RESUMEN
In this study, the homojunction thin-film transistors (TFTs) with amorphous indium gallium zinc oxide (a-IGZO) as active channel layers and source/drain electrodes were fabricated by RF magnetron sputtering. The effect of oxygen partial pressure on the phase, microstructure, optical and electrical properties of IGZO thin films was investigated. The results showed that amorphous IGZO thin films always exhibit a high transmittance above 90% and wide band gaps of around 3.9 eV. The resistivity increases as the IGZO thin films are deposited at a higher oxygen partial pressure due to the depletion of oxygen vacancies. In addition, the electrical behaviors in homojunction IGZO TFTs were analyzed. When the active channel layers were deposited with an oxygen partial pressure of 1.96%, the homojunction IGZO TFTs exhibited optimal transfer and output characteristics with a field-effect mobility of 13.68 cm2V-1s-1. Its sub-threshold swing, threshold voltage and on/off ratio are 0.6 V/decade, 0.61 V and 107, respectively.
RESUMEN
p-type CuI films with optimized optoelectronic performance were synthesized by solid-phase iodination of Cu3N precursor films at room temperature. The effects of the deposition power of Cu3N precursors on the structural, electrical, and optical properties of the CuI films were systematically investigated. X-ray diffraction results show that all the CuI films possess a zinc-blende structure. When the deposition power of Cu3N precursors was 140 W, the CuI films present a high transmittance above 84% in the visible region, due to their smaller root-mean-square roughness values of 9.23 nm. Moreover, these films also have a low resistivity of 1.63 × 10-2Ω·cm and a boosted figure of merit of 140.7 MΩ-1. These results are significant achievements among various p-types TCOs, confirming the promising prospects of CuI as a p-type transparent semiconductor applied in transparent electronics.
RESUMEN
CuCrO2 is one of the most promising p-type transparent conductive oxide (TCO) materials. Its electrical properties can be considerably improved by Mg doping. In this work, Cr-deficient CuCrO2 thin films were deposited by reactive magnetron sputtering based on 5 at.% Mg doping. The influence of Cr deficiency on the film's optoelectronic properties was investigated. As the film's composition varied, CuO impurity phases appeared in the film. The mixed valency of Cu+/Cu2+ led to an enhancement of the hybridization between the Cu3d and O2p orbitals, which further reduced the localization of the holes by oxygen. As a result, the carrier concentration significantly improved. However, since the impurity phase of CuO introduced more grain boundaries in Cu[Cr0.95-xMg0.05]O2, impeding the transport of the carrier and incident light in the film, the carrier mobility and the film's transmittance reduced accordingly. In this work, the optimal optoelectronic performance is realized where the film's composition is Cu[Cr0.78Mg0.05]O2. Its Haacke's figure of merit is about 1.23 × 10-7 Ω-1.