Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.700
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(1): 226-244.e17, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32649875

RESUMEN

Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteogenómica , Fumar/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinógenos/toxicidad , Estudios de Cohortes , Citosina Desaminasa/metabolismo , Asia Oriental , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Metaloproteinasas de la Matriz/metabolismo , Mutación/genética , Análisis de Componente Principal
2.
Cell ; 179(2): 373-391.e27, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585079

RESUMEN

Cells regulate gene expression in response to salient external stimuli. In neurons, depolarization leads to the expression of inducible transcription factors (ITFs) that direct subsequent gene regulation. Depolarization encodes both a neuron's action potential (AP) output and synaptic inputs, via excitatory postsynaptic potentials (EPSPs). However, it is unclear if distinct types of electrical activity can be transformed by an ITF into distinct modes of genomic regulation. Here, we show that APs and EPSPs in mouse hippocampal neurons trigger two spatially segregated and molecularly distinct induction mechanisms that lead to the expression of the ITF NPAS4. These two pathways culminate in the formation of stimulus-specific NPAS4 heterodimers that exhibit distinct DNA binding patterns. Thus, NPAS4 differentially communicates increases in a neuron's spiking output and synaptic inputs to the nucleus, enabling gene regulation to be tailored to the type of depolarizing activity along the somato-dendritic axis of a neuron.


Asunto(s)
Potenciales de Acción , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Potenciales Postsinápticos Excitadores , Neuronas/metabolismo , Activación Transcripcional , Regiones no Traducidas 3' , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiología , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Multimerización de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38609331

RESUMEN

Natural language processing (NLP) has become an essential technique in various fields, offering a wide range of possibilities for analyzing data and developing diverse NLP tasks. In the biomedical domain, understanding the complex relationships between compounds and proteins is critical, especially in the context of signal transduction and biochemical pathways. Among these relationships, protein-protein interactions (PPIs) are of particular interest, given their potential to trigger a variety of biological reactions. To improve the ability to predict PPI events, we propose the protein event detection dataset (PEDD), which comprises 6823 abstracts, 39 488 sentences and 182 937 gene pairs. Our PEDD dataset has been utilized in the AI CUP Biomedical Paper Analysis competition, where systems are challenged to predict 12 different relation types. In this paper, we review the state-of-the-art relation extraction research and provide an overview of the PEDD's compilation process. Furthermore, we present the results of the PPI extraction competition and evaluate several language models' performances on the PEDD. This paper's outcomes will provide a valuable roadmap for future studies on protein event detection in NLP. By addressing this critical challenge, we hope to enable breakthroughs in drug discovery and enhance our understanding of the molecular mechanisms underlying various diseases.


Asunto(s)
Descubrimiento de Drogas , Procesamiento de Lenguaje Natural , Transducción de Señal
5.
Mol Cell Proteomics ; 23(5): 100762, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608839

RESUMEN

Protein post-translational modifications (PTMs) are crucial in plant cellular processes, particularly in protein folding and signal transduction. N-glycosylation and phosphorylation are notably significant PTMs, playing essential roles in regulating plant responses to environmental stimuli. However, current sequential enrichment methods for simultaneous analysis of phosphoproteome and N-glycoproteome are labor-intensive and time-consuming, limiting their throughput. Addressing this challenge, this study introduces a novel tandem S-Trap-IMAC-HILIC (S-Trap: suspension trapping; IMAC: immobilized metal ion affinity chromatography; HILIC: hydrophilic interaction chromatography) strategy, termed TIMAHAC, for simultaneous analysis of plant phosphoproteomics and N-glycoproteomics. This approach integrates IMAC and HILIC into a tandem tip format, streamlining the enrichment process of phosphopeptides and N-glycopeptides. The key innovation lies in the use of a unified buffer system and an optimized enrichment sequence to enhance efficiency and reproducibility. The applicability of TIMAHAC was demonstrated by analyzing the Arabidopsis phosphoproteome and N-glycoproteome in response to abscisic acid (ABA) treatment. Up to 1954 N-glycopeptides and 11,255 phosphopeptides were identified from Arabidopsis, indicating its scalability for plant tissues. Notably, distinct perturbation patterns were observed in the phosphoproteome and N-glycoproteome, suggesting their unique contributions to ABA response. Our results reveal that TIMAHAC offers a comprehensive approach to studying complex regulatory mechanisms and PTM interplay in plant biology, paving the way for in-depth investigations into plant signaling networks.


Asunto(s)
Arabidopsis , Cromatografía de Afinidad , Fosfoproteínas , Proteómica , Flujo de Trabajo , Proteómica/métodos , Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/análisis , Cromatografía de Afinidad/métodos , Proteínas de Arabidopsis/metabolismo , Glicopéptidos/metabolismo , Glicopéptidos/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Fosforilación , Fosfopéptidos/metabolismo , Fosfopéptidos/análisis , Espectrometría de Masas en Tándem , Proteínas de Plantas/metabolismo
6.
Mol Cell Proteomics ; 23(8): 100804, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901673

RESUMEN

Osmotic stress significantly hampers plant growth and crop yields, emphasizing the need for a thorough comprehension of the underlying molecular responses. Previous research has demonstrated that osmotic stress rapidly induces calcium influx and signaling, along with the activation of a specific subset of protein kinases, notably the Raf-like protein (RAF)-sucrose nonfermenting-1-related protein kinase 2 (SnRK2) kinase cascades within minutes. However, the intricate interplay between calcium signaling and the activation of RAF-SnRK2 kinase cascades remains elusive. Here, in this study, we discovered that Raf-like protein (RAF) kinases undergo hyperphosphorylation in response to osmotic shocks. Intriguingly, treatment with the calcium chelator EGTA robustly activates RAF-SnRK2 cascades, mirroring the effects of osmotic treatment. Utilizing high-throughput data-independent acquisition-based phosphoproteomics, we unveiled the global impact of EGTA on protein phosphorylation. Beyond the activation of RAFs and SnRK2s, EGTA treatment also activates mitogen-activated protein kinase cascades, Calcium-dependent protein kinases, and receptor-like protein kinases, etc. Through overlapping assays, we identified potential roles of mitogen-activated protein kinase kinase kinase kinases and receptor-like protein kinases in the osmotic stress-induced activation of RAF-SnRK2 cascades. Our findings illuminate the regulation of phosphorylation and cellular events by Ca2+ signaling, offering insights into the (exocellular) Ca2+ deprivation during early hyperosmolality sensing and signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Egtácico , Manitol , Presión Osmótica , Proteómica , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Fosforilación , Proteínas de Arabidopsis/metabolismo , Proteómica/métodos , Ácido Egtácico/farmacología , Ácido Egtácico/análogos & derivados , Manitol/farmacología , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas raf/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(13): e2300363120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36961922

RESUMEN

α- and ß-neurexins are extensively alternatively spliced, presynaptic cell-adhesion molecules that are thought to organize synapse assembly. However, recent data revealed that, in the hippocampus in vivo, the deletion of one neurexin isoform, Nrxn2, surprisingly increased excitatory synapse numbers and enhanced their presynaptic release probability, suggesting that Nrxn2 restricts, instead of enabling, synapse assembly. To delineate the synaptic function and mechanism of action of Nrxn2, we examined cultured hippocampal neurons as a reduced system. In heterologous synapse formation assays, different alternatively spliced Nrxn2ß isoforms robustly promoted synapse assembly similar to Nrxn1ß and Nrxn3ß, consistent with a general synaptogenic function of neurexins. Deletion of Nrxn2 from cultured hippocampal neurons, however, caused a significant increase in synapse density and release probability, replicating the in vivo data that suggested a synapse-restricting function. Rescue experiments revealed that two of the four Nrxn2ß splice variants (Nrxn2ß-SS4+/SS5- and Nrxn2ß-SS4+/SS5+) reversed the increase in synapse density in Nrxn2-deficient neurons, whereas only one of the four Nrxn2ß splice variants (Nrxn2ß-SS4+/SS5+) normalized the increase in release probability in Nrxn2-deficient neurons. Thus, a subset of Nrxn2 splice variants restricts synapse numbers and restrains their release probability in cultured neurons.


Asunto(s)
Empalme Alternativo , Sinapsis , Sinapsis/metabolismo , Hipocampo/metabolismo , Moléculas de Adhesión Celular/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo
8.
Mol Cell Proteomics ; 22(9): 100624, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495186

RESUMEN

Secondary mutation, T790M, conferring tyrosine kinase inhibitors (TKIs) resistance beyond oncogenic epidermal growth factor receptor (EGFR) mutations presents a challenging unmet need. Although TKI-resistant mechanisms are intensively investigated, the underlying responses of cancer cells adapting drug perturbation are largely unknown. To illuminate the molecular basis linking acquired mutation to TKI resistance, affinity purification coupled mass spectrometry was adopted to dissect EGFR interactome in TKI-sensitive and TKI-resistant non-small cell lung cancer cells. The analysis revealed TKI-resistant EGFR-mutant interactome allocated in diverse subcellular distribution and enriched in endocytic trafficking, in which gefitinib intervention activated autophagy-mediated EGFR degradation and thus autophagy inhibition elevated gefitinib susceptibility. Alternatively, gefitinib prompted TKI-sensitive EGFR translocating toward cell periphery through Rab7 ubiquitination which may favor efficacy to TKIs suppression. This study revealed that T790M mutation rewired EGFR interactome that guided EGFR to autophagy-mediated degradation to escape treatment, suggesting that combination therapy with TKI and autophagy inhibitor may overcome acquired resistance in non-small cell lung cancer.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Gefitinib/farmacología , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutación/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral
9.
Mol Biol Evol ; 40(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36617265

RESUMEN

Recent studies have increasingly pointed to microRNAs (miRNAs) as the agent of gene regulatory network (GRN) stabilization as well as developmental canalization against constant but small environmental perturbations. To analyze mild perturbations, we construct a Dicer-1 knockdown line (dcr-1 KD) in Drosophila that modestly reduces all miRNAs by, on average, ∼20%. The defining characteristic of stabilizers is that, when their capacity is compromised, GRNs do not change their short-term behaviors. Indeed, even with such broad reductions across all miRNAs, the changes in the transcriptome are very modest during development in stable environment. By comparison, broad knockdowns of other regulatory genes (esp. transcription factors) by the same method should lead to drastic changes in the GRNs. The consequence of destabilization may thus be in long-term development as postulated by the theory of canalization. Flies with modest miRNA reductions may gradually deviate from the developmental norm, resulting in late-stage failures such as shortened longevity. In the optimal culture condition, the survival to adulthood is indeed normal in the dcr-1 KD line but, importantly, adult longevity is reduced by ∼90%. When flies are stressed by high temperature, dcr-1 KD induces lethality earlier in late pupation and, as the perturbations are shifted earlier, the affected stages are shifted correspondingly. Hence, in late stages of development with deviations piling up, GRN would be increasingly in need of stabilization. In conclusion, miRNAs appear to be a solution to weak but constant environmental perturbations.


Asunto(s)
MicroARNs , Transcriptoma , Animales , MicroARNs/genética , Drosophila/genética , Longevidad , Fenotipo , Redes Reguladoras de Genes
10.
Br J Haematol ; 204(4): 1344-1353, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479427

RESUMEN

This study investigates the potential utility of IKZF1 deletion as an additional high-risk marker for paediatric acute lymphoblastic leukaemia (ALL). The prognostic impact of IKZF1 status, in conjunction with minimal/measurable residual disease (MRD), was evaluated within the MRD-guided TPOG-ALL-2013 protocol using 412 newly diagnosed B-ALL patients aged 1-18. IKZF1 status was determined using multiplex ligation-dependent probe amplification. IKZF1 deletions, when co-occurring with CDKN2A, CDKN2B, PAX5 or PAR1 region deletions in the absence of ERG deletions, were termed IKZF1plus. Both IKZF1 deletion (14.6%) and IKZF1plus (7.8%) independently predicted poorer outcomes in B-ALL. IKZF1plus was observed in 4.1% of Philadelphia-negative ALL, with a significantly lower 5-year event-free survival (53.9%) compared to IKZF1 deletion alone (83.8%) and wild-type IKZF1 (91.3%) (p < 0.0001). Among patients with Day 15 MRD ≥0.01%, provisional high-risk patients with IKZF1plus exhibited the worst outcomes in event-free survival (42.0%), relapse-free survival (48.0%) and overall survival (72.7%) compared to other groups (p < 0.0001). Integration of IKZF1plus and positive Day 15 MRD identified a subgroup of Philadelphia-negative B-ALL with a 50% risk of relapse. This study highlights the importance of assessing IKZF1plus alongside Day 15 MRD positivity to identify patients at increased risk of adverse outcomes, potentially minimizing overtreatment.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Eliminación de Gen , Factor de Transcripción Ikaros/genética , Recurrencia Local de Neoplasia , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico , Medición de Riesgo , Factores de Transcripción , Lactante , Preescolar , Adolescente
11.
Anal Chem ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248687

RESUMEN

This study introduces a new approach to optimizing graphene oxide (GO) properties using liquid-phase plasma treatment in a microenvironment. Our innovation exploits atomic force microscopy (AFM) cantilever frequency tracking to monitor mass variations in GO, which are indicative of surface oxidation-reduction processes or substituent doping (boron/nitrogen). Complementary in situ Raman spectroscopy has observed D/G band shifts, and X-ray photoelectron spectroscopy (XPS) determined the C/O ratio and B/N doping levels pre- and post-treatment, confirming chemical tuning to GO. We can achieve femtogram-level precision in detecting nanomaterial mass changes by correlating elemental ratios with AFM cantilever frequency measurements. This multifaceted approach not only enhances our understanding of the chemical properties of GO but also establishes a new, versatile method for monitoring, modifying, and optimizing the properties of nanomaterials.

12.
Small ; 20(2): e2305317, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670223

RESUMEN

Stimuli-responsive ion nanochannels have attracted considerable attention in various fields because of their remote controllability of ionic transportation. For photoresponsive ion nanochannels, however, achieving precise regulation of ion conductivity is still challenging, primarily due to the difficulty of programmable structural changes in confined environments. Moreover, the relationship between noncontact photo-stimulation in nanoscale and light-induced ion conductivity has not been well understood. In this work, a versatile design for fabricating guard cell-inspired photoswitchable ion channels is presented by infiltrating azobenzene-cross-linked polymer (AAZO-PDAC) into nanoporous anodic aluminum oxide (AAO) membranes. The azobenzene-cross-linked polymer is formed by azobenzene chromophore (AAZO)-cross-linked poly(diallyldimethylammonium chloride) (PDAC) with electrostatic interactions. Under UV irradiation, the trans-AAZO isomerizes to the cis-AAZO, causing the volume compression of the polymer network, whereas, in darkness, the cis-AAZO reverts to the trans-AAZO, leading to the recovery of the structure. Consequently, the resultant nanopore sizes can be manipulated by the photomechanical effect of the AAZO-PDAC polymers. By adding ionic liquids, the ion conductivity of the light-driven ion nanochannels can be controlled with good repeatability and fast responses (within seconds) in multiple cycles. The ion channels have promising potential in the applications of biomimetic materials, sensors, and biomedical sciences.

13.
Mod Pathol ; 37(2): 100405, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104893

RESUMEN

Large or blastoid B-cell neoplasms that are SOX11+ are a diagnostic dilemma and raise a differential diagnosis of cyclin D1-negative blastoid/pleomorphic mantle cell lymphoma (MCL) versus diffuse large B-cell lymphoma (DLBCL) or blastoid high-grade B-cell lymphoma (HGBL) with aberrant SOX11 expression. Here we report a study cohort of 13 SOX11+ large/blastoid B-cell neoplasms. Fluorescence in situ hybridization analysis was negative for CCND1 rearrangement in all 13 cases; 1 of 8 (12.5%) cases tested showed CCND2 rearrangement and 2 (25%) cases had extracopies of CCND2. Gene expression profiling showed that the study group had a gene expression signature similar to cyclin D1+ blastoid/pleomorphic MCL but different from DLBCL. Principal component analysis revealed that the cohort cases overlapped with cyclin D1+ blastoid/pleomorphic MCL but had minimal overlap with DLBCL. All patients in the cohort had clinicopathologic features similar to those reported for patients with cyclin D1+ MCL. We also performed a survey of SOX11 expression in a group of 85 cases of DLBCL and 24 cases of blastoid HGBL. SOX11 expression showed a 100% specificity and positive predictive value for the diagnosis of MCL. Overall, the results support the conclusion that large or blastoid B-cell neoplasms that are positive for SOX11 are best classified as cyclin D1-negative blastoid/pleomorphic MCL, and not as DLBCL or blastoid HGBL. We also conclude that SOX11 is a specific marker for the diagnosis of MCL, including cyclin D1-negative blastoid/pleomorphic MCL cases and should be performed routinely on blastoid/large B-cell neoplasms to help identify potential cases of cyclin D1-negative blastoid/pleomorphic MCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfoma de Células del Manto , Adulto , Humanos , Linfoma de Células del Manto/metabolismo , Ciclina D1/genética , Hibridación Fluorescente in Situ , Inmunohistoquímica , Linfoma de Células B Grandes Difuso/patología , Factores de Transcripción SOXC/genética
14.
Plant Cell Environ ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924092

RESUMEN

The rice Zaxinone Synthase (ZAS) gene encodes a carotenoid cleavage dioxygenase (CCD) that forms the apocarotenoid growth regulator zaxinone in vitro. Here, we generated and characterized constitutive ZAS-overexpressing rice lines, to better understand ZAS role in determining zaxinone content and regulating growth and architecture. ZAS overexpression enhanced endogenous zaxinone level, promoted root growth and increased the number of productive tillers, leading to about 30% higher grain yield per plant. Hormone analysis revealed a decrease in strigolactone (SL) content, which we confirmed by rescuing the high-tillering phenotype through application of a SL analogue. Metabolomics analysis revealed that ZAS overexpressing plants accumulate higher amounts of monosaccharide sugars, in line with transcriptome analysis. Moreover, transgenic plants showed higher carbon (C) assimilation rate and elevated root phosphate, nitrate and sulphate level, enhancing the tolerance towards low phosphate (Pi). Our study confirms ZAS as an important determinant of rice growth and architecture and shows that ZAS regulates hormone homoeostasis and a combination of physiological processes to promote growth and grain yield, which makes this gene an excellent candidate for sustainable crop improvement.

15.
Opt Lett ; 49(18): 5324-5327, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39270296

RESUMEN

Solar-blind ultraviolet (UV) photodetectors are in great demand for both military and civilian applications. Here, we have successfully demonstrated the synthesis of the Sn-doped Ga2O3 films with controllable bandgaps to construct PdSe2/Ga2O3 van der Waals (vdW) heterojunctions achieving highly sensitive full solar-blind UV spectrum detection. The assembled device demonstrates a full solar-blind UV spectral self-powered response, with a large responsivity of 123.5 mA/W, a high specific detectivity of 1.63 × 1013 Jones, and a rapid response time of 0.15/2.3 ms. Importantly, an outstanding solar-blind UV imaging application based on an integrated PdSe2/Ga2O3 device array has been demonstrated. Our work paves a feasible path toward achieving highly sensitive solar-blind UV detecting and imaging based on wide-bandgap Ga2O3 films.

16.
Reprod Biol Endocrinol ; 22(1): 79, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997744

RESUMEN

BACKGROUND: Dysfunctional uterine peristalsis seems to play a pivotal role in hindering embryo implantation among women diagnosed with adenomyosis. This research aims to investigate whether administering an oxytocin receptor antagonist during a frozen embryo transfer (FET) cycle using a hormone replacement therapy (HRT) protocol can enhance in vitro fertilization (IVF) outcomes for infertile women affected by adenomyosis. METHODS: Between January 2018 and June 2022, our reproductive center conducted IVF-FET HRT cycles for infertile women diagnosed with adenomyosis. Propensity score matching was employed to select matched subjects between the two groups in a 1:1 ratio. Following this, 168 women received an oxytocin receptor antagonist during FET, constituting the study group, while the matched 168 women underwent FET without this antagonist, forming the control group. We conducted comparative analyses of baseline and cycle characteristics between the two groups, along with additional subgroup analyses. RESULTS: The study group exhibited notably lower rates of early miscarriage compared to the control group, although there were no significant differences in clinical pregnancy rates, ongoing pregnancy rates, and live birth rates between the two groups. Multivariate analysis revealed a negative correlation between the use of oxytocin receptor antagonists and early miscarriage rates in women with adenomyosis. Subgroup analyses, categorized by age, infertility types, and embryo transfer day, showed a substantial decrease in early miscarriage rates within specific subgroups: women aged ≥ 37 years, those with secondary infertility, and individuals undergoing day 3 embryo transfers in the study group compared to the control group. Furthermore, subgroup analysis based on adenomyosis types indicated significantly higher clinical pregnancy rates, ongoing pregnancy rates and live birth rates in the study group compared to the control group among women with diffuse adenomyosis. CONCLUSIONS: Administering an oxytocin receptor antagonist during FET may reduce the early miscarriage rates in women with adenomyosis.


Asunto(s)
Aborto Espontáneo , Adenomiosis , Transferencia de Embrión , Fertilización In Vitro , Infertilidad Femenina , Índice de Embarazo , Puntaje de Propensión , Receptores de Oxitocina , Humanos , Femenino , Transferencia de Embrión/métodos , Adulto , Embarazo , Adenomiosis/complicaciones , Adenomiosis/tratamiento farmacológico , Fertilización In Vitro/métodos , Aborto Espontáneo/epidemiología , Aborto Espontáneo/prevención & control , Receptores de Oxitocina/antagonistas & inhibidores , Infertilidad Femenina/terapia , Infertilidad Femenina/etiología , Infertilidad Femenina/epidemiología , Estudios Retrospectivos , Criopreservación , Terapia de Reemplazo de Hormonas/métodos , Antagonistas de Hormonas/uso terapéutico , Antagonistas de Hormonas/administración & dosificación
17.
Exp Eye Res ; 242: 109870, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514023

RESUMEN

Retinal neovascularization (RNV) is a pathological process that primarily occurs in diabetic retinopathy, retinopathy of prematurity, and retinal vein occlusion. It is a common yet debilitating clinical condition that culminates in blindness. Urgent efforts are required to explore more efficient and less limiting therapeutic strategies. Key RNA-binding proteins (RBPs), crucial for post-transcriptional regulation of gene expression by binding to RNAs, are closely correlated with RNV development. RBP-RNA interactions are altered during RNV. Here, we briefly review the characteristics and functions of RBPs, and the mechanism of RNV. Then, we present insights into the role of the regulatory network of RBPs in RNV. HuR, eIF4E, LIN28B, SRSF1, METTL3, YTHDF1, Gal-1, HIWI1, and ZFR accelerate RNV progression, whereas YTHDF2 and hnRNPA2B1 hinder it. The mechanisms elucidated in this review provide a reference to guide the design of therapeutic strategies to reverse abnormal processes.


Asunto(s)
Proteínas de Unión al ARN , Neovascularización Retiniana , Humanos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación de la Expresión Génica/fisiología , Animales
18.
Haemophilia ; 30(3): 609-616, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38523289

RESUMEN

BACKGROUND: The healthcare systems in Asia vary greatly due to the socio-economic and cultural diversities which impact haemophilia management. METHODS: An advisory board meeting was conducted with experts in haemophilia care from Asia to understand the heterogeneity in clinical practices and care provision in the region. FINDINGS: The overall prevalence of haemophilia in Asia ranges between 3 and 8.58/100,000 patients. Haemophilia A was more prevalent as compared to haemophilia B with a ratio of around 5:1. There is under-diagnosis in the region due to lack of diagnosis, registries and/or lack of appropriate facilities in suburban areas. Most patients are referred to the haematologists by their families or primary care physicians, while some are identified during bleeding episodes. Genetic testing faces obstacles like resource constraints, services available at limited centres and unwillingness of patients to participate. Prophylaxis is offered for people with haemophilia (PWH) with a severe bleeding phenotype. Recombinant factors are approved in most countries across the region and are the preferred therapy. The challenges highlighted for not receiving a high standard of care include patients' reluctance to use an intravenous treatment, poor patient compliance due to frequency of infusions, budget constraints and lack of funding, insurance, availability and accessibility of factor concentrates. Prevalence of neutralizing antibodies ranged from 5% to 20% in the region. Use of immune tolerance induction and bypassing agents to treat inhibitors depends on their cost and availability. CONCLUSION: Haemophilia care in Asia has evolved to a great extent. However, some challenges remain for which a strategic approach along with multi-stakeholder involvement are needed.


Asunto(s)
Hemofilia A , Humanos , Hemofilia A/terapia , Hemofilia A/epidemiología , Asia/epidemiología , Prevalencia , Atención a la Salud , Hemofilia B/terapia , Hemofilia B/epidemiología
19.
Pediatr Blood Cancer ; : e31332, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289866

RESUMEN

A 5-year-old female diagnosed with severe hemophilia B began experiencing frequent muscular and joint bleeds at 19 months old. Molecular studies, including Sanger sequencing, Giemsa banding, human androgen receptor (HUMARA) assay, array-based comparative genomic hybridization (aCGH), whole-exome sequencing (WES), and multiplex ligation-dependent probe amplification (MLPA), revealed a heterozygous factor IX (F9) intron 3 substitution (c.277+1G>T) inherited from her mother and a de novo heterozygous 441 kb deletion in the Xq28 region, which flanked intron 22 homologous regions 1 (int22h1) and 2 (int22h2). This rare genetic profile explains her severe phenotype and guides hereditary consultation for family planning.

20.
Bioorg Chem ; 143: 107000, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029571

RESUMEN

G1 to S phase transition 1 (GSPT1) is a key translation termination factor that significantly overexpressed in various cancer tissues and cells. Molecular glue is a kind of small molecule, which can bind to an E3 ligase such as cereblon (CRBN) and subsequently recruit neosubstrate proteins for ubiquitination-proteasomal degradation. This emerging therapeutic approach shows great potential in treating cancers and other diseases. This review aims to introduce current understanding of antitumor mechanism of molecular glues targeting GSPT1, summarize pharmacology profiles of existing molecular glues, and outline development strategies of novel molecular glues. The insights provided in this review will be valuable for future studies.


Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA