Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2318874121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753510

RESUMEN

The single-pass transmembrane protein Stromal Interaction Molecule 1 (STIM1), located in the endoplasmic reticulum (ER) membrane, possesses two main functions: It senses the ER-Ca2+ concentration and directly binds to the store-operated Ca2+ channel Orai1 for its activation when Ca2+ recedes. At high resting ER-Ca2+ concentration, the ER-luminal STIM1 domain is kept monomeric but undergoes di/multimerization once stores are depleted. Luminal STIM1 multimerization is essential to unleash the STIM C-terminal binding site for Orai1 channels. However, structural basis of the luminal association sites has so far been elusive. Here, we employed molecular dynamics (MD) simulations and identified two essential di/multimerization segments, the α7 and the adjacent region near the α9-helix in the sterile alpha motif (SAM) domain. Based on MD results, we targeted the two STIM1 SAM domains by engineering point mutations. These mutations interfered with higher-order multimerization of ER-luminal fragments in biochemical assays and puncta formation in live-cell experiments upon Ca2+ store depletion. The STIM1 multimerization impeded mutants significantly reduced Ca2+ entry via Orai1, decreasing the Ca2+ oscillation frequency as well as store-operated Ca2+ entry. Combination of the ER-luminal STIM1 multimerization mutations with gain of function mutations and coexpression of Orai1 partially ameliorated functional defects. Our data point to a hydrophobicity-driven binding within the ER-luminal STIM1 multimer that needs to switch between resting monomeric and activated multimeric state. Altogether, these data reveal that interactions between SAM domains of STIM1 monomers are critical for multimerization and activation of the protein.


Asunto(s)
Calcio , Retículo Endoplásmico , Simulación de Dinámica Molecular , Proteínas de Neoplasias , Proteína ORAI1 , Multimerización de Proteína , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/química , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Retículo Endoplásmico/metabolismo , Calcio/metabolismo , Proteína ORAI1/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/química , Dominios Proteicos , Células HEK293 , Sitios de Unión , Unión Proteica
2.
Int J Mol Sci ; 21(10)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455637

RESUMEN

Calcium (Ca2+) is a universal signaling ion that is essential for the life and death processes of all eukaryotes. In humans, numerous cell stimulation pathways lead to the mobilization of sarco/endoplasmic reticulum (S/ER) stored Ca2+, resulting in the propagation of Ca2+ signals through the activation of processes, such as store-operated Ca2+ entry (SOCE). SOCE provides a sustained Ca2+ entry into the cytosol; moreover, the uptake of SOCE-mediated Ca2+ by mitochondria can shape cytosolic Ca2+ signals, function as a feedback signal for the SOCE molecular machinery, and drive numerous mitochondrial processes, including adenosine triphosphate (ATP) production and distinct cell death pathways. In recent years, tremendous progress has been made in identifying the proteins mediating these signaling pathways and elucidating molecular structures, invaluable for understanding the underlying mechanisms of function. Nevertheless, there remains a disconnect between using this accumulating protein structural knowledge and the design of new research tools and therapies. In this review, we provide an overview of the Ca2+ signaling pathways that are involved in mediating S/ER stored Ca2+ release, SOCE, and mitochondrial Ca2+ uptake, as well as pinpoint multiple levels of crosstalk between these pathways. Further, we highlight the significant protein structures elucidated in recent years controlling these Ca2+ signaling pathways. Finally, we describe a simple strategy that aimed at applying the protein structural data to initiating drug design.


Asunto(s)
Señalización del Calcio , Descubrimiento de Drogas/métodos , Animales , Canales de Calcio/química , Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Humanos , Unión Proteica
3.
Int J Mol Sci ; 20(2)2019 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-30642051

RESUMEN

Mitochondrial calcium (Ca2+) uptake shapes cytosolic Ca2+ signals involved in countless cellular processes and more directly regulates numerous mitochondrial functions including ATP production, autophagy and apoptosis. Given the intimate link to both life and death processes, it is imperative that mitochondria tightly regulate intramitochondrial Ca2+ levels with a high degree of precision. Among the Ca2+ handling tools of mitochondria, the leucine zipper EF-hand containing transmembrane protein-1 (LETM1) is a transporter protein localized to the inner mitochondrial membrane shown to constitute a Ca2+/H⁺ exchanger activity. The significance of LETM1 to mitochondrial Ca2+ regulation is evident from Wolf-Hirschhorn syndrome patients that harbor a haplodeficiency in LETM1 expression, leading to dysfunctional mitochondrial Ca2+ handling and from numerous types of cancer cells that show an upregulation of LETM1 expression. Despite the significance of LETM1 to cell physiology and pathophysiology, the molecular mechanisms of LETM1 function remain poorly defined. In this review, we aim to provide an overview of the current understanding of LETM1 structure and function and pinpoint the knowledge gaps that need to be filled in order to unravel the underlying mechanistic basis for LETM1 function.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias/genética , Síndrome de Wolf-Hirschhorn/genética , Calcio/metabolismo , Proteínas de Unión al Calcio/química , Haploinsuficiencia , Células HeLa , Humanos , Proteínas de la Membrana/química , Mitocondrias/metabolismo , Modelos Moleculares , Neoplasias/metabolismo , Conformación Proteica , Regulación hacia Arriba , Síndrome de Wolf-Hirschhorn/metabolismo
5.
Protein Sci ; 30(4): 855-872, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33576522

RESUMEN

Leucine Zipper EF-hand containing transmembrane protein-1 (LETM1) is an inner mitochondrial membrane protein that mediates mitochondrial calcium (Ca2+ )/proton exchange. The matrix residing carboxyl (C)-terminal domain contains a sequence identifiable EF-hand motif (EF1) that is highly conserved among orthologues. Deletion of EF1 abrogates LETM1 mediated mitochondrial Ca2+ flux, highlighting the requirement of EF1 for LETM1 function. To understand the mechanistic role of this EF-hand in LETM1 function, we characterized the biophysical properties of EF1 in isolation. Our data show that EF1 exhibits α-helical secondary structure that is augmented in the presence of Ca2+ . Unexpectedly, EF1 features a weak (~mM), but specific, apparent Ca2+ -binding affinity, consistent with the canonical Ca2+ coordination geometry, suggested by our solution NMR. The low affinity is, at least in part, due to an Asp at position 12 of the binding loop, where mutation to Glu increases the affinity by ~4-fold. Further, the binding affinity is sensitive to pH changes within the physiological range experienced by mitochondria. Remarkably, EF1 unfolds at high and low temperatures. Despite these unique EF-hand properties, Ca2+ binding increases the exposure of hydrophobic regions, typical of EF-hands; however, this Ca2+ -induced conformational change shifts EF1 from a monomer to higher order oligomers. Finally, we showed that a second, putative EF-hand within LETM1 is unreactive to Ca2+ either in isolation or tandem with EF1. Collectively, our data reveal that EF1 is structurally and biophysically responsive to pH, Ca2+ and temperature, suggesting a role as a multipartite environmental sensor within LETM1.


Asunto(s)
Proteínas de Unión al Calcio/química , Calcio/química , Calor , Proteínas de la Membrana/química , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Leucina Zippers , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA