Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 15(4): 724-734, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38290213

RESUMEN

Herbs themselves and various herbal medicines are great resources for discovering therapeutic drugs for various diseases, including Alzheimer's disease (AD), one of the common neurodegenerative diseases. Utilizing mouse primary cortical neurons and DiBAC4(3), a voltage-sensitive indicator, we have set up a drug screening system and identified an herbal extraction compound, paeonol, obtained from Paeonia lactiflora; this compound is able to ameliorate the abnormal depolarization induced by Aß42 oligomers. Our aim was to further find effective paeonol derivatives since paeonol has been previously studied. 6'-Methyl paeonol, one of the six paeonol derivatives surveyed, is able to inhibit the abnormal depolarization induced by Aß oligomers. Furthermore, 6'-methyl paeonol is able to alleviate the NMDA- and AMPA-induced depolarization. When a molecular mechanism was investigated, 6'-methyl paeonol was found to reverse the Aß-induced increase in ERK phosphorylation. At the animal level, mice injected with 6'-methyl paeonol showed little change in their basic physical parameters compared to the control mice. 6'-Methyl paeonol was able to ameliorate the impairment of memory and learning behavior in J20 mice, an AD mouse model, as measured by the Morris water maze. Thus, paeonol derivatives could provide a structural foundation for developing and designing an effective compound with promising clinical benefits.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Neuronas , Acetofenonas/farmacología , Acetofenonas/uso terapéutico , Modelos Animales de Enfermedad , Péptidos beta-Amiloides/toxicidad , Aprendizaje por Laberinto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA