Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Dyn ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822685

RESUMEN

BACKGROUND: Approximately 7% of the males exhibit reduced fertility; however, the regulatory genes and pathways involved remain largely unknown. TBC1 domain family member 21 (TBC1D21) contains a conserved RabGAP catalytic domain that induces GDP/GTP exchange to inactivate Rabs by interacting with microtubules. We previously reported that Tbc1d21-null mice exhibit severe sperm tail defects with a disrupted axoneme, and that TBC1D21 interacts with RAB10. However, the pathological mechanisms underlying the Tbc1d21 loss-induced sperm tail defects remain unknown. RESULTS: Murine sperm from wild-type and Tbc1d21-null mice were comparatively analyzed using proteomic assays. Over 1600 proteins were identified, of which 15 were significantly up-regulated in Tbc1d21-null sperm. Notably, several tektin (TEKT) family proteins, belonging to a type of intermediate filament critical for stabilizing the microtubular structure of cilia and flagella, were significantly up-regulated in Tbc1d21-/- sperm. We also found that TBC1D21 interacts with TEKT1. In addition, TEKT1 co-localized with RAB10 during sperm tail formation. Finally, we found Tbc1d21-null sperm exhibited abnormal accumulation of TEKT1 in the midpiece region, accompanied by disrupted axonemal structures. CONCLUSIONS: These results reveal that TBC1D21 modulates TEKTs protein localization in the axonemal transport system during sperm tail formation.

2.
J Cell Mol Med ; 28(2): e18031, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37937809

RESUMEN

Approximately 10%-15% of couples worldwide are infertile, and male factors account for approximately half of these cases. Teratozoospermia is a major cause of male infertility. Although various mutations have been identified in teratozoospermia, these can vary among ethnic groups. In this study, we performed whole-exome sequencing to identify genetic changes potentially causative of teratozoospermia. Out of seven genes identified, one, ATP/GTP Binding Protein 1 (AGTPBP1), was characterized, and three missense changes were identified in two patients (Affected A: p.Glu423Asp and p.Pro631Leu; Affected B: p.Arg811His). In those two cases, severe sperm head and tail defects were observed. Moreover, AGTPBP1 localization showed a fragmented pattern compared to control participants, with specific localization in the neck and annulus regions. Using murine models, we found that AGTPBP1 is localized in the manchette structure, which is essential for sperm structure formation. Additionally, in Agtpbp1-null mice, we observed sperm head and tail defects similar to those in sperm from AGTPBP1-mutated cases, along with abnormal polyglutamylation tubulin and decreasing △-2 tubulin levels. In this study, we established a link between genetic changes in AGTPBP1 and human teratozoospermia for the first time and identified the role of AGTPBP1 in deglutamination, which is crucial for sperm formation.


Asunto(s)
Infertilidad Masculina , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina , Teratozoospermia , Humanos , Masculino , Animales , Ratones , Teratozoospermia/genética , Teratozoospermia/metabolismo , Tubulina (Proteína)/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Cabeza del Espermatozoide/metabolismo , Flagelos/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Mutación , Proteínas de Unión al GTP/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo
3.
PLoS Genet ; 16(9): e1009020, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32976492

RESUMEN

Approximately 2-15% of couples experience infertility, and around half of these cases are attributed to male infertility. We previously identified TBC1D21 as a sterility-related RabGAP gene derived from infertile men. However, the in vivo function of TBC1D21 in male fertility remains unclear. Here, we show that loss of Tbc1d21 in mice resulted in male infertility, characterized by defects in sperm tail structure and diminished sperm motility. The mitochondria of the sperm-tail had an abnormal irregular arrangement, abnormal diameter, and structural defects. Moreover, the axoneme structure of sperm tails was severely disturbed. Several TBC1D21 interactors were selected via proteomic analysis and functional grouping. Two of the candidate interactors, a subunit protein of translocase in the outer membrane of mitochondria (TOMM20) and an inner arm component of the sperm tail axoneme (Dynein Heavy chain 7, DNAH7), confirmed in vivo physical co-localization with TBC1D21. In addition, TOMM20 and DNAH7 detached and dispersed outside the axoneme in Tbc1d21-deficient sperm, instead of aligning with the axoneme. From a clinical perspective, the transcript levels of TBC1D21 in sperm from teratozoospermia cases were significantly reduced when compared with those in normozoospermia. We concluded that TBC1D21 is critical for mitochondrial and axoneme development of mammalian sperm.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Proteínas de Microfilamentos/genética , Espermatozoides/patología , Espermatozoides/fisiología , Animales , Astenozoospermia/genética , Axonema/genética , Axonema/ultraestructura , Flagelos/genética , Flagelos/patología , Proteínas Activadoras de GTPasa/metabolismo , Expresión Génica , Humanos , Masculino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Motilidad Espermática/genética , Cola del Espermatozoide/patología , Espermatozoides/ultraestructura , Testículo/fisiología
4.
Medicina (Kaunas) ; 58(10)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36295569

RESUMEN

Background and Objectives: Septins (SEPTs) are highly conserved GTP-binding proteins and the fourth component of the cytoskeleton. Polymerization of SEPTs contributes to several critical cellular processes such as cytokinesis, cytoskeletal remodeling, and vesicle transportation. In our previous study, we found that SEPT14 mutations resulted in teratozoospermia with >87% sperm morphological defects. SEPT14 interactors were also identified through proteomic assays, and one of the peptides was mapped to RAB3B and RAB3C. Most studies on the RAB3 family have focused on RAB3A, which regulates the exocytosis of neurotransmitters and acrosome reactions. However, the general expression and patterns of the RAB3 family members during human spermatogenesis, and the association between RAB3 and teratozoospermia owing to a SEPT14 mutation, are largely unknown. Materials and Methods: Human sperm and murine male germ cells were collected in this study and immunofluorescence analysis was applied on the collected sperm. Results: In this study, we observed that the RAB3C transcripts were more abundant than those of RAB3A, 3B, and 3D in human testicular tissues. During human spermatogenesis, the RAB3C protein is mainly enriched in elongated spermatids, and RAB3B is undetectable. In mature human spermatozoa, RAB3C is concentrated in the postacrosomal region, neck, and midpiece. The RAB3C signals were delocalized within human spermatozoa harboring the SEPT14 mutation, and the decreased signals were accompanied by a defective head and tail, compared with the healthy controls. To determine whether RAB3C is involved in the morphological formation of the head and tail of the sperm, we separated murine testicular tissue and isolated elongated spermatids for further study. We found that RAB3C is particularly expressed in the manchette structure, which assists sperm head shaping at the spermatid head, and is also localized at the sperm tail. Conclusions: Based on these results, we suggest that the localization of RAB3C proteins in murine and human sperm is associated with SEPT14 mutation-induced morphological defects in sperm.


Asunto(s)
Teratozoospermia , Ratones , Humanos , Masculino , Animales , Teratozoospermia/genética , Teratozoospermia/metabolismo , Septinas/genética , Septinas/metabolismo , Proteómica , Semen/metabolismo , Espermatozoides , Proteínas de Unión al GTP , Péptidos/metabolismo
5.
Molecules ; 26(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071530

RESUMEN

Anti-cancer activity of catechin nanoemulsions prepared from Oolong tea leaf waste was studied on prostate cancer cells DU-145 and DU-145-induced tumors in mice. Catechin nanoemulsions composed of lecithin, Tween-80 and water in an appropriate proportion was prepared with high stability, particle size of 11.3 nm, zeta potential of -67.2 mV and encapsulation efficiency of 83.4%. Catechin nanoemulsions were more effective than extracts in inhibiting DU-145 cell growth, with the IC50 being 13.52 and 214.6 µg/mL, respectively, after 48 h incubation. Furthermore, both catechin nanoemulsions and extracts could raise caspase-8, caspase-9 and caspase-3 activities for DU-145 cell apoptosis, arresting the cell cycle at S and G2/M phases. Compared to control, catechin nanoemulsion at 20 µg/mL and paclitaxel at 10 µg/mL were the most effective in reducing tumor volume by 41.3% and 52.5% and tumor weight by 77.5% and 90.6% in mice, respectively, through a decrease in EGF and VEGF levels in serum.


Asunto(s)
Catequina/química , Emulsiones/química , Nanopartículas/química , Hojas de la Planta/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Té/química , Animales , Antineoplásicos/farmacología , Apoptosis , Caspasa 8/metabolismo , Ciclo Celular , Línea Celular Tumoral , Endocitosis , Humanos , Concentración 50 Inhibidora , Lecitinas/química , Límite de Detección , Masculino , Ratones , Ratones SCID , Nanotecnología/métodos , Trasplante de Neoplasias , Neoplasias Experimentales/tratamiento farmacológico , Tamaño de la Partícula , Polisorbatos/química , Control de Calidad , Solventes , Agua/química
6.
PLoS Genet ; 13(4): e1006715, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28384194

RESUMEN

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF) and are associated with congenital bilateral absence of the vas deferens (CBAVD), which is the major cause of infertility in male patients with CF. However, most Taiwanese patients with CBAVD do not carry major CFTR mutations. Some patients have a single copy deletion of the solute carrier family 9 isoform 3 (SLC9A3) gene. SLC9A3 is a Na+/H+ exchanger, and depleted Slc9a3 in male mice causes infertility due to the abnormal dilated lumen of the rete testis and efferent ductules. Furthermore, SLC9A3 interacts with CFTR in the pancreatic duct and functions as a genetic modifier of CF. However, SLC9A3 function and its relation to CFTR expression in the male reproductive tract in vivo remain elusive. In the present study, we found that CFTR expression was dramatically decreased in the epididymis and vas deferens of Slc9a3 knockout mice. Adult Slc9a3-/- mice showed not only significantly decreased epididymis and vas deferens weight but also increased testis weight. Furthermore, Slc9a3-/- mice developed obstructive azoospermia because of abnormal abundant secretions and calcification in the lumen of the reproductive tract. Ultrastructural analysis of the epithelium in Slc9a3-/-epididymis and vas deferens displayed disorganized and reduced number of stereocilia and numerous secretory apparatuses. Our data revealed that interdependence between SLC9A3 and CFTR is critical for maintaining a precise microenvironment in the epithelial cytoarchitecture of the male reproductive tract. The Slc9a3-deficient mice with impaired male excurrent ducts in this study provide proof for our clinical findings that some Taiwanese of CBAVD carry SLC9A3 deletion but without major CFTR mutations.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Infertilidad Masculina/genética , Oligospermia/genética , Infecciones del Sistema Respiratorio/genética , Intercambiadores de Sodio-Hidrógeno/genética , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Noqueados , Mutación , Oligospermia/patología , Conductos Pancreáticos/metabolismo , Conductos Pancreáticos/patología , Infecciones del Sistema Respiratorio/patología , Intercambiador 3 de Sodio-Hidrógeno
7.
J Formos Med Assoc ; 118(12): 1576-1583, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30797621

RESUMEN

Congenital bilateral absence of vas deferens (CBAVD) is a special entity in obstructive azoospermia. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are involved in Taiwanese CBAVD but most heterozygous 5T variant. The solute carrier family 9 isoform 3 (SLC9A3) is the Na+/H+ exchanger, which interacts with CFTR and regulates the Ca2+ homeostasis. Loss of SLC9A3 decreases CFTR protein and causes obstructive azoospermia in mice. It also causes mal-reabsorption by the efferent tubules, which leads to the obstructive phenomenon and eventually results in testicular atrophy. In 6-month old SLC9A3 deficiency mice, the atrophy of their vas deferens and seminal vesicles become more prominent. Decreases of CFTR expression in the reproductive organ in the SLC9A3 deficient (-/-) mice prove the interaction between CFTR and SLC9A3 in the reproductive tract. Most of Taiwanese CBAVD have at least one variant of SLC9A3 deletion and CFTR IVS8-5T, which co-contribute to Taiwanese CBAVD. The report indicates SLC9A3 deficiency can reverse the pathological changes in the gastrointestinal tract of CF mice. Further research can explore the definite mechanism of SLC9A3 and its role interacting with CFTR in different organ systems, which can contribute to novel treatment for the patients with cystic fibrosis and CBAVD.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Infertilidad Masculina/genética , Enfermedades Urogenitales Masculinas/genética , Intercambiador 3 de Sodio-Hidrógeno/genética , Conducto Deferente/anomalías , Conducto Deferente/patología , Animales , Pueblo Asiatico/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulación del Desarrollo de la Expresión Génica , Heterocigoto , Humanos , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Noqueados , Mutación
8.
Int J Mol Sci ; 20(5)2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30866452

RESUMEN

Male infertility is observed in approximately 50% of all couples with infertility. Intracytoplasmic sperm injection (ICSI), a conventional artificial reproductive technique for treating male infertility, may fail because of a severe low sperm count, immotile sperm, immature sperm, and sperm with structural defects and DNA damage. Our previous studies have revealed that mutations in the septin (SEPT)-coding gene SEPT12 cause teratozoospermia and severe oligozoospermia. These spermatozoa exhibit morphological defects in the head and tail, premature chromosomal condensation, and nuclear damage. Sperm from Sept12 knockout mice also cause the developmental arrest of preimplantation embryos generated through in vitro fertilization and ICSI. Furthermore, we found that SEPT12 interacts with SPAG4, a spermatid nuclear membrane protein that is also named SUN4. Loss of the Spag4 allele in mice also disrupts the integration nuclear envelope and reveals sperm head defects. However, whether SEPT12 affects SPAG4 during mammalian spermiogenesis remains unclear. We thus conducted this study to explore this question. First, we found that SPAG4 and SEPT12 exhibited similar localizations in the postacrosomal region of elongating spermatids and at the neck of mature sperm through isolated murine male germ cells. Second, SEPT12 expression altered the nuclear membrane localization of SPAG4, as observed through confocal microscopy, in a human testicular cancer cell line. Third, SEPT12 expression also altered the localizations of nuclear membrane proteins: LAMINA/C in the cells. This effect was specifically due to the expression of SEPT12 and not that of SEPT1, SEPT6, SEPT7, or SEPT11. Based on these results, we suggest that SEPT12 is among the moderators of SPAG4/LAMIN complexes and is involved in the morphological formation of sperm during mammalian spermiogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Septinas/metabolismo , Espermatogénesis , Animales , Proteínas Portadoras/genética , Células Cultivadas , Técnicas de Inactivación de Genes , Humanos , Lamina Tipo A/metabolismo , Masculino , Ratones , Microscopía Confocal , Proteínas Nucleares/genética , Especificidad de Órganos , Septinas/genética , Teratozoospermia/genética , Teratozoospermia/metabolismo , Testículo/metabolismo
9.
Int J Mol Sci ; 19(9)2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30189608

RESUMEN

Septin (SEPT) genes encode well-preserved polymerizing GTP-binding cytoskeletal proteins. The cellular functions of SEPTs consist of mitosis, cytoskeletal remodeling, cell polarity, and vesicle trafficking through interactions with various types of cytoskeletons. We discovered that mutated SEPTIN12 in different codons resulted in teratozoospermia or oligozoospermia. In mouse models with a defective Septin12 allele, sperm morphology was abnormal, sperm count decreased, and sperms were immotile. However, the regulators of SEPT12 are completely unknown. Some studies have indicated that CDC42 negatively regulates the polymerization of SEPT2/6/7 complexes in mammalian cell lines. In this study, we investigated whether CDC42 modulates SEPT12 polymerization and is involved in the terminal differentiation of male germ cells. First, through scanning electron microscopy analysis, we determined that the loss of Septin12 caused defective sperm heads. This indicated that Septin12 is critical for the formation of sperm heads. Second, CDC42 and SEPT12 were similarly localized in the perinuclear regions of the manchette at the head of elongating spermatids, neck region of elongated spermatids, and midpiece of mature spermatozoa. Third, wild-type CDC42 and CDC42Q61L (a constitutive-acting-mutant) substantially repressed SEPT12 polymerization, but CDC42T17N (a dominant-negative-acting mutant) did not, as evident through ectopic expression analysis. We concluded that CDC42 negatively regulates SEPT12 polymerization and is involved in terminal structure formation of sperm heads.


Asunto(s)
Regulación de la Expresión Génica , Multimerización de Proteína , Septinas/genética , Septinas/metabolismo , Testículo/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Humanos , Masculino , Ratones , Ratones Transgénicos , Especificidad de Órganos , Transporte de Proteínas , Septinas/química , Cabeza del Espermatozoide/metabolismo , Cabeza del Espermatozoide/ultraestructura , Espermatogénesis/genética
10.
Int J Mol Sci ; 19(11)2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30360518

RESUMEN

Few papers have focused on small guanosine triphosphate (GTP)-binding proteins and their regulation during spermatogenesis. TBC1D21 genes (also known as male germ cell RAB GTPase-activating protein MGCRABGAP) are related to sterility, as determined through cDNA microarray testing of human testicular tissues exhibiting spermatogenic defects. TBC1D21 is a protein specifically expressed in the testes that exhibits specific localizations of elongating and elongated spermatids during mammalian spermiogenesis. Furthermore, through co-immunoprecipitation (co-IP) and nano liquid chromatography⁻tandem mass spectrometry (nano LC⁻MS/MS), Rap1 has been recognized as a potential TBC1D21 interactor. This study determined the possible roles of Rap1 and TBC1D21 during mammalian spermiogenesis. First, the binding ability between Rap1 and TBC1D21 was verified using co-IP. Second, the stronger signals of Rap1 expressed in elongating and elongated murine spermatids extracted from testicular sections, namely spermatogonia, spermatocytes, and round spermatids, were compared. Third, Rap1 and TBC1D21 exhibited similar localizations at postacrosomal regions of spermatids and at the midpieces of mature sperms, through isolated male germ cells. Fourth, the results of an activating Rap1 pull-down assay indicated that TBC1D21 overexpression inactivates Rap1 activity in cell models. In conclusion, TBC1D21 may interact with and potentially regulate Rap1 during murine spermatogenesis.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Espermatogénesis/fisiología , Proteínas de Unión al GTP rap1/metabolismo , Animales , Cromatografía Liquida , Proteínas Activadoras de GTPasa/genética , Inmunoprecipitación , Infertilidad Masculina/metabolismo , Masculino , Ratones , Unión Proteica , Espermátides/metabolismo , Espermátides/fisiología , Espermatogénesis/genética , Espectrometría de Masas en Tándem , Proteínas de Unión al GTP rap1/genética
11.
J Cell Sci ; 128(5): 923-34, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25588830

RESUMEN

Male infertility has become a worldwide health problem, but the etiologies of most cases are still unknown. SEPT12, a GTP-binding protein, is involved in male fertility. Two SEPT12 mutations (SEPT12(T89M) and SEPT12(D197N)) have been identified in infertile men who have a defective sperm annulus with a bent tail. The function of SEPT12 in the sperm annulus is still unclear. Here, we found that SEPT12 formed a filamentous structure with SEPT7, SEPT 6, SEPT2 and SEPT4 at the sperm annulus. The SEPT12-based septin core complex was assembled as octameric filaments comprising the SEPT proteins 12-7-6-2-2-6-7-12 or 12-7-6-4-4-6-7-12. In addition, the GTP-binding domain of SEPT12 was crucial for its interaction with SEPT7, and the N- and C-termini of SEPT12 were required for the interaction of SEPT12 with itself to polymerize octamers into filaments. Mutant mice carrying the SEPT12(D197N) mutation, which disrupts SEPT12 filament formation, showed a disorganized sperm annulus, bent tail, reduced motility and loss of the SEPT ring structure at the sperm annulus. These phenotypes were also observed in an infertile man carrying SEPT12(D197N). Taken together, our results demonstrate the molecular architecture of SEPT12 filaments at the sperm annulus, their mechanical support of sperm motility, and their correlation with male infertility.


Asunto(s)
Citoesqueleto/metabolismo , Infertilidad Masculina/metabolismo , Septinas/metabolismo , Motilidad Espermática , Cola del Espermatozoide/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Citoesqueleto/genética , Humanos , Infertilidad Masculina/genética , Masculino , Ratones , Ratones Mutantes , Mutación Missense , Estructura Terciaria de Proteína , Septinas/genética
12.
Int J Mol Sci ; 19(1)2017 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-29286340

RESUMEN

Solute carrier family 9 isoform 3 (SLC9A3), a Na⁺/H⁺ exchanger, regulates the transepithelial absorption of Na⁺ and water and is primarily expressed on the apical membranes of the intestinal epithelium, renal proximal tubule, epididymis, and vas deferens. Loss of the Slc9a3 allele in mice enhances intestinal fluid and causes diarrhoea as a consequence of diminished Na⁺ and HCO3- absorption. Hence, the loss also causes male infertility and reveals the abnormal dilated lumen of the rete testis and calcification in efferent ductules. However, whether loss of Slc9a3 alleles also disrupts mammalian spermatogenesis remains unknown. First, through immunoblotting, we determined that SLC9A3 is highly expressed in the murine testis compared with the small intestine, epididymis, and vas deferens. During murine spermatogenesis, SLC9A3 is specifically expressed in the acrosome region of round, elongating, and elongated spermatids through immunostaining. Furthermore, SLC9A3 signals are enriched in the acrosome of mature sperm isolated from the vas deferens. In Slc9a3 knockout (KO) mice, compared with the same-aged controls, the number of spermatids on the testicular section of the mice progressively worsened in mice aged 20, 35, and 60 days. Sperm isolated from the epididymis of Slc9a3 KO mice revealed severe acrosomal defects. Our data indicated that SLC9A3 has a vital role in acrosomal formation during spermiogenesis.


Asunto(s)
Acrosoma/metabolismo , Infertilidad Masculina/genética , Intercambiador 3 de Sodio-Hidrógeno/genética , Espermátides/metabolismo , Espermatogénesis/genética , Testículo/metabolismo , Acrosoma/ultraestructura , Animales , Epidídimo/crecimiento & desarrollo , Epidídimo/metabolismo , Epidídimo/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Infertilidad Masculina/metabolismo , Infertilidad Masculina/fisiopatología , Intestino Delgado/crecimiento & desarrollo , Intestino Delgado/metabolismo , Intestino Delgado/fisiopatología , Masculino , Ratones , Ratones Noqueados , Especificidad de Órganos , Transducción de Señal , Intercambiador 3 de Sodio-Hidrógeno/deficiencia , Espermátides/ultraestructura , Testículo/crecimiento & desarrollo , Testículo/fisiopatología , Conducto Deferente/crecimiento & desarrollo , Conducto Deferente/metabolismo , Conducto Deferente/fisiopatología
13.
Int J Mol Sci ; 18(1)2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28067790

RESUMEN

According to recent estimates, 2%-15% of couples are sterile, and approximately half of the infertility cases are attributed to male reproductive factors. However, the reasons remain undefined in approximately 25% of male infertility cases, and most infertility cases exhibit spermatogenic defects. Numerous genes involved in spermatogenesis still remain unknown. We previously identified Male Germ Cells Rab GTPase-Activating Proteins (MGCRABGAPs) through cDNA microarray analysis of human testicular tissues with spermatogenic defects. MGCRABGAP contains a conserved RABGAP catalytic domain, TBC (Tre2/Bub2/Cdc16). RABGAP family proteins regulate cellular function (e.g., cytoskeletal remodeling, vesicular trafficking, and cell migration) by inactivating RAB proteins. MGCRABGAP is a male germ cell-specific protein expressed in elongating and elongated spermatids during mammalian spermiogenesis. The purpose of this study was to identify proteins that interact with MGCRABGAP during mammalian spermiogenesis using a proteomic approach. We found that MGCRABGAP exhibited GTPase-activating bioability, and several MGCRABGAP interactors, possible substrates (e.g., RAB10, RAB5C, and RAP1), were identified using co-immunoprecipitation (co-IP) and nano liquid chromatography-mass spectrometry/mass spectrometry (nano LC-MS/MS). We confirmed the binding ability between RAB10 and MGCRABGAP via co-IP. Additionally, MGCRABGAP-RAB10 complexes were specifically colocalized in the manchette structure, a critical structure for the formation of spermatid heads, and were slightly expressed at the midpiece of mature spermatozoa. Based on these results, we propose that MGCRABGAP is involved in mammalian spermiogenesis by modulating RAB10.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Mamíferos/metabolismo , Espermatogénesis , Proteínas de Unión al GTP rab/metabolismo , Animales , Cromatografía Liquida , Humanos , Immunoblotting , Inmunoprecipitación , Masculino , Ratones , Unión Proteica , Proteoma/metabolismo , Proteómica/métodos , Cabeza del Espermatozoide/metabolismo , Pieza Intermedia del Espermatozoide/metabolismo , Espermátides/metabolismo , Espermatozoides/metabolismo , Espectrometría de Masas en Tándem
14.
Int J Mol Sci ; 17(11)2016 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-27854341

RESUMEN

Male factor infertility accounts for approximately 50 percent of infertile couples. The male factor-related causes of intracytoplasmic sperm injection failure include the absence of sperm, immotile sperm, immature sperm, abnormally structured sperm, and sperm with nuclear damage. Our knockout and knock-in mice models demonstrated that SEPTIN12 (SEPT12) is vital for the formation of sperm morphological characteristics during spermiogenesis. In the clinical aspect, mutated SEPT12 in men results in oligozoospermia or teratozoospermia or both. Sperm with mutated SEPT12 revealed abnormal head and tail structures, decreased chromosomal condensation, and nuclear damage. Furthermore, several nuclear or nuclear membrane-related proteins have been identified as SEPT12 interactors through the yeast 2-hybrid system, including NDC1 transmembrane nucleoporin (NDC1). NDC1 is a major nuclear pore protein, and is critical for nuclear pore complex assembly and nuclear morphology maintenance in mammalian cells. Mutated NDC1 cause gametogenesis defects and skeletal malformations in mice, which were detected spontaneously in the A/J strain. In this study, we characterized the functional effects of SEPT12-NDC1 complexes during mammalian spermiogenesis. In mature human spermatozoa, SEPT12 and NDC1 are majorly colocalized in the centrosome regions; however, NDC1 is only slightly co-expressed with SEPT12 at the annulus of the sperm tail. In addition, SEPT12 interacts with NDC1 in the male germ cell line through coimmunoprecipitation. During murine spermiogenesis, we observed that NDC1 was located at the nuclear membrane of spermatids and at the necks of mature spermatozoa. In male germ cell lines, NDC1 overexpression restricted the localization of SEPT12 to the nucleus and repressed the filament formation of SEPT12. In mice sperm with mutated SEPT12, NDC1 dispersed around the manchette region of the sperm head and annulus, compared with concentrating at the sperm neck of wild-type sperm. These results indicate that SEPT12-NDC1 complexes are involved in mammalian spermiogenesis.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Nucleoproteínas/metabolismo , Septinas/metabolismo , Espermatogénesis , Espermatozoides/citología , Animales , Línea Celular , Humanos , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Ratones , Mutación , Proteínas de Complejo Poro Nuclear/análisis , Nucleoproteínas/análisis , Septinas/análisis , Septinas/genética , Espermatozoides/metabolismo
15.
Int J Mol Sci ; 17(1)2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26771610

RESUMEN

The d-galactose (d-gal)-injected animal model, which is typically established by administering consecutive subcutaneous d-gal injections to animals for approximately six or eight weeks, has been frequently used for aging research. In addition, this animal model has been demonstrated to accelerate aging in the brain, kidneys, liver and blood cells. However, studies on aging in male reproductive organs that have used this animal model remain few. Therefore, the current study aimed to optimize a model of male reproductive aging by administering d-gal injections to male mice and to determine the possible mechanism expediting senescence processes during spermatogenesis. In this study, C57Bl/6 mice were randomized into five groups (each containing 8-10 mice according to the daily intraperitoneal injection of vehicle control or 100 or 200 mg/kg dosages of d-gal for a period of six or eight weeks). First, mice subjected to d-gal injections for six or eight weeks demonstrated considerably decreased superoxide dismutase activity in the serum and testis lysates compared to those in the control group. The lipid peroxidation in testis also increased in the d-gal-injected groups. Furthermore, the d-gal-injected groups exhibited a decreased ratio of testis weight/body weight and sperm count compared to the control group. The percentages of both immotile sperm and abnormal sperm increased considerably in the d-gal-injected groups compared to those of the control group. To determine the genes influenced by the d-gal injection during murine spermatogenesis, a c-DNA microarray was conducted to compare testicular RNA samples between the treated groups and the control group. The d-gal-injected groups exhibited RNA transcripts of nine spermatogenesis-related genes (Cycl2, Hk1, Pltp, Utp3, Cabyr, Zpbp2, Speer2, Csnka2ip and Katnb1) that were up- or down-regulated by at least two-fold compared to the control group. Several of these genes are critical for forming sperm-head morphologies or maintaining nuclear integration (e.g., cylicin, basic protein of sperm head cytoskeleton 2 (Cylc2), casein kinase 2, alpha prime interacting protein (Csnka2ip) and katanin p80 (WD40-containing) subunit B1 (Katnb1)). These results indicate that d-gal-injected mice are suitable for investigating male reproductive aging.


Asunto(s)
Envejecimiento/efectos de los fármacos , Galactosa/farmacología , Reproducción/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Animales , Galactosa/administración & dosificación , Inyecciones Intraperitoneales , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Tamaño de los Órganos/efectos de los fármacos , Recuento de Espermatozoides , Superóxido Dismutasa/metabolismo , Testículo/efectos de los fármacos , Testículo/fisiología
16.
J Assist Reprod Genet ; 30(4): 505-12, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23423614

RESUMEN

PURPOSE: Asthenozoospermia is a major cause of male infertility. However, the molecular mechanisms underlying sperm-motility defects remain largely unknown in the majority of cases. In our previous study, we applied a proteomic approach to identify unknown proteins that were downregulated in spermatozoa with low motility compared to spermatozoa with good motility. Several sperm motility- related proteins have been identified. In this study, 3-hydroxyisobutyrate dehydrogenase (HIBADH), one of the proteins identified using the proteomic tools, is further characterized. METHODS: Reverse-transcription polymerase chain reactions (RT-PCR), western blotting, and immunofluorescence assays (IFA) were preformed to investigate the expression pattern. The enzymatic activity of HIBADH was evaluated in sperm with good (>50 %), moderate (< 50 %) and lower motility (< 20 %). RESULTS: Using RT-PCR, we found that transcripts of HIBADH are enriched in the cerebellum, heart, skeletal muscle, uterus, placenta, and testes of male humans. In western blotting, it is expressed in the placenta, testes, and spermatozoa. During spermiogenesis, HIBADH is located at the mid-piece (a specialized development from the mitochondria) of elongating, elongated, and mature sperm. The enzymatic activity of HIBADH in sperm with moderate and lower motility were significantly reduced compared with good motility (P<0.0001 and P<0.05, respectively). CONCLUSIONS: Our study indicated that HIBADH is involved in the mitochondrial function of spermatozoa, and maintains sperm motility. It may serve as a sperm-motility marker.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Motilidad Espermática , Espermatozoides/enzimología , Astenozoospermia/enzimología , Biomarcadores/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Mitocondrias/enzimología , Mitocondrias/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espermatogénesis
17.
Int J Mol Sci ; 14(11): 22102-16, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24213608

RESUMEN

The septin gene belongs to a highly conserved family of polymerizing GTP-binding cytoskeletal proteins. SEPTs perform cytoskeletal remodeling, cell polarity, mitosis, and vesicle trafficking by interacting with various cytoskeletons. Our previous studies have indicated that SEPTIN12+/+/+/- chimeras with a SEPTIN12 mutant allele were infertile. Spermatozoa from the vas deferens of chimeric mice indicated an abnormal sperm morphology, decreased sperm count, and immotile sperm. Mutations and genetic variants of SEPTIN12 in infertility cases also caused oligozoospermia and teratozoospermia. We suggest that a loss of SEPT12 affects the biological function of microtublin functions and causes spermiogenesis defects. In the cell model, SEPT12 interacts with α- and ß-tubulins by co-immunoprecipitation (co-IP). To determine the precise localization and interactions between SEPT12 and α- and ß-tubulins in vivo, we created SEPTIN12-transgene mice. We demonstrate how SEPT12 interacts and co-localizes with α- and ß-tubulins during spermiogenesis in these mice. By using shRNA, the loss of SEPT12 transcripts disrupts α- and ß-tubulin organization. In addition, losing or decreasing SEPT12 disturbs the morphogenesis of sperm heads and the elongation of sperm tails, the steps of which are coordinated and constructed by α- and ß-tubulins, in SEPTIN12+/+/+/- chimeras. In this study, we discovered that the SEPTIN12-microtubule complexes are critical for sperm formation during spermiogenesis.


Asunto(s)
Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Septinas/metabolismo , Espermatogénesis , Animales , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Masculino , Ratones , Microtúbulos/química , Complejos Multiproteicos/química , Septinas/química , Cabeza del Espermatozoide/química , Cabeza del Espermatozoide/metabolismo , Cabeza del Espermatozoide/ultraestructura , Cola del Espermatozoide/química , Cola del Espermatozoide/metabolismo , Cola del Espermatozoide/ultraestructura , Espermatozoides/metabolismo
18.
Antioxidants (Basel) ; 12(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37759974

RESUMEN

Oxidative stress is the etiology for 30-80% of male patients affected by infertility, which is a major health problem worldwide. Klotho protein is an aging suppressor that functions as a humoral factor modulating various cellular processes including antioxidation and anti-inflammation, and its dysregulation leads to human pathologies. Male mice lacking Klotho are sterile, and decreased Klotho levels in the serum are observed in men suffering from infertility with lower sperm counts. However, the mechanism by which Klotho maintains healthy male fertility remains unclear. Klotho haplodeficiency (Kl+/-) accelerates fertility reduction by impairing sperm quality and spermatogenesis in Kl+/- mice. Testicular proteomic analysis revealed that loss of Klotho predominantly disturbed oxidation and the glutathione-related pathway. We further focused on the glutathione-S-transferase (GST) family which counteracts oxidative stress in most cell types and closely relates with fertility. Several GST proteins, including GSTP1, GSTO2, and GSTK1, were significantly downregulated, which subsequently resulted in increased levels of the lipid peroxidation product 4-hydroxynonenal and apoptosis in murine testis with low or no expression of Klotho. Taken together, the loss of one Kl allele accelerates male fecundity loss because diminished antioxidant capability induces oxidative injury in mice. This is the first study that highlights a connection between Klotho and GST proteins.

19.
Physiol Rep ; 11(24): e15887, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38110300

RESUMEN

Muscular dystrophy (MD) is a genetic disorder that causes progressive muscle weakness and degeneration. Limb-girdle muscular dystrophy (LGMD) is a type of MD that mainly causes muscle atrophy within the shoulder and pelvic girdles. LGMD is classified into autosomal dominant (LGMD-D) and autosomal recessive (LGMD-R) inheritance patterns. Mutations in the Dysferlin gene (DYSF) are common causes of LGMD-R. However, genetic screening of DYSF mutations is rare in Taiwan. Herein, we identified a novel c.2867_2871del ACCAG deletion and a previously reported c.937+1G>A mutation in DYSF from a Taiwanese family with LGMD. The primary symptoms of both siblings were difficulty climbing stairs, walking on the toes, and gradually worsening weakness in the proximal muscles and increased creatine kinase level. Through pedigree analysis and sequencing, two siblings from this family were found to have compound heterozygous DYSF mutations (c. 937+1G>A and c. 2867_2871del ACCAG) within the separated alleles. These mutations induced early stop codons; if translated, truncated DYSF proteins will be expressed. Or, the mRNA products of these two mutations will merit the nonsense-mediated decay, might result in no dysferlin protein expressed. To our knowledge, this is the first report of a novel c.2867_2871del ACCAG deletion in DYSF. Further research is required to examine the effects of the novel DYSF mutation in Taiwanese patients with LGMD.


Asunto(s)
Distrofia Muscular de Cinturas , Humanos , Disferlina/genética , Distrofia Muscular de Cinturas/genética , Mutación , Atrofia Muscular , Patrón de Herencia
20.
Hum Mutat ; 33(4): 710-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22275165

RESUMEN

Septins are members of the GTPase superfamily, which has been implicated in diverse cellular functions including cytokinesis and morphogenesis. Septin 12 (SEPT12) is a testis-specific gene critical for the terminal differentiation of male germ cells. We report the identification of two missense SEPT12 mutations, c.266C>T/p.Thr89Met and c.589G>A/p.Asp197Asn, in infertile men. Both mutations are located inside the GTPase domain and may alter the protein structure as suggested by in silico modeling. The p.Thr89Met mutation significantly reduced guanosine-5'-triphosphate (GTP) hydrolytic activity, and the p.Asp197Asn mutation (SEPT12(D197N)) interfered with GTP binding. Both mutant SEPT12 proteins restricted the filament formation of the wild-type SEPT12 in a dose-dependent manner. The patient carrying SEPT12(D197N) presented with oligoasthenozoospermia, whereas the SEPT12(T89M) patient had asthenoteratozoospermia. The characteristic sperm pathology of the SEPT12(D197N) patient included defective annulus with bent tail and loss of SEPT12 from the annulus of abnormal sperm. Our finding suggests loss-of-function mutations in SEPT12 disrupted sperm structural integrity by perturbing septin filament formation.


Asunto(s)
Infertilidad Masculina/genética , Mutación Missense , Septinas/genética , Astenozoospermia/genética , Estudios de Casos y Controles , Guanosina Trifosfato/metabolismo , Humanos , Masculino , Septinas/química , Septinas/metabolismo , Motilidad Espermática/genética , Espermatogénesis/genética , Espermatozoides/anomalías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA