tumorigenic and multipotent. Recent research has revealed that GBM stem-like cells play important roles in GBM pathogenesis. GBM is thought to arise from genetic anomalies in glial development. Over the past decade, a wide range of studies have shown that several signaling pathways involved in neural development, including basic helix-loop-helix, Wnt-ß-catenin, bone morphogenetic proteins-Smads, epidermal growth factor-epidermal growth factor receptor, and Notch, play important roles in GBM pathogenesis. In this review, we highlight the significance of these pathways in the context of developing treatments for GBM. Extrapolating knowledge and concepts from neural development will have significant implications for designing better strategies with which to treat GBM.


Asunto(s)
Neoplasias Encefálicas/fisiopatología , Neoplasias Encefálicas/terapia , Glioblastoma/fisiopatología , Glioblastoma/terapia , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Humanos , Células Madre Neoplásicas/fisiología , Células-Madre Neurales/fisiología , Transducción de Señal
4.
Neuron ; 106(6): 992-1008.e9, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32320644

RESUMEN

Astrocytes play essential roles in brain function by supporting synaptic connectivity and associated circuits. How these roles are regulated by transcription factors is unknown. Moreover, there is emerging evidence that astrocytes exhibit regional heterogeneity, and the mechanisms controlling this diversity remain nascent. Here, we show that conditional deletion of the transcription factor nuclear factor I-A (NFIA) in astrocytes in the adult brain results in region-specific alterations in morphology and physiology that are mediated by selective DNA binding. Disruptions in astrocyte function following loss of NFIA are most pronounced in the hippocampus, manifested by impaired interactions with neurons, coupled with diminution of learning and memory behaviors. These changes in hippocampal astrocytes did not affect basal neuronal properties but specifically inhibited synaptic plasticity, which is regulated by NFIA in astrocytes through calcium-dependent mechanisms. Together, our studies reveal region-specific transcriptional dependencies for astrocytes and identify astrocytic NFIA as a key transcriptional regulator of hippocampal circuits.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Calcio/metabolismo , Regulación de la Expresión Génica , Aprendizaje/fisiología , Factores de Transcripción NFI/genética , Animales , Astrocitos/fisiología , Encéfalo/citología , Encéfalo/fisiopatología , Tronco Encefálico/citología , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiopatología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiopatología , Hipocampo/citología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Ratones , Ratones Noqueados , Vías Nerviosas , Plasticidad Neuronal , Neuronas , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/fisiopatología , Técnicas de Placa-Clamp , Corteza Prefrontal/citología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Memoria Espacial/fisiología
5.
Elife ; 62017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29053101

RESUMEN

Von Hippel-Landau (VHL) protein is a potent tumor suppressor regulating numerous pathways that drive cancer, but mutations in VHL are restricted to limited subsets of malignancies. Here we identified a novel mechanism for VHL suppression in tumors that do not have inactivating mutations. Using developmental processes to uncover new pathways contributing to tumorigenesis, we found that Daam2 promotes glioma formation. Protein expression screening identified an inverse correlation between Daam2 and VHL expression across a host of cancers, including glioma. These in silico insights guided corroborating functional studies, which revealed that Daam2 promotes tumorigenesis by suppressing VHL expression. Furthermore, biochemical analyses demonstrate that Daam2 associates with VHL and facilitates its ubiquitination and degradation. Together, these studies are the first to define an upstream mechanism regulating VHL suppression in cancer and describe the role of Daam2 in tumorigenesis.


Asunto(s)
Carcinogénesis , Glioma/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Humanos , Proteínas de Microfilamentos , Unión Proteica , Proteolisis , Ubiquitinación , Proteínas de Unión al GTP rho
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA