Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 386, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896257

RESUMEN

Bacterial biofilms commonly cause chronic and persistent infections in humans. Bacterial biofilms consist of an inner layer of bacteria and an autocrine extracellular polymeric substance (EPS). Biofilm dispersants (abbreviated as dispersants) have proven effective in removing the bacterial physical protection barrier EPS. Dispersants are generally weak or have no bactericidal effect. Bacteria dispersed from within biofilms (abbreviated as dispersed bacteria) may be more invasive, adhesive, and motile than planktonic bacteria, characteristics that increase the probability that dispersed bacteria will recolonize and cause reinfection. The dispersants should be combined with antimicrobials to avoid the risk of severe reinfection. Dispersant-based nanoparticles have the advantage of specific release and intense penetration, providing the prerequisite for further antibacterial agent efficacy and achieving the eradication of biofilms. Dispersant-based nanoparticles delivered antimicrobial agents for the treatment of diseases associated with bacterial biofilm infections are expected to be an effective measure to prevent reinfection caused by dispersed bacteria. KEY POINTS: • Dispersed bacteria harm and the dispersant's dispersion mechanisms are discussed. • The advantages of dispersant-based nanoparticles in bacteria biofilms are discussed. • Dispersant-based nanoparticles for cutting off reinfection in vivo are highlighted.


Asunto(s)
Antibacterianos , Biopelículas , Nanopartículas , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Nanopartículas/química , Antibacterianos/farmacología , Humanos , Bacterias/efectos de los fármacos , Infecciones Bacterianas/prevención & control , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Reinfección/prevención & control , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/efectos de los fármacos
2.
Ecotoxicol Environ Saf ; 278: 116395, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38728939

RESUMEN

Escherichia coli (E. coli) plays an important ecological role, and is a useful bioindicator to recognize the evolution of resistance in human, animal and environment. Recently, extended-spectrum ß-lactamases (ESBL) producing E.coli has posed a threat to public health. Generally, captive healthy giant pandas are not exposed to antibiotics; however, they still acquire antimicrobial resistant bacteria. In order to understand whether there is an exchange of resistance genes within the ecosystems of captive giant pandas, this study explored resistance characteristics of 330 commensal E. coli isolates from feces of giant pandas, the surroundings, and breeders. Isolates from different sources showed similar resistance phenotype, and ESBL/AmpC-producing isolates showed more profound resistance to antibiotics than non-ESBL/AmpC-producing isolates (P<0.05). Furthermore, the occurrence of broad-spectrum ß-lactamase related resistance genes and colistin resistance genes was detected, and isolates phylogenetic typing and multilocus sequence typing (MLST) were applied in this study. Seven different ß-lactamase resistance genes (blaCTX-M-55, blaCTX-M-15, blaCTX-M-27, blaCTX-M-65, blaTEM-1, blaOXA-1 and blaCMY) and mcr-1 were found in 68 ESBL/AmpC-producing isolates. blaCTX-M-55 (48.53 %) was found the most predominant resistance genes, followed by blaTEM-1 (19.12 %) and blaCTX-M-27 (16.18 %). Nonetheless, blaCTX-M-55 was commonly detected in the isolates from giant pandas (63.16 %), the surroundings (43.48 %), and breeders (33.33 %). However, there were no carbapenemase genes detected in this study. mcr-1 was harbored in only one isolate from giant panda. Forty-five tansconjugants were successfully obtained in the conjugation experiments. The presence of antimicrobial resistance and related resistance genes tested were observed in the transconjugants. The results indicated that 52.63 % of the isolates from giant panda 73.91 % of the isolates from surroundings, and 100 % of the isolates from breeders were phylogroup A. Total of 27 sequence types (ST) were recognized from the isolate by MLST and found that ST48 (19/68; 27.94 %) was the predominant ST type, especially in the isolates from giant pandas and the surroundings. In conclusion, commensal ESBL/AmpC-producing E. coli becomes a reservoir of ESBL resistance genes, which is a potential threaten to health of giant pandas. The interaction between giant pandas, surroundings and breeders contribute to development of resistant phenotypes and genotypes which might transfer across species or the surroundings easily; hence, strict monitoring based on a "One Health" approach is recommended.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Escherichia coli , Heces , Tipificación de Secuencias Multilocus , Ursidae , beta-Lactamasas , Animales , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , beta-Lactamasas/genética , Ursidae/microbiología , China , Antibacterianos/farmacología , Heces/microbiología , Proteínas Bacterianas/genética , Ecosistema , Filogenia , Pruebas de Sensibilidad Microbiana , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana/genética
3.
Drug Dev Ind Pharm ; 50(1): 45-54, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38095592

RESUMEN

OBJECTIVE: Florfenicol(FF) is an excellent veterinary antibiotic, limited by poor solubility and poor bioavailability. SIGNIFICANCE: Here in, we aimed to explore the applicability of fast disintegrating tablets compressed from Florfenicol-loaded solid dispersions (FF-SD-FDTs) to improve the dissolution rate and oral bioavailability of Florfenicol. METHODS: Utilizing selecting appropriate preparation methods and carriers, the solid dispersions of Florfenicol (FF-SDs) were prepared by solvent evaporation and the fast disintegrating tablets (FF-SD-FDTs) were prepared by the direct compression (DC) method. RESULTS: The tablet properties including hardness, friability, disintegration time, weight variation, etc. all met the specifications of Chinese Veterinary Pharmacopeia(CVP). FF-SD-FDTs significantly improved drug dissolution and dispersion of FF in vitro compared to florfenicol conventional tablets (FF-CTs). A pharmacokinetics study in German shepherd dogs proved the AUC0-∞ and Cmax values of FF-SD-FDTs are 1.38 and 1.38 times more than FF-CTs, respectively. CONCLUSIONS: Overall, it can be concluded that FF-SD-FDTs with excellent disintegration and dissolution properties were successfully produced, which greatly improved the oral bioavailability of the poorly soluble drug FF, and the study provided a new idea for a broader role of FF in pet clinics.


Asunto(s)
Tecnología , Tianfenicol/análogos & derivados , Animales , Perros , Disponibilidad Biológica , Solubilidad , Liberación de Fármacos , Comprimidos
4.
Antimicrob Agents Chemother ; 67(5): e0001023, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-36912655

RESUMEN

Due to the accelerated appearance of antimicrobial-resistant (AMR) pathogens in clinical infections, new first-in-class antibiotics, operating via novel modes of action, are desperately needed. Brevicidine, a bacterial nonribosomally produced cyclic lipopeptide, has shown potent and selective antimicrobial activity against Gram-negative pathogens. However, before our investigations, little was known about how brevicidine exerts its potent bactericidal effect against Gram-negative pathogens. In this study, we find that brevicidine has potent antimicrobial activity against AMR Enterobacteriaceae pathogens, with MIC values ranging between 0.5 µM (0.8 mg/L) and 2 µM (3.0 mg/L). In addition, brevicidine showed potent antibiofilm activity against the Enterobacteriaceae pathogens, with the same 100% inhibition and 100% eradication concentration of 4 µM (6.1 mg/L). Further mechanistic studies showed that brevicidine exerts its potent bactericidal activity by interacting with lipopolysaccharide in the outer membrane, targeting phosphatidylglycerol and cardiolipin in the inner membrane, and dissipating the proton motive force of bacteria. This results in metabolic perturbation, including the inhibition of ATP synthesis; the inhibition of the dehydrogenation of NADH; the accumulation of reactive oxygen species in bacteria; and the inhibition of protein synthesis. Finally, brevicidine showed a good therapeutic effect in a mouse peritonitis-sepsis model. Our findings pave the way for further research on the clinical applications of brevicidine to combat prevalent infections caused by AMR Gram-negative pathogens worldwide.


Asunto(s)
Antibacterianos , Enterobacteriaceae , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias , Lipopéptidos/farmacología , Pruebas de Sensibilidad Microbiana , Bacterias Gramnegativas
5.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838708

RESUMEN

Lipopolysaccharide (LPS) has been considered the primary agent to establish animal models of inflammation, immunological stress, and organ injury. Previous studies have demonstrated that LPS impaired gastrointestinal development and disrupted intestinal microbial composition and metabolism. Ferulic acid (FA) isolated from multiple plants exhibits multiple biological activities. This study investigated whether FA ameliorated intestinal function and microflora in LPS-challenged Tianfu broilers. The results showed that LPS challenge impaired intestinal function, as evidenced by decreased antioxidant functions (p < 0.05), disrupted morphological structure (p < 0.05), and increased intestinal permeability (p < 0.05); however, these adverse effects were improved by FA supplementation. Additionally, FA supplementation preserved sIgA levels (p < 0.05), increased mRNA expression levels of CLDN and ZO-1 (p < 0.05), and enhanced epithelial proliferation (p < 0.05) in the ileal mucosa in LPS-challenged chickens. Moreover, FA supplementation rectified the ileal microflora disturbances in the LPS-challenged broilers. The results demonstrate that dietary FA supplementation decreased LPS-induced intestinal damage by enhancing antioxidant capacity and maintaining intestinal integrity. Furthermore, FA supplementation protects intestinal tight junctions (TJs), elevates secretory immunoglobulin A (sIgA) levels, and modulates ileal microflora composition in LPS-challenged broilers.


Asunto(s)
Lipopolisacáridos , Microbiota , Animales , Lipopolisacáridos/farmacología , Pollos/metabolismo , Antioxidantes/metabolismo , Suplementos Dietéticos/análisis , Dieta/veterinaria , Inmunoglobulina A Secretora , Alimentación Animal/análisis
6.
Molecules ; 28(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37375405

RESUMEN

The excessive intake of fluoride, one of the trace elements required to maintain health, leads to liver injury. Tetramethylpyrazine (TMP) is a kind of traditional Chinese medicine monomer with a good antioxidant and hepatoprotective function. The aim of this study was to investigate the effect of TMP on liver injury induced by acute fluorosis. A total of 60 1-month-old male ICR mice were selected. All mice were randomly divided into five groups: a control (K) group, a model (F) group, a low-dose (LT) group, a medium-dose (MT) group, and a high-dose (HT) group. The control and model groups were given distilled water, while 40 mg/kg (LT), 80 mg/kg (MT), or 160 mg/kg (HT) of TMP was fed by gavage for two weeks, with a maximum gavage volume for the mice of 0.2 mL/10 g/d. Except for the control group, all groups were given fluoride (35 mg/kg) by an intraperitoneal injection on the last day of the experiment. The results of this study showed that, compared with the model group, TMP alleviated the pathological changes in the liver induced by the fluoride and improved the ultrastructure of liver cells; TMP significantly decreased the levels of ALT, AST, and MDA (p < 0.05) and increased the levels of T-AOC, T-SOD, and GSH (p < 0.05). The results of mRNA detection showed that TMP significantly increased the mRNA expression levels of Nrf2, HO-1, CAT, GSH-Px, and SOD in the liver compared with the model group (p < 0.05). In conclusion, TMP can inhibit oxidative stress by activating the Nrf2 pathway and alleviate the liver injury induced by fluoride.


Asunto(s)
Fluoruros , Hepatopatías , Masculino , Ratones , Animales , Fluoruros/efectos adversos , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2/metabolismo , Hepatopatías/metabolismo , Hígado , Estrés Oxidativo , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo
7.
J Appl Microbiol ; 133(3): 1273-1287, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35621701

RESUMEN

Bacterial biofilms are highly resistant to antibiotics and pose a great threat to human and animal health. The control and removal of bacterial biofilms have become an important topic in the field of bacterial infectious diseases. Nanocarriers show great anti-biofilm potential because of their small particle size and strong permeability. In this review, the advantages of nanocarriers for combating biofilms are analysed. Nanocarriers can act on all stages of bacterial biofilm formation and diffusion. They can improve the scavenging effect of biofilm by targeting biofilm, destroying extracellular polymeric substances and enhancing the biofilm permeability of antimicrobial substances. Nanocarriers can also improve the antibacterial ability of antimicrobial drugs against bacteria in biofilm by protecting the loaded drugs and controlling the release of antimicrobial substances. Additionally, we emphasize the challenges faced in using nanocarrier formulations and translating them from a preclinical level to a clinical setting.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias , Biopelículas , Humanos
8.
BMC Vet Res ; 17(1): 177, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902574

RESUMEN

BACKGROUND: Staphylococcus aureus (S. aureus), especially methicillin-resistant Staphylococcus aureus (MRSA), is considered a common zoonotic pathogen, causing severe infections. The objective of this study was to investigate the antimicrobial susceptibility, resistance genes and molecular epidemiology among MRSA and methicillin-susceptible Staphylococcus aureus (MSSA) isolated from food animals in Sichuan Province, China. METHODS: This study was conducted on 236 S. aureus isolates. All isolates were subjected to antimicrobial susceptibility testing by using a standard microbroth dilution method. The Polymerase Chain Reaction (PCR) was performed to identify genes encoding the ß-lactams resistance (blaZ, mecA), macrolides (ermA, ermB, ermC) and aminoglycosides (aacA-aphD). The molecular structures and genomic relatedness of MRSA isolates were determined by staphylococcal chromosome cassette mec (SCCmec) typing and pulsed-field gel electrophoresis (PFGE), respectively. RESULTS: Among 236 isolates, 24 (10.17 %) were recognized as MRSA. MRSA isolates showed different resistance rates to 11 antimicrobials ranging from 33.33 to 100 %, while for MSSA isolates the rates varied from 8.02 to 91.51 %. Multi-drug resistance phenotype was found in all MRSA isolates. The ermC gene encoding macrolides-lincosamides-streptogramin B was the most prevalent gene detected in 87.29 % of the S. aureus isolates, followed by ermB (83.05 %), blaZ (63.98 %), aacA-aphD (44.07 %), ermA (11.44 %) and mecA (11.02 %) genes. The prevalence of resistance genes in MRSA isolates was significantly higher than that of MSSA. Regarding the molecular morphology, SCCmec III (12/24, 50 %) was the most common SCCmec type. Furthermore, the PFGE typing showed that 24 MRSA were divided into 15 cluster groups (A to O), the major pulsotype J encompassed 25 % of MRSA isolates. CONCLUSIONS: The S. aureus isolates from food animals in Sichuan province of China have severe antimicrobials resistance with various resistance genes, especially MRSA isolates. Additionally, the genetic pool of MRSA isolates is diverse and complex, and further investigation is necessary.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/genética , Animales , Antibacterianos/farmacología , Bovinos , Pollos , China/epidemiología , Farmacorresistencia Bacteriana/genética , Patos , Meticilina/farmacología , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Pruebas de Sensibilidad Microbiana/veterinaria , Epidemiología Molecular , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Porcinos
9.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066609

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa), one of the dangerous multidrug resistance pathogens, orchestrates virulence factors production through quorum sensing (QS). Since the exploration of QS inhibitors, targeting virulence to circumvent bacterial pathogenesis without causing significant growth inhibition is a promising approach to treat P. aeruginosa infections. The present study has evaluated the anti-QS and anti-infective activity of epigallocatechin-3-gallate (EGCG), a bioactive ingredient of the traditional green tea, against P. aeruginosa. EGCG showed significant inhibitory effects on the development of biofilm, protease, elastase activity, swimming, and swarming motility, which was positively related to the production of C4-AHL. The expression of QS-related and QS-regulated virulence factors genes was also evaluated. Quantitative PCR analysis showed that EGCG significantly reduced the expression of las, rhl, and PQS genes and was highly correlated with the alterations of C4-AHL production. In-vivo experiments demonstrated that EGCG treatment reduced P. aeruginosa pathogenicity in Caenorhabditis elegans (C. elegans). EGCG increased the survival of C. elegans by 23.25%, 30.04%, and 36.35% in a dose-dependent manner. The findings of this study strongly suggest that EGCG could be a potential candidate for QS inhibition as an anti-virulence compound against bacterial infection.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Catequina/análogos & derivados , Pseudomonas aeruginosa/fisiología , Percepción de Quorum/efectos de los fármacos , Acil-Butirolactonas/metabolismo , Animales , Biopelículas/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/microbiología , Catequina/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Glucolípidos/biosíntesis , Pruebas de Sensibilidad Microbiana , Movimiento , Péptido Hidrolasas/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Piocianina/biosíntesis , Percepción de Quorum/genética
10.
Ecotoxicol Environ Saf ; 206: 111206, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32889309

RESUMEN

Copper nanoparticles (Cu NPs) are increasingly used as an animal feed additive in China. In previous studies, it was determined that Cu NPs can penetrate the placental barrier, however, its toxic effects on the fetus have not yet been elucidated. Therefore, in this study, we investigated the potential fetal toxic effects of Cu NPs. Cu NPs were orally administered to pregnant Sprague-Dawley rats from gestation days (GDs) 3-18 at a dose of 60, 120, and 180 mg/kg/day. Cesarean sections were conducted on GD 19. During fetal examination, no toxicities were observed regarding general clinical signs, however, Cu NPs significantly decreased fetal body weight, body length, and liver weights. Cu ions and Cu MPs exhibited similar effects on the fetal development. Cu NPs increased the liver concentration of Cu, and decreased protein levels and Fe in fetuses. Cu NPs also increased oxidative stress and inflammation in the fetus after pregnant rats were exposed to high doses of Cu NPs. Oral exposure to Cu NPs during pregnancy increased Cu concentrations in the fetus, which not only affected fetal development, but also significantly induced oxidative stress and inflammatory responses in fetal liver. Taken together, these findings are valuable to evaluate fetal risk assessment after oral exposure of Cu NPs during pregnancy. Additional comprehensive toxicity studies are deemed necessary to clarify the underlying mechanisms involved.


Asunto(s)
Cobre/toxicidad , Desarrollo Fetal/efectos de los fármacos , Trastornos Nutricionales en el Feto/inducido químicamente , Hígado/efectos de los fármacos , Exposición Materna/efectos adversos , Nanopartículas del Metal/toxicidad , Administración Oral , Animales , Antioxidantes/metabolismo , China , Citocinas/metabolismo , Femenino , Peso Fetal/efectos de los fármacos , Hígado/embriología , Hígado/inmunología , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Placenta/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Oligoelementos/metabolismo
11.
Med Res Rev ; 39(2): 561-578, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30136283

RESUMEN

Kidney diseases have become a global public health problem. The application of kidney-targeted drug-delivery systems in the management of kidney diseases has profound transformative potential. Kidney-targeted drug delivery can reduce the undesired side effects of often potent drugs and enhance drug efficacy in alleviating the kidney disease. Here, we review the literature on the potential strategies for targeting drugs to the kidneys. Specifically, we provide a broad overview of the targeting vectors and targeting pathways for renal tubules and glomeruli, as well as how the unique structural features of the glomerulus and the receptor-mediated internalization pathways of the tubules allows for drug targeting. Finally, we summarized the literature examples of drug delivery to the kidneys and elaborated strategies suitable for renal targeting to provide new therapeutic approaches for kidney diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos , Enfermedades Renales/tratamiento farmacológico , Glomérulos Renales/efectos de los fármacos , Túbulos Renales/efectos de los fármacos , Riñón/efectos de los fármacos , Animales , Anticuerpos/química , Tasa de Filtración Glomerular , Humanos , Células Madre Mesenquimatosas/citología , Nanomedicina , Nanopartículas , Podocitos/citología , Polímeros/química , Profármacos
12.
Pharm Biol ; 57(1): 710-716, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31622118

RESUMEN

Context: Methicillin-resistant Staphylococcus aureus (MRSA) is a very harmful bacterium. Oridonin, a component in Rabdosia rubescens (Hemsl.) Hara (Lamiaceae), is widely used against bacterial infections in China. Objective: We evaluated oridonin effects on MRSA cell membrane and wall, protein metabolism, lactate dehydrogenase (LDH), DNA and microscopic structure. Materials and methods: Broth microdilution and flat colony counting methods were used to measure oridonin minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against USA300 strain. Electrical conductivity and DNA exosmosis were analysed to study oridonin effects (128 µg/mL) on cell membrane and wall for 0, 1, 2, 4 and 6 h. Sodium dodecyl sulphate polyacrylamide gel electrophoresis was used to detect effects on soluble protein synthesis after 6, 10 and 16 h. LDH activity was examined with an enzyme-linked immunosorbent assay. Effects of oridonin on USA300 DNA were investigated with DAPI staining. Morphological changes in MRSA following oridonin treatment were determined with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results: Oridonin MIC and MBC values against USA300 were 64 and 512 µg/mL, respectively. The conductivity and DNA exosmosis level of oridonin-treated USA300 improved by 3.20±0.84% and increased by 58.63 ± 1.78 µg/mL, respectively. LDH and soluble protein levels decreased by 30.85±7.69% and 27.51 ± 1.39%, respectively. A decrease in fluorescence intensity was reported with time. Oridonin affected the morphology of USA300. Conclusions: Oridonin antibacterial mechanism was related to changes in cell membrane and cell wall permeability, disturbance in protein and DNA metabolism, and influence on bacterial morphology. Thus, oridonin may help in treating MRSA infection.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Diterpenos de Tipo Kaurano/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/administración & dosificación , Pared Celular/efectos de los fármacos , ADN Bacteriano/metabolismo , Diterpenos de Tipo Kaurano/administración & dosificación , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Factores de Tiempo
13.
Biochem Biophys Res Commun ; 495(2): 1702-1707, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29225170

RESUMEN

The success of all-trans retinoic acid (ATRA) in differentiation therapy for patients with acute promyelocytic leukemia (APL) highly encourages researches to apply a new combination therapy based on ATRA. Therefore, research strategies to further sensitize cells to retinoids are urgently needed. In this study, we showed that Dihydromyricetin (DMY), a 2,3-dihydroflavonol compound, exhibited a strong synergy with ATRA to promote APL NB4 cell differentiation. We observed that DMY sensitized the NB4 cells to ATRA-induced cell growth inhibition, CD11b expression, NBT reduction and myeloid regulator expression. PML-RARα might not be essential for DMY-enhanced differentiation when combined with ATRA, while the enhanced differentiation was dependent on the activation of p38-STAT1 signaling pathway. Taken together, our study is the first to evaluate the synergy of DMY and ATRA in NB4 cell differentiation and to assess new opportunities for the combination of DMY and ATRA as a promising approach for future differentiation therapy.


Asunto(s)
Flavonoles/administración & dosificación , Leucemia Promielocítica Aguda/tratamiento farmacológico , Factor de Transcripción STAT1/metabolismo , Tretinoina/administración & dosificación , Antineoplásicos/administración & dosificación , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas de Fusión Oncogénica/metabolismo , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
14.
J Sep Sci ; 40(22): 4329-4337, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28898533

RESUMEN

The purpose of this study was to optimize the extraction process of phloridzin from Lithocarpus polystachyus Rehd. leaves using response surface methodology and to determine the antioxidant capacity of the extract. A Box-Behnken design was used to analyze the effects of ethanol concentration, liquid-solid ratio, soak time and extraction time on the extraction yield of phloridzin. The content of phloridzin was determined by high-performance liquid chromatography. To assess the antioxidant capacity of the extract, three in vitro test systems were used (1,1-,diphenyl-2-picrylhydrazyl, hydroxyl radical scavenging test and reduction force). The optimal parameters obtained by response surface methodology were a volume fraction of ethanol of 64%, a liquid-solid ratio of 37:1, a soaking time of 35 h and a sonication time of 38 min. The proportion of the extraction of phloridzin from L. polystachyus under these industrial process conditions was 3.83%. According to the obtained results, response surface methodology could be suggested as an adequate model for optimizing the extraction process of phloridzin from L. polystachyus. Ultrasound extraction significantly increased the extraction rate of phloridzin, which could be used as an antioxidant in pharmaceutical and food products.


Asunto(s)
Antioxidantes/aislamiento & purificación , Fagaceae/química , Florizina/aislamiento & purificación , Extractos Vegetales/química , Hojas de la Planta/química , Ultrasonido
15.
Antonie Van Leeuwenhoek ; 109(7): 915-22, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27043440

RESUMEN

Both community-associated and hospital-acquired infections with methicillin-resistant Staphylococcus aureus (MRSA) have been increasingly reported around the world in the past 20 years. In 2006, the Centers for Disease Control and Prevention reported that 64 % of MRSA isolates were of the USA300 clonal type in infected patients in USA. The aim of our study was to estimate the in vitro effect of imperatorin on MRSA strain BAA-1717 (USA300). The effects of imperatorin on alpha-hemolysin (Hla) production, when strain BAA-1717 was co-cultured with sub-inhibitory concentrations of imperatorin, were analysed using susceptibility testing, hemolysis assays, western blotting and real-time PCR. Live/Dead analysis and cytotoxicity assays were employed to examine the protective effect of imperatorin against the strain BAA-1717-mediated injury of human alveolar epithelial cells (A549). The results showed that imperatorin has no anti-S. aureus activity at the tested concentrations in vitro. However, imperatorin can observably inhibit the production of Hla in culture supernatants and reduce the transcriptional levels of hla (the gene encoding Hla) and arg (the accessory gene regulator). Imperatorin prevented Hla-mediated A549 epithelial cell injury in a co-culture system. In conclusion, our results suggested that imperatorin has the potential to be developed as a new anti-virulence drug candidate for managing S. aureus infection.


Asunto(s)
Toxinas Bacterianas/biosíntesis , Furocumarinas/farmacología , Proteínas Hemolisinas/biosíntesis , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Células A549 , Células Epiteliales Alveolares/microbiología , Antibacterianos/farmacología , Toxinas Bacterianas/genética , Técnicas de Cocultivo , Proteínas Hemolisinas/genética , Hemólisis , Humanos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana
16.
Artículo en Inglés | MEDLINE | ID: mdl-38896348

RESUMEN

Metamizole easily decomposes in the body and has a short action time and low bioavailability. Hence, frequent injection administrations are needed to maintain its plasma concentration. This study aimed to design and develop an in-situ gel based on poloxamer 407 and 188 to assess its long-acting antipyretic effects. The in-situ gel-forming systep00m with optimum sol-gel transition temperature of 35.9 °C to 36.3 °C could be formed using a combination of P407 at a ratio of 21-23% (w/v) and P188 at a ratio of 2-4% (w/v). In vitro erosion test showed that the in-situ gel's erosion curve and the metamizole release rate both reached about 90% at 6 h, revealing a good linear relationship between the in-situ gel erosion and the drug release. In vitro release test with dialysis tube showed that the release of metamizole from the in-situ gel was remarkably slower than that from the metamizole solution. Approximately 85% of metamizole was released in the dialysis tube within 7 h, implying a good sustained release effect. Pharmacodynamic study showed that the in-situ gel injection extended the action time of metamizole relative to that when using the metamizole solution. Pharmacokinetic study revealed that the in-situ gel significantly increased the blood serum half-life and area under the curve), contributing to a sustained release and improved bioavailability. This study demonstrated that in-situ gel injection could prolong the action of metamizole in the body to reduce the number of administration times and has good clinical application.

17.
Int J Nanomedicine ; 19: 5511-5522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895144

RESUMEN

Introduction: Chrysin has a wide range of biological activities, but its poor bioavailability greatly limits its use. Here, we attempted to prepare casein (cas)-based nanoparticles to promote the biotransfer of chrysin, which demonstrated better bioavailability and anti-infection activity compared to free chrysin. Methods: Cas-based chrysin nanoparticles were prepared and characterized, and most of the preparation process was optimized. Then, the in vitro and in vivo release characteristics were studied, and anti-pulmonary infection activity was evaluated. Results: The constructed chrysin-cas nanoparticles exhibited nearly spherical morphology with particle size and ζ potential of 225.3 nm and -33 mV, respectively. These nanoparticles showed high encapsulation efficiency and drug-loading capacity of 79.84% ± 1.81% and 11.56% ± 0.28%, respectively. In vitro release studies highlighted a significant improvement in the release profile of the chrysin-cas nanoparticles (CCPs). In vivo experiments revealed that the relative oral bioavailability of CCPs was approximately 2.01 times higher than that of the free chrysin suspension. Further investigations indicated that CCPs effectively attenuated pulmonary infections caused by Acinetobacter baumannii by mitigating oxidative stress and reducing pro-inflammatory cytokines levels, and the efficacy was better than that of the free chrysin suspension. Conclusion: The findings underscore the advantageous bioavailability of CCPs and their protective effects against pulmonary infections. Such advancements position CCPs as a promising pharmaceutical agent and candidate for future therapeutic drug innovations.


Asunto(s)
Disponibilidad Biológica , Caseínas , Flavonoides , Nanopartículas , Tamaño de la Partícula , Flavonoides/química , Flavonoides/farmacología , Flavonoides/farmacocinética , Caseínas/química , Caseínas/farmacocinética , Animales , Nanopartículas/química , Ratones , Liberación de Fármacos , Masculino , Estrés Oxidativo/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/farmacocinética , Antibacterianos/administración & dosificación , Citocinas/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética
18.
Int J Nanomedicine ; 18: 7403-7415, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090363

RESUMEN

Introduction: Biofilm is highly resistant to antibiotics due to its heterogeneity and is implicated in over 80% of chronic infections; these refractory and relapse-prone infections pose a huge medical burden. Methods: In this study, rhamnolipid (RHL), a biosurfactant with antibiofilm activity, was loaded with the antibiotic azithromycin (AZI) to construct a stable nanomicelle (AZI@RHL) that promotes Staphylococcus aureus (S. aureus) biofilm disruption. Results: AZI@RHL micelles made a destruction in biofilms. The biofilm biomasses were reduced significantly by 48.2% (P<0.05), and the main components polysaccharides and proteins were reduced by 47.5% and 36.8%, respectively. These decreases were about 3.1 (15.9%), 7.3 (6.5%), and 1.9 (19.5%) times higher compared with those reported for free AZI. The disruption of biofilm structure was observed under a confocal microscope with fluorescent labeling, and 48.2% of the cells in the biofilm were killed. By contrast, the clearance rates of cells were only 20% and 17% when treated alone with blank micelles or free AZI. Biofilm formation was inhibited up to 92% in the AZI@RHL group due to effects on cell auto-aggregation and eDNA release. The rates for the other groups were significantly lower, with only 27.7% for the RHL group and 12% for the AZI group (P<0.05). The low cell survival and great formation inhibition could reduce biofilm recolonization and re-formation. Conclusion: The antibiofilm efficacy of rhamnolipid was improved through micellar nanoparticle effects when loading azithromycin. AZI@RHL provides a one-step solution that covers biofilm disruption, bacteria inactivation, recolonization avoidance, and biofilm re-formation inhibition.


Asunto(s)
Azitromicina , Infecciones Estafilocócicas , Humanos , Azitromicina/farmacología , Staphylococcus aureus , Micelas , Antibacterianos/farmacología , Infecciones Estafilocócicas/microbiología , Biopelículas , Pruebas de Sensibilidad Microbiana
19.
Animals (Basel) ; 13(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37685034

RESUMEN

The aim of this study was to explore the association between antimicrobial resistance, ESBL genes, and virulence genes of Salmonella isolates. From 2019 to 2021, a total of 117 Salmonella isolates were obtained from symptomatic chickens in Sichuan Province, China. The strains were tested for antimicrobial resistance and the presence of ESBL according to the Clinical and Laboratory Standards Institute (CLSI) instructions. The presence of ESBL genes and genes for virulence was determined using Polymerase Chain Reaction (PCR). In addition, Multilocus Sequence Typing (MLST) was applied to confirm the molecular genotyping. Moreover, the mechanism of ESBL and virulence gene transfer and the relationships between the resistance phenotype, ESBL genes, and virulence genes were explored. The isolates exhibited different frequencies of resistance to antibiotics (resistance rates ranged from 21.37% to 97.44%), whereas 68.38% and 41.03% of isolates were multi-drug resistance (MDR) and ESBL-producers, respectively. In the PCR analysis, blaCTX-M was the most prevalent ESBL genotype (73.42%, 58/79), and blaCTX-M-55 showed the most significant effect on the resistance to cephalosporins as tested by logistic regression analysis. Isolates showed a high carriage rate of invA, avrA, sopB, sopE, ssaQ, spvR, spvB, spvC, stn, and bcfC (ranged from 51.28% to 100%). MLST analysis revealed that the 117 isolates were divided into 11 types, mainly ST92, ST11, and ST3717. Of 48 ESBL-producers, 21 transconjugants were successfully obtained by conjugation. Furthermore, ESBL and spv virulence genes were obtained simultaneously in 15 transconjugants. These results highlighted that Salmonella isolates were common carriers of ESBLs and multiple virulence genes. Horizontal transfer played a key role in disseminating antimicrobial resistance and pathogenesis. Therefore, it is necessary to continuously monitor the use of antimicrobials and the prevalence of AMR and virulence in Salmonella from food animals and to improve the antibiotic stewardship for salmonellosis.

20.
Poult Sci ; 102(11): 102936, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37708764

RESUMEN

The aim of this study was to investigate the effects of adding tea tree oil (TTO) in the basal diet on growth performance, immune function, and intestinal function in broilers. This study utilized 1,650 one-day-old broilers with good health and similar body weight. Subjects were randomized into 5 groups with 6 replicates each: the control group (CON, basal diet), positive control group (PCG, basal diet + 100 mg/kg oregano oil in diet), low-dose TTO group (TTO-L, 50 mg/kg TTO added in the basal diet), medium-dose TTO group (TTO-M, 100 mg/kg TTO added in the basal diet), and high-dose TTO group (TTO-H, 200 mg/kg TTO added in the basal diet). The whole test period lasted 28 d. The results showed that the broilers fed with TTO supplemented diet had significantly higher body weight and average daily gain (ADG) (P = 0.013), and had a lower feed conversion ratio (F/G) (P = 0.010) throughout the trial period. The index of thymus in TTO-M increased significantly compared to CON (P = 0.015) on d 28. On d 14 and 28, C3, IFN-γ, TNF-α, and IL-2 levels in TTO-L serum were significantly increased (P < 0.001); the 3 test groups supplemented with TTO had significantly higher titers of avian influenza H9 subtype in their serum (P < 0.05). Tea tree oil supplement in the diet also had a positive and significant effect on the intestinal morphology of broilers throughout the experiment (P < 0.05). These results indicate that TTO has the ability to promote broiler growth, regulate immunity, and improve intestinal morphology. The proposed dosage of adding 50 mg/kg in broiler basal diets provides a theoretical basis for its subsequent use in livestock feeds.


Asunto(s)
Aceite de Árbol de Té , Animales , Aceite de Árbol de Té/farmacología , Pollos/fisiología , Suplementos Dietéticos , Dieta/veterinaria , Peso Corporal , Inmunidad , Alimentación Animal/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA