Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Immunol ; 259: 109883, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147957

RESUMEN

Abnormalities of regulatory T cells (Tregs) has been suggested in rheumatoid arthritis (RA), and Forkhead box P3 (Foxp3) is the key transcriptional factor of Tregs expression. However, the underlying molecular mechanism remains unclear. Here, we demonstrated peptidase inhibitor 16 (PI16) was significantly increased in the peripheral blood, synovial fluid, and synovial tissue from RA patients. PI16 transgenic mice (PI16Tg) aggravated arthritis severity partly through suppressing Foxp3 expression. Mechanistically, PI16 could interact with and stabilize Bmi-1 in Tregs via inhibiting K48-linked polyubiquitin of Bmi-1, which promotes the enrichment of repressive histone mark in Foxp3 promoter. Furthermore, Bmi-1 specific inhibitor PTC209 could restore Foxp3 expression and alleviate arthritis progression in PI16Tg mice, accompanied by increased recruitment of active histone mark in the promoter of Tregs. Our results suggest that PI16-Bmi-1 axis plays an important role in RA and other autoimmune diseases by suppressing Foxp3 expression in Tregs via Bmi-1-mediated histone modification.


Asunto(s)
Artritis Reumatoide , Linfocitos T Reguladores , Animales , Humanos , Ratones , Factores de Transcripción Forkhead/metabolismo , Inhibidores de Proteasas , Membrana Sinovial/metabolismo , Ubiquitina
2.
Small ; 20(15): e2311510, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38267811

RESUMEN

Zinc-bromine (Zn-Br) redox provides a high energy density and low-cost option for next-generation energy storage systems, and polybromide diffusion remains a major issue leading to Zn anode corrosion, dendrite growth, battery self-discharge and limited electrochemical performance. A dual-functional Alginate-Graphene Oxide (AGO) hydrogel coating is proposed to prevent polybromide corrosion and suppress dendrite growth in Zn-Br batteries through negatively charged carboxyl groups and enhanced mechanical properties. The battery with anode of plain zinc coated with AGO (Zn]AGO) survives a severely corrosive environment with higher polybromide concentration than usual without a membrane, and achieves 80 cycles with 100% Coulombic and 80.65% energy efficiencies, four times compared to plain Zn anode. The promising performance is comparable to typical Zn-Br batteries using physical membranes, and the AGO coating concept can be well adapted to various Zn-Br systems to promote their applications.

3.
J Transl Med ; 22(1): 327, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566233

RESUMEN

BACKGROUND: Regulatory T cells (Tregs) are crucial in maintaining immune homeostasis and preventing autoimmunity and inflammation. A proportion of Treg cells can lose Foxp3 expression and become unstable under inflammation conditions. The precise mechanisms underlying this phenomenon remain unclear. METHODS: The PI16 gene knockout mice (PI16fl/flFoxp3Cre) in Treg were constructed, and the genotypes were identified. The proportion and phenotypic differences of immune cells in 8-week-old mice were detected by cell counter and flow cytometry. Two groups of mouse Naïve CD4+T cells were induced to differentiate into iTreg cells to observe the effect of PI16 on the differentiation and proliferation of iTreg cells, CD4+CD25+Treg and CD4+CD25- effector T cells (Teff) were selected and co-cultured with antigen presenting cells (APC) to observe the effect of PI16 on the inhibitory ability of Treg cells in vitro. The effects of directed knockout of PI16 in Treg cells on inflammatory symptoms, histopathological changes and immune cell expression in mice with enteritis and autoimmune arthritis were observed by constructing the model of antigen-induced arthritis (AIA) and colitis induced by dextran sulfate sodium salt (DSS). RESULTS: We identified peptidase inhibitor 16 (PI16) as a negative regulator of Treg cells. Our findings demonstrate that conditional knock-out of PI16 in Tregs significantly enhances their differentiation and suppressive functions. The conditional knockout of the PI16 gene resulted in a significantly higher abundance of Foxp3 expression (35.12 ± 5.71% vs. 20.00 ± 1.61%, p = 0.034) in iTreg cells induced in vitro compared to wild-type mice. Mice with Treg cell-specific PI16 ablation are protected from autoimmune arthritis (AIA) and dextran sulfate sodium (DSS)-induced colitis development. The AIA model of PI16CKO is characterized by the reduction of joint structure and the attenuation of synovial inflammation and in DSS-induced colitis model, conditional knockout of the PI16 reduce intestinal structural damage. Additionally, we found that the deletion of the PI16 gene in Treg can increase the proportion of Treg (1.46 ± 0.14% vs. 0.64 ± 0.07%, p < 0.0001) and decrease the proportion of Th17 (1.00 ± 0.12% vs. 3.84 ± 0.64%, p = 0.001). This change will enhance the shift of Th17/Treg toward Treg cells in AIA arthritis model (0.71 ± 0.06% vs. 8.07 ± 1.98%, p = 0.003). In DSS-induced colitis model of PI16CKO, the proportion of Treg in spleen was significantly increased (1.40 ± 0.15% vs. 0.50 ± 0.11%, p = 0.003), Th17 (2.18 ± 0.55% vs. 6.42 ± 1.47%, p = 0.017), Th1 (3.42 ± 0.19% vs. 6.59 ± 1.28%, p = 0.028) and Th2 (1.52 ± 0.27% vs. 2.76 ± 0.38%, p = 0.018) in spleen was significantly decreased and the Th17/Treg balance swift toward Treg cells (1.44 ± 0.50% vs. 24.09 ± 7.18%, p = 0.012). CONCLUSION: PI16 plays an essential role in inhibiting Treg cell differentiation and function. Conditional knock out PI16 gene in Treg can promote the Treg/Th17 balance towards Treg dominance, thereby alleviating the condition. Targeting PI16 may facilitate Treg cell-based therapies for preventing autoimmune diseases and inflammatory diseases. The research provides us with novel insights and future research avenues for the treatment of autoimmune diseases, particularly arthritis and colitis.


Asunto(s)
Artritis , Enfermedades Autoinmunes , Colitis , Animales , Ratones , Artritis/metabolismo , Artritis/patología , Enfermedades Autoinmunes/metabolismo , Diferenciación Celular , Colitis/inducido químicamente , Colitis/patología , Sulfato de Dextran/efectos adversos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Inflamación/patología , Ratones Endogámicos C57BL , Linfocitos T Reguladores , Células Th17
4.
Appl Microbiol Biotechnol ; 108(1): 386, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896257

RESUMEN

Bacterial biofilms commonly cause chronic and persistent infections in humans. Bacterial biofilms consist of an inner layer of bacteria and an autocrine extracellular polymeric substance (EPS). Biofilm dispersants (abbreviated as dispersants) have proven effective in removing the bacterial physical protection barrier EPS. Dispersants are generally weak or have no bactericidal effect. Bacteria dispersed from within biofilms (abbreviated as dispersed bacteria) may be more invasive, adhesive, and motile than planktonic bacteria, characteristics that increase the probability that dispersed bacteria will recolonize and cause reinfection. The dispersants should be combined with antimicrobials to avoid the risk of severe reinfection. Dispersant-based nanoparticles have the advantage of specific release and intense penetration, providing the prerequisite for further antibacterial agent efficacy and achieving the eradication of biofilms. Dispersant-based nanoparticles delivered antimicrobial agents for the treatment of diseases associated with bacterial biofilm infections are expected to be an effective measure to prevent reinfection caused by dispersed bacteria. KEY POINTS: • Dispersed bacteria harm and the dispersant's dispersion mechanisms are discussed. • The advantages of dispersant-based nanoparticles in bacteria biofilms are discussed. • Dispersant-based nanoparticles for cutting off reinfection in vivo are highlighted.


Asunto(s)
Antibacterianos , Biopelículas , Nanopartículas , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Nanopartículas/química , Antibacterianos/farmacología , Humanos , Bacterias/efectos de los fármacos , Infecciones Bacterianas/prevención & control , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Reinfección/prevención & control , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/efectos de los fármacos
5.
J Appl Microbiol ; 133(3): 1273-1287, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35621701

RESUMEN

Bacterial biofilms are highly resistant to antibiotics and pose a great threat to human and animal health. The control and removal of bacterial biofilms have become an important topic in the field of bacterial infectious diseases. Nanocarriers show great anti-biofilm potential because of their small particle size and strong permeability. In this review, the advantages of nanocarriers for combating biofilms are analysed. Nanocarriers can act on all stages of bacterial biofilm formation and diffusion. They can improve the scavenging effect of biofilm by targeting biofilm, destroying extracellular polymeric substances and enhancing the biofilm permeability of antimicrobial substances. Nanocarriers can also improve the antibacterial ability of antimicrobial drugs against bacteria in biofilm by protecting the loaded drugs and controlling the release of antimicrobial substances. Additionally, we emphasize the challenges faced in using nanocarrier formulations and translating them from a preclinical level to a clinical setting.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias , Biopelículas , Humanos
6.
Small ; 17(47): e2104359, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34716653

RESUMEN

MicroRNAs (miRs) play an important role in regulating gene expression. Limited by their instabilities, miR therapeutics require delivery vehicles. Tetrahedral framework nucleic acids (tFNAs) are potentially applicable to drug delivery because they prominently penetrate tissue and are taken up by cells. However, tFNA-based miR delivery strategies have failed to separate the miRs after they enter cells, affecting miR efficiency. In this study, an RNase H-responsive sequence is applied to connect a sticky-end tFNA (stFNA) and miR-2861, which is a model miR, to target the expression of histone deacetylase 5 (HDAC5) in bone marrow mesenchymal stem cells. The resultant bioswitchable nanocomposite (stFNA-miR) enables efficient miR-2861 unloading and deployment after intracellular delivery, thereby inhibiting the expression of HDAC5 and promoting osteogenic differentiation. stFNA-miR also facilitated ideal bone repair via topical injection. In conclusion, a versatile miR delivery strategy is offered for various biomedical applications that necessitate modulation of gene expression.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Ácidos Nucleicos , Regeneración Ósea , Diferenciación Celular , Osteogénesis
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(1): 191-195, 2021 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-33899445

RESUMEN

In recent years, with the improvement of the sensitivity of examination equipment and the change of people's living environment and diet, the rate of thyroid cancer has risen rapidly, which has increased nearly five folds in 10 years. The pathogenesis, clinical manifestation, biological behavior, treatment and prognosis of thyroid carcinoma of different pathological types are obviously different. Papillary thyroid carcinoma (PTC) can develop at any age, which accounts for about 90% of thyroid cancer. It progresses slowly and has favourable prognosis, but lymph node metastasis appears easily. Whether PTC is accompanied by lymph node metastasis has an important impact on its prognosis and outcome. The Raf murine sarcoma viral oncogene homolog B(BRAF)gene mutation plays a crucial role in PTC lymph node metastasis. Having an in-depth understanding of the specific role and mechanism of BRAF gene mutation in PTC is expected to provide new ideas for diagnosis and treatment of PTC.


Asunto(s)
Carcinoma Papilar , Neoplasias de la Tiroides , Animales , Carcinoma Papilar/genética , Humanos , Metástasis Linfática , Ratones , Mutación , Oncogenes , Proteínas Proto-Oncogénicas B-raf/genética , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética
8.
Nutr Metab Cardiovasc Dis ; 30(6): 932-938, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32402584

RESUMEN

BACKGROUND AND AIMS: The increased serum uric acid (SUA) level is associated with the prevalence of cardiovascular disease (CVD) risks. Aortic arch calcification (AAC) reflects subclinical coronary atherosclerosis and is linked to subsequent cardiovascular morbidity and mortality risks closely. To better understand the role of SUA on arteriosclerosis and CVD, we aim to determine the association between SUA and the presence of AAC. METHODS AND RESULTS: A total of 5920 individuals aged >45 years old without prior CVD disease were included. The prevalence rate of AAC was 14.4% in all participants and a significantly increasing trend for AAC prevalence rate was found across the SUA tertiles (p < 0.001 for trend). Subsequent subgroup analyses revealed that this positive association trend was only significant in female subjects. After adjusting for confounders, SUA is an independent predictor for the presence of AAC in overall participants and in women. CONCLUSION: SUA is independently associated with AAC in middle-aged and elderly population, especially in the women. More research needs to determine whether lower thresholds for CVD risk screening for those middle-aged and elderly women with higher SUA tertile even without hyperuricemia are warranted.


Asunto(s)
Aorta Torácica , Enfermedades de la Aorta/epidemiología , Hiperuricemia/epidemiología , Ácido Úrico/sangre , Calcificación Vascular/epidemiología , Factores de Edad , Anciano , Aorta Torácica/diagnóstico por imagen , Enfermedades de la Aorta/diagnóstico por imagen , Biomarcadores/sangre , China/epidemiología , Estudios Transversales , Femenino , Humanos , Hiperuricemia/sangre , Hiperuricemia/diagnóstico , Persona de Mediana Edad , Prevalencia , Medición de Riesgo , Factores de Riesgo , Factores Sexuales , Regulación hacia Arriba , Calcificación Vascular/diagnóstico por imagen
9.
Nanomedicine ; 21: 102061, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31344499

RESUMEN

Targeted DNA nanoparticles have been identified as one of the most promising nanocarriers in anti-glioma drug delivery. We established a multifunctional nanosystem for targeted glioma therapy. Tetrahedral framework nucleic acid (tFNA), entering U87MG cells and bEnd.3 cells, was chosen to deliver two aptamers, GMT8 and Gint4.T, and paclitaxel. GMT8 and Gint4.T, which specifically bind with U87MG cells and with PDGFRß, were linked with tFNA, to form Gint4.T-tFNA-GMT8 (GTG). GTG was efficiently internalized by U87MG and bEnd.3 cells and penetrated an in-vitro blood-brain-barrier model. GTG loaded with paclitaxel (GPC) had potentiated anti-glioma efficacy. It inhibited the proliferation, migration, and invasion of U87MG cells, and enhanced apoptosis induction in these cells. The expression of apoptosis-related proteins was significantly changed after treatment with GPC, confirming apoptosis induction. Our study demonstrated that the combination of GTG and paclitaxel has great potential for glioma treatment and tFNA shows great promise for use in drug delivery.


Asunto(s)
Aptámeros de Nucleótidos , Barrera Hematoencefálica , Neoplasias Encefálicas , Glioblastoma , Nanoconjugados , Paclitaxel , Animales , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacocinética , Aptámeros de Nucleótidos/farmacología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Nanoconjugados/química , Nanoconjugados/uso terapéutico , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Ratas
10.
Ecotoxicol Environ Saf ; 179: 40-49, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31026749

RESUMEN

Membrane/water partition coefficient (Km/w) is a vital parameter used to characterize the membrane permeability of compounds. Considering the Km/w value is difficult to observe experimentally for real biological membranes, liposome/water partition coefficient (Klip/w) is employed to approximate Km/w. Here, quantitative structure property relationship (QSPR) models for logKlip/w of the neutral organic chemicals and the neutral form of ionogenic organic chemicals (IOCs) (logKlip/w-neutral), ionic form of IOCs (logKlip/w-ionic), the speciation-corrected liposome-water distribution ratios at a pH = 7.40 (logDlip/w-(pH=7.40)) were developed. In the modeling, two modeling methods (multiple linear regressions (MLR) and k-nearest neighbor (kNN)) were used. The predictive variables employed here could be calculated from the molecular structure directly. For logKlip/w-neutral and logDlip/w-(pH=7.40), the logKOW and logDOW-based, non-logKOW and non-logDOW-based kNN-QSPR and MLR-QSPR models were developed, respectively. The evaluation results implied that the predictive performance of kNN-QSPR models is better than that of MLR-QSPR models. For logKlip/w-ionic, only one acceptable MLR-QSPR model was developed for cation and anion, respectively. The model quality of the derived models was evaluated following the OECD QSPR models validation guideline. The determination coefficient (R2), leave-one-out cross validation Q2 (Q2LOO) and bootstrapping coefficient (Q2BOOT), the external validation coefficient (Q2EXT) of all the models met the acceptable criteria (Q2 > 0.600, R2 > 0.700); while the root-mean-square error (RMSE) range from 0.351 to 0.857. All the results implied that the models had good goodness-of-fit, robustness and predictive ability. Therefore, the developed models could be used to fill the data gap for substances within the applicability domain on their missing logKlip/w-neutral, logKlip/w-ionic, logDlip/w-(pH=7.40) values.


Asunto(s)
Liposomas/química , Modelos Químicos , Compuestos Orgánicos/química , Agua/química , Iones , Modelos Lineales , Relación Estructura-Actividad Cuantitativa
11.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261843

RESUMEN

The antioxidant effect of salidroside has been proven, but its role in liver injury is poorly understood. In this study, we aimed to evaluate the protective effects and mechanism of salidroside on liver injury induced by carbon tetrachloride (CCl4) in vivo. Mice were pretreated with salidroside (60 mg/kg, intraperitoneally injected, i.p.) once per day for 14 consecutive days and then administered with CCl4 (15.95 g/kg, i.p.) for 24 h to produce a liver injury model. Salidroside attenuated hepatic transaminase elevation in serum and ameliorated liver steatosis and necrosis, thereby suggesting its protective effect on the liver. Salidroside antagonized CCl4-induced toxicity by equilibrating antioxidation system, thereby inhibiting reactive oxygen species accumulation, and restoring mitochondrial structure and function. Salidroside exerts antioxidant and liver-protective effects by selectively inhibiting the activation of genes, including growth arrest and DNA -damage-inducible 45 α (Gadd45a), mitogen-activated protein kinase 7 (Mapk7), and related RAS viral oncogene homolog 2 (Rras2), which induce oxidative stress in the mitogen-activated protein kinase pathway. These results revealed that salidroside can protect the liver from CCl4-induced injury by resisting oxidative stress and protecting mitochondrial function.


Asunto(s)
Antioxidantes , Enfermedad Hepática Inducida por Sustancias y Drogas , Glucósidos , Mitocondrias Hepáticas , Estrés Oxidativo , Fenoles , Animales , Masculino , Ratones , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Tetracloruro de Carbono/toxicidad , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Glucósidos/farmacología , Glucósidos/uso terapéutico , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Fenoles/farmacología , Fenoles/uso terapéutico
12.
J Cell Physiol ; 233(4): 3418-3428, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28926111

RESUMEN

Cells reside in a complex microenvironment (niche) in which the biochemical and biophysical properties of the extracellular matrix profoundly affect cell behavior. Extracellular stiffness, one important bio-mechanical characteristic of the cell niche, is important in regulating cell proliferation, migration, and lineage specification. However, the mechanism by which mechanical signals guide osteogenic and adipogenic commitment of stem cells remains difficult to dissect. To explore this question, we generated a range of polydimethylsiloxane-based matrices with differing degrees of stiffness that mimicked the stiffness seen in natural tissues and examined adipose stem cell morphology, spreading, vinculin expression, and differentiation along the osteogenic and adipogenic pathways. Rigid matrices allowed broader cell spreading, faster growth rate and stronger expression of vinculin in adipose-derived stem cells. In the presence of inductive culture media, stiffness-dependent osteogenesis and adipogenesis of the adipose stem cells indicated that there was a combinatorial effect of biophysical and biochemical cues; no such lineage specification was observed in normal media. Osteogenic differentiation behavior showed a correlation with matrix rigidity, as well as with elevated expression of RhoA, ROCK-1/-2, and related proteins in the Wnt/ß-catenin pathway. The result provides a comprehensive understanding of how stem cells respond to the surrounding microenvironment and points to the fact that matrix stiffness is a critical element in biomaterial design and this will be an important advance in stem cell-based tissue engineering.


Asunto(s)
Adipocitos/citología , Adipogénesis/fisiología , Diferenciación Celular/fisiología , Osteogénesis/fisiología , Células Madre/citología , Adipocitos/metabolismo , Tejido Adiposo/citología , Animales , Microambiente Celular/fisiología , Matriz Extracelular/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratas , Ingeniería de Tejidos/métodos , Vía de Señalización Wnt/fisiología
13.
J Cell Physiol ; 232(6): 1548-1558, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27861873

RESUMEN

This study aimed to investigate the role of Notch signaling pathway for angiogenesis in a three-dimensional (3D) collagen gel model with co-culture of adipose-derived stromal cells (ASCs) and endothelial cells (ECs). A 3D collagen gel model was established in vitro by implanting both ASCs from green fluorescent protein-labeled mouse and ECs from red fluorescent protein-labeled mouse, and the phenomena of angiogenesis with Notch signaling inducer Jagged1, inhibitor DAPT and PBS, respectively were observed by confocal laser scanning microscopy. Semi-quantitative PCR and immunofluorescent staining were conducted to detect expressions of angiogenesis-related genes and proteins. Angiogenesis in the co-culture gels was promoted by Jagged1 treatment while attenuated by DAPT treatment, compared to control group. In co-culture system of ASCs and ECs, the gene expressions of VEGFA, VEGFB, Notch1, Notch2, Hes1, Hey1, VEGFR1,and the protein expression of VEGFA, VEGFB, Notch1, Hes1, Hey1 were increased by Jagged1 treatment and decreased by DAPT treatment in ECs. And the result of VEGFR3 was the opposite. However, the same results did not appear completely in ASCs. These results revealed the VEGFA/B-Notch1/2-Hes1/Hey1- VEGFR1/3 signal axis played an important role in angiogenesis when ASCs and ECs were co-cultured in a 3D collagen gel model. J. Cell. Physiol. 232: 1548-1558, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Células Endoteliales/metabolismo , Modelos Biológicos , Neovascularización Fisiológica , Receptores Notch/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Técnicas de Cocultivo , Colágeno/metabolismo , Regulación hacia Abajo , Femenino , Técnica del Anticuerpo Fluorescente , Geles , Proteína Jagged-1/metabolismo , Ratones , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
14.
Small ; 13(12)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28112870

RESUMEN

Utilizing biomaterials to regulate the phenotype and proliferation of chondrocytes is a promising approach for effective cartilage tissue regeneration. Recently, a significant amount of effort has been invested into directing chondrocytes toward a desired location and function by utilizing biomaterials to control the dedifferentiation and phenotypic loss of chondrocytes during in vitro monolayer culture. Here, the transmission signals resulting from tetrahedral DNA nanostructures (TDNs) in the regulation of chondrocyte phenotype and proliferation are exploited. TDNs, new DNA nanomaterials, have been considered as promising materials in biomedical fields. Upon exposure to TDNs, chondrocyte phenotype is significantly enhanced, accompanied by lower gene expression related to Notch signaling pathway and higher expression of type II collagen. In addition, the cell proliferation and morphology of chondrocytes are changed after exposure to TDNs. In conclusion, this work demonstrates that TDNs are potentially useful mechanism in cartilage tissue regeneration from chondrocytes, whereby chondrocyte phenotype and proliferation can be retained.


Asunto(s)
Cartílago/fisiología , Condrocitos/citología , ADN/química , Nanoestructuras/química , Regeneración/fisiología , Agrecanos/genética , Agrecanos/metabolismo , Animales , Proliferación Celular , Forma de la Célula/genética , Células Cultivadas , Condrocitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Regulación hacia Abajo/genética , Femenino , Fenotipo , Ratas , Receptores Notch/genética , Receptores Notch/metabolismo , Regulación hacia Arriba , Vía de Señalización Wnt/genética
15.
Nanomedicine ; 13(5): 1809-1819, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28259801

RESUMEN

Adipose-derived stem cells (ADSCs) are considered to be ideal stem cell sources for bone regeneration owing to their ability to differentiate into osteo-like cells. Therefore, they have attracted increasing attention in recent years. Tetrahedral DNA nanostructures (TDNs), a new type of DNA-based biomaterials, have shown great potential for biomedical applications. In the present work, we aimed to investigate the role played by TDNs in osteogenic differentiation and proliferation of ADSCs and tried to explore if the canonical Wnt signal pathway could be the vital biological mechanism driving these cellular responses. Upon exposure to TDNs, ADSCs proliferation and osteogenic differentiation were significantly enhanced, accompanied by the up-regulation of genes correlated with the Wnt/ß-catenin pathway. In conclusion, our results indicate that TDNs are crucial regulators of the increase in osteogenic potential and ADSCs proliferation, and this noteworthy discovery could provide a promising novel approach toward ADSCs-based bone defect regeneration.


Asunto(s)
ADN , Nanoestructuras , Osteogénesis , Vía de Señalización Wnt , Animales , Diferenciación Celular , Femenino , Humanos , Células Madre Mesenquimatosas , Ratas Sprague-Dawley , beta Catenina
16.
Mol Cell Biochem ; 412(1-2): 281-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26694166

RESUMEN

Co-implantation of adipose-derived stromal cells (ASCs) and endothelial cells (ECs) can markedly expedite the formation of functional microvascular beds and provides possible methods for cell-based revascularization therapies to treat various diseases. Furthermore, we investigated the role of TGFß/Smad signaling pathway for angiogenesis in a three-dimensional (3D) collagen gel model established in vitro with co-culture between ASCs and ECs. We found that angiogenesis was attenuated in the co-culture gels after inhibition of ALK5/Smad2/3 with SB431542. Genes coding for VEGF-A, VEGF-B, VE-ca, FGF-1, PDGF, BMP-4, and BMP-7 were significantly reduced in both mono-cultured and co-cultured ECs. Furthermore, the decrease in co-cultured ECs was prominent relative to mono-cultured ECs. Taken together, these findings suggest that in the co-culture between ASCs and ECs, TGFß/Smad signal pathway regulates angiogenesis via ECs; moreover, the findings that the co-cultured ECs were regulated more significantly than mono-cultured ECs suggest that suppression of Smad signal pathway may regulate the paracrine secretion of ASCs to further modulate angiogenesis of ECs.


Asunto(s)
Tejido Adiposo/metabolismo , Células Endoteliales/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Células del Estroma/metabolismo , Tejido Adiposo/citología , Animales , Benzamidas/farmacología , Células Cultivadas , Técnicas de Cocultivo , Dioxoles/farmacología , Regulación hacia Abajo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Femenino , Ratones , Células del Estroma/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Neurorehabil Neural Repair ; : 15459683241258769, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836606

RESUMEN

BACKGROUND: Vagus nerve stimulation (VNS) combined with rehabilitation is a Food and Drug Administration approved intervention for moderate to severe upper extremity deficits in chronic ischemic stroke patients. Previous studies demonstrated that VNS improves upper extremity motor impairments, using the Fugl Meyer Assessment of Upper Extremity (FMA-UE); however, delineating where these improvements occur, and the role of VNS dosage parameters were not reported. OBJECTIVE: This study explored the relationship between dosing (time over which task repetitions were executed and number of VNS stimulations) and changes within proximal and distal components of the FMA-UE. METHODS: Participants underwent VNS implantation, with 1 group receiving VNS paired with rehabilitation (Active VNS) and the other group receiving rehabilitation with sham stimulation (Controls). Both groups received 6 weeks of in-clinic therapy followed by a 90-day at-home, self-rehabilitation program. Participants who completed at least 12 of 18 in-clinic sessions were included in the analyses (n = l06). Pearson correlations and analysis of covariance were used to investigate the relationship between dosing and FMA-UE outcome change along with the effect of covariates including baseline severity, time since stroke, age, and paretic side. RESULTS: Compared to Controls, active VNS favorably influenced distal function with sustained improvement after the home program. Significant improvements were observed in only distal components (FMdist) at both post day-1 (1.80 points, 95% Cl [0.85, 2.73], P < .001) and post-day 90 (1.62 points, 95% CI [0.45, 2.80], P < .007). CONCLUSIONS: VNS paired with rehabilitation resulted in significant improvements in wrist and hand impairment compared to Controls, despite similar in-clinic dosing across both groups.NCT03131960.

18.
Biomol Biomed ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38920750

RESUMEN

Early diagnosis of Bell's palsy is crucial for effective patient management in primary care settings. This study aimed to develop a simplified diagnostic tool to enhance the accuracy of identifying Bell's palsy among patients with facial muscle weakness. Data from 240 patients were analyzed using seven potential clinical evaluation indicators. Two diagnostic benchmarks were established: one based on clinical assessment and the other incorporating magnetic resonance imaging (MRI) findings. A multivariate logistic regression model was developed based on these benchmarks, resulting in the construction of a predictive tool evaluated through latent class models. Both models retained four key clinical indicators: absence of forehead wrinkles, accumulation of food and saliva inside the mouth on the affected side, presence of vesicular rash in the ear or pharynx, and lack of pain or symptoms associated with tick exposure, rash, or joint pain. The first model demonstrated excellent discriminative ability (area under the curve [AUC] = 0.96, 95% confidence interval [CI] 0.94 - 0.99) and calibration (P < 0.001), while the second model also showed good performance (AUC = 0.88, 95% CI 0.83 - 0.92) and calibration (P = 0.005). Bootstrap validation indicated no significant overfitting. The latent class defined by the first model significantly aligned with the clinical diagnosis group, while the second model showed lower consistency.

19.
Adv Sci (Weinh) ; 11(7): e2307780, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38168899

RESUMEN

Batteries dissolving active materials in liquids possess safety and size advantages compared to solid-based batteries, yet the intrinsic liquid properties lead to material cross-over induced self-discharge both during cycling and idle when the electrolytes are in contact, thus highly efficient and cost-effective solutions to minimize cross-over are in high demand. An ultra-low self-discharge aqueous|organic membraneless battery using dichloromethane (CH2 Cl2 ) and tetrabutylammonium bromide (TBABr) added to a zinc bromide (ZnBr2 ) solution as the electrolyte is demonstrated. The polybromide is confined in the organic phase, and bromine (Br2 ) diffusion-induced self-discharge is minimized. At 90% state of charge (SOC), the membraneless ZnBr2 |TBABr (Z|T) battery shows an open circuit voltage (OCV) drop of only 42 mV after 120 days, 152 times longer than the ZnBr2  battery, and superior to 102 previous reports from all types of liquid active material batteries. The 120-day capacity retention of 95.5% is higher than commercial zinc-nickel (Zn-Ni) batteries and vanadium redox flow batteries (VRFB, electrolytes stored separately) and close to lithium-ion (Li-ion) batteries. Z|T achieves >500 cycles (2670 h, 0.5 m electrolyte, 250 folds of membraneless ZnBr2  battery) with ≈100% Coulombic efficiency (CE). The simple and cost-effective design of Z|T provides a conceptual inspiration to regulate material cross-over in liquid-based batteries to realize extended operation.

20.
Curr Drug Metab ; 24(5): 327-337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37431900

RESUMEN

Deoxyribonucleic acid (DNA), as a natural polymer material, carries almost all the genetic information and is recognized as one of the most intelligent natural polymers. In the past 20 years, there have been many exciting advances in the synthesis of hydrogels using DNA as the main backbone or cross-linking agent. Different methods, such as physical entanglement and chemical cross-linking, have been developed to perform the gelation of DNA hydrogels. The good designability, biocompatibility, designable responsiveness, biodegradability and mechanical strength provided by DNA building blocks facilitate the application of DNA hydrogels in cytoscaffolds, drug delivery systems, immunotherapeutic carriers, biosensors and nanozyme-protected scaffolds. This review provides an overview of the main classification and synthesis methods of DNA hydrogels and highlights the application of DNA hydrogel in biomedical fields. It aims to give readers a better understanding of DNA hydrogels and development trends.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogeles , Humanos , Polímeros , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA