Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2311818, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38837617

RESUMEN

The exceptional and substantial electron affinity, as well as the excellent chemical and thermal stability of transition metal oxides (TMOs), infuse infinite vitality into multifunctional applications, especially in the field of electromagnetic wave (EMW) absorption. Nonetheless, the suboptimal structural mechanical properties and absence of structural regulation continue to hinder the advancement of TMOs-based aerogels. Herein, a novel 2D tantalum disulfide (2H-TaS2) reduction strategy is demonstrated to synthesize Ta2O5/reduced graphene oxide (rGO) heterointerface aerogels with unique characters. As the prerequisite, the defects, interfaces, and configurations of aerogels are regulated by varying the concentration of 2H-TaS2 to ensure the Ta2O5/rGO heterointerface aerogels with appealing EMW absorption properties such as a minimum reflection loss (RLmin) of -61.93 dB and an effective absorption bandwidth (EAB) of 8.54 GHz (7.80-16.34 GHz). This strategy provides valuable insights for designing advanced EMW absorbers. Meanwhile, the aerogel exhibits favorable thermal insulation performance with a value of 36 mW m-1 K-1, outstanding fire resistance capability, and exceptional mechanical energy dissipation performance, making it promising for applications in the aerospace industry and consumer electronics devices.

2.
Pharmacol Res ; 201: 107063, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216006

RESUMEN

Stimulator of interferon genes (STING) is a crucial innate immune sensor responsible for distinguishing pathogens and cytosolic DNA, mediating innate immune signaling pathways to defend the host. Recent studies have revealed additional regulatory functions of STING beyond its innate immune-related activities, including the regulation of cellular metabolism, DNA repair, cellular senescence, autophagy and various cell deaths. These findings highlight the broader implications of STING in cellular physiology beyond its role in innate immunity. Currently, approximately 10 STING agonists have entered the clinical stage. Unlike inhibitors, which have a maximum inhibition limit, agonists have the potential for infinite amplification. STING signaling is a complex process that requires precise regulation of STING to ensure balanced immune responses and prevent detrimental autoinflammation. Recent research on the structural mechanism of STING autoinhibition and its negative regulation by adaptor protein complex 1 (AP-1) provides valuable insights into its different effects under physiological and pathological conditions, offering a new perspective for developing immune regulatory drugs. Herein, we present a comprehensive overview of the regulatory functions and molecular mechanisms of STING beyond innate immune regulation, along with updated details of its structural mechanisms. We discuss the implications of these complex regulations in various diseases, emphasizing the importance and feasibility of targeting the immunity-dependent or immunity-independent functions of STING. Moreover, we highlight the current trend in drug development and key points for clinical research, basic research, and translational research related to STING.


Asunto(s)
Autofagia , Senescencia Celular , Muerte Celular , Inmunidad Innata , Nucleotidiltransferasas
3.
Bioorg Chem ; 144: 107134, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237389

RESUMEN

Two series of 2,4-diarylaminopyrimidine derivatives containing sulfonamide moiety were designed and synthesized for screening as inhibitors of focal adhesion kinase (FAK). Most compounds significantly inhibited the enzymatic activities of FAK, and the best compound was 7b (IC50 = 0.27 nM). A majority of aminoethyl sulfonamide derivatives could effectively inhibit the proliferation of human cancer cell lines (HCT116, A549, MDA-MB-231 and Hela) expressing high levels of FAK. Particularly, compounds 7b, 7c, and 7o exhibited more significant efficacy against all of four cancer cell lines within concentrations of 1.5 µM. Furthermore, these three compounds displayed higher selectivity of cancer cells over normal cells (SI value > 14), compared to the positive control TAE226 (SI value = 1.63). Interestingly, introduction of dithiocarbamate moiety to the aminoethyl sulfonamide derivatives can indeed improve the antiproliferative activities against A549 cells. Especially, compound 8d demonstrated most significant cytotoxicity activity against A549 cells with an IC50 value of 0.08 µM, which is 20-fold superior to parent compound 7k. Additionally, compound 7b, which display the best anti-FAK potency, can inhibit the clone formation and migration of HCT-116 cells, and cause cell cycle arrest at G2/M phase, inducing apoptosis by promoting ROS production. Overall, these results suggest that 7b is a valuable FAK inhibitor that deserves further optimization to improve its druggability.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Proteína-Tirosina Quinasas de Adhesión Focal , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Sulfonamidas/farmacología , Pirimidinas/química , Pirimidinas/farmacología
4.
Genet Mol Biol ; 47(2): e20230205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38856110

RESUMEN

To investigate the role of Peg13 in modulating the inflammatory response in sepsis, we established Lipopolysaccharide (LPS)-induced 293T cells and mouse models. Peg13 expression was assessed at various time points after infection using RT-qPCR. The levels of high mobility group box 1 (HMGB1) and interleukin-6 (IL-6) were quantified through ELISA. A total of 44 septic patients and 36 healthy participants were recruited to measure Peg13 and HMGB1 levels in the blood. Peg13 demonstrated significant down-regulation in the supernatant of LPS-induced 293T cells and in the blood of LPS-induced mice. Moreover, the levels of proinflammatory cytokines HMGB1 and IL-6 were elevated in both the supernatant of LPS-induced cell models and blood specimens from LPS-induced murine models, and this elevation could be notably reduced by Peg13 suppression. In a clinical context, Peg13 and HMGB1 levels were higher in septic patients compared to healthy subjects. Peg13 exhibited a negative correlation with HMGB1, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) among septic patients. Peg13 mitigates the inflammatory response by reducing the release of proinflammatory cytokines HMGB1 and IL-6 in sepsis, presenting a potential therapeutic target for alleviating inflammation in sepsis treatment.

5.
Sheng Li Xue Bao ; 76(2): 329-340, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658381

RESUMEN

Chronic liver disease (CLD) is a major global health burden in terms of growing morbidity and mortality. Although many conditions can cause CLD, leading to cirrhosis and hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) are the most common culprits. Prostaglandin E2 (PGE2), produced in the liver, is an important lipid mediator derived from the ω-6 polyunsaturated fatty acid, arachidonic acid, and plays a critical role in hepatic homeostasis. The physiological effects of PGE2 are mediated through four classes of E-type prostaglandin (EP) receptors, namely EP1, EP2, EP3 and EP4. In recent years, an increasing number of studies has been done to clarify the effects of PGE2 and EP receptors in regulating liver function and the pathogenesis of CLD to create a new potential clinical impact. In this review, we overview the biosynthesis and regulation of PGE2 and discuss the role of its synthesizing enzymes and receptors in the maintenance of normal liver function and the development and progress of CLD. We also discuss the potential of the PGE2-EP receptors system in treating CLD with various etiologies.


Asunto(s)
Dinoprostona , Hepatopatías , Receptores de Prostaglandina E , Humanos , Dinoprostona/metabolismo , Receptores de Prostaglandina E/metabolismo , Receptores de Prostaglandina E/fisiología , Hepatopatías/metabolismo , Enfermedad Crónica , Animales , Hígado/metabolismo , Hepatopatías Alcohólicas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo
6.
J Mol Cell Cardiol ; 175: 62-66, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36584478

RESUMEN

Myh6-Cre transgenic mouse line was known to express Cre recombinase only in the heart. Nevertheless, during breeding Myh6-Cre to Rosa26fstdTom reporter (tdTom) mouse line, we observed that a significant part of their F2 tdTom/+ offspring had tdTom reporter gene universally activated. Our results show that Myh6-Cre transgenic mice have Cre recombinase activity in a subpopulation of the male germline cells, and that Myh6 gene transcripts are enriched in the interstitial Leydig cells and the undifferentiated spermatogonia stem cells. In summary, the current study confirms that the previously known "heart-specific" Myh6 promoter drives Cre expression in the testis.


Asunto(s)
Células Germinativas , Integrasas , Masculino , Ratones , Animales , Regiones Promotoras Genéticas/genética , Ratones Transgénicos , Integrasas/genética , Integrasas/metabolismo , Células Germinativas/metabolismo
7.
Small ; 19(4): e2205716, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36437045

RESUMEN

Multifunctional thermal management materials with highly efficient electromagnetic wave (EMW) absorption performance are urgently required to tackle the heat dissipation and electromagnetic interference issues of high integrated electronics. However, the high thermal conductivity (λ) and outstanding EMW absorption performance are often incompatible with each other in a single material. Herein, a through-thickness arrayed NiCo2 O4 /graphene oxide/carbon fibers (NiCO@CFs) elastomer with integrated functionalities of high thermal conductivity, highly efficient EMW absorption, and excellent compressibility is reported. The NiCO@CFs elastomer realizes a high out-of-plane thermal conductivity of 15.55 W m-1  K-1 , due to the through-thickness vertically aligned CFs framework. Moreover, the unique horizontal segregated magnetic network effectively reduces the electrical contact between the CFs, which significantly enhances impedance matching of NiCO@CFs elastomer. As a result, the vertically arrayed NiCO@CFs elastomer synchronously exhibits ultrabroad effective absorption bandwidth of 8.25 GHz (9.75-18 GHz) at a thickness of 2.4 mm, good impedance matching, and a minimum reflection loss (RLmin ) of -55.15 dB. Given these outstanding findings, the multifunctional arrayed NiCO@CFs elastomer opens an avenue for applications in EMW absorption and thermal management. This strategy of constructing thermal/electrical/mechanical pathways provides a promising way for the high-performance multifunctional materials in electronic devices.

8.
EMBO Rep ; 22(2): e51162, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33393230

RESUMEN

Although iron is required for cell proliferation, iron-dependent programmed cell death serves as a critical barrier to tumor growth and metastasis. Emerging evidence suggests that iron-mediated lipid oxidation also facilitates immune eradication of cancer. However, the regulatory mechanisms of iron metabolism in cancer remain unclear. Here we identify OTUD1 as the deubiquitinase of iron-responsive element-binding protein 2 (IREB2), selectively reduced in colorectal cancer. Clinically, downregulation of OTUD1 is highly correlated with poor outcome of cancer. Mechanistically, OTUD1 promotes transferrin receptor protein 1 (TFRC)-mediated iron transportation through deubiquitinating and stabilizing IREB2, leading to increased ROS generation and ferroptosis. Moreover, the presence of OTUD1 promotes the release of damage-associated molecular patterns (DAMPs), which in turn recruits the leukocytes and strengthens host immune response. Reciprocally, depletion of OTUD1 limits tumor-reactive T-cell accumulation and exacerbates colon cancer progression. Our data demonstrate that OTUD1 plays a stimulatory role in iron transportation and highlight the importance of OTUD1-IREB2-TFRC signaling axis in host antitumor immunity.


Asunto(s)
Ferroptosis , Hierro/metabolismo , Neoplasias/inmunología , Proteasas Ubiquitina-Específicas , Antígenos CD , Humanos , Proteína 2 Reguladora de Hierro , Receptores de Transferrina , Transducción de Señal , Linfocitos T , Proteasas Ubiquitina-Específicas/metabolismo
9.
J Peripher Nerv Syst ; 28(4): 608-613, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37584201

RESUMEN

BACKGROUND AND AIMS: Biallelic variants in the sorbitol dehydrogenase (SORD) gene have been identified as the genetic cause of autosomal recessive (AR) peripheral neuropathy (PN) manifesting as Charcot-Marie-Tooth disease type 2 (CMT2) or distal hereditary motor neuropathy (dHMN). We aim to observe the genetic and clinical spectrum of a cohort of patients with SORD-related PN (SORD-PN). METHODS: A total of 107 patients with AR or sporadic CMT2/dHMN underwent molecular diagnosis by whole-exome sequencing and subsequent Sanger sequencing validation. Available phenotypic data for SORD-PN were collected and analyzed. RESULTS: Eleven (10.28%) of 107 patients were identified as SORD-PN, including four with CMT2 and seven with dHMN. The SORD variant c.210 T > G;p.His70Gln in F-d3 was firstly reported and subsequent analysis showed that it resulted in loss of SORD enzyme function. Evidence of subclinical muscle involvement was frequently detected in patients with SORD-PN, including mildly to moderately elevated serum creatine kinase (CK) levels in 10 patients, myogenic electrophysiological changes in one patient, and muscle edema in five patients undergoing lower extremity MRI. Fasting serum sorbitol level was 88-fold higher in SORD-PN patients (9.69 ± 1.07 mg/L) than in healthy heterozygous subjects (0.11 ± 0.01 mg/L) and 138-fold higher than in healthy controls (0.07 ± 0.02 mg/L). INTERPRETATION: The novel SORD variant c.210 T > G;p.His70Gln and evidence of subclinical muscle involvement were identified, which expanded the genetic and clinical spectrum of SORD-PN. Subclinical muscle involvement might be a common but easily overlooked clinical feature. The serum CK and fasting serum sorbitol levels were expected to be sensitive biomarkers confirmed by follow-up cohort study.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Neuropatía Hereditaria Motora y Sensorial , Humanos , L-Iditol 2-Deshidrogenasa/genética , Estudios de Seguimiento , Enfermedad de Charcot-Marie-Tooth/genética , Músculos , Sorbitol , Mutación/genética , Linaje , Neuropatía Hereditaria Motora y Sensorial/genética
10.
Bioorg Chem ; 136: 106556, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37105002

RESUMEN

The approved small-molecule inhibitors of anaplastic lymphoma kinase (ALK) have shown remarkable efficacy in some subset of cancer patients. However, the numerous ALK mutants or fusion partners are resistant to such drugs, greatly limiting their application in clinic. Despite the drug design strategy of proteolysis-targeting chimera (PROTAC) holds great potential to overcome drug resistance in theory, there are obvious disadvantages for the reported PROTACs that include high molecular weight, long linkers, difficult synthesis routes as well as insufficient evidence in activity for diverse ALK mutants. In this study, we designed and synthesized a miniaturized PROTAC of ALK named AP-1 following the principle of minimalist design. Two simple chemical units of ligands and a minimized linker with only two atoms were selected for synthesis of AP-1. At cellular level, AP-1 successfully degraded three types of ALK mutants including NPM-ALK, EML4-ALK and F1174L mutation ALK form with potent activity, high selectivity in ALK-positive cells. In xenograft mouse model, AP-1 showed the stronger antitumor efficacy than ceritinib as well as ALK degraders reported in literatures. AP-1 with an extremely simple PROTAC structure can be served as an effective candidate drug for therapy of various types of ALK-positive cancers. And the design principle of AP-1 has a good guiding significance for overcoming the disadvantages such as excessive molecular weight and poor solubility of PROTAC.


Asunto(s)
Antineoplásicos , Neoplasias , Quimera Dirigida a la Proteólisis , Animales , Humanos , Ratones , Antineoplásicos/química , Línea Celular Tumoral , Diseño de Fármacos , Resistencia a Antineoplásicos , Mutación , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Factor de Transcripción AP-1 , Quimera Dirigida a la Proteólisis/química , Quimera Dirigida a la Proteólisis/farmacología
11.
Mol Ther ; 30(2): 898-914, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34400329

RESUMEN

Heart failure is a leading cause of fatality in Duchenne muscular dystrophy (DMD) patients. Previously, we discovered that cardiac and skeletal-muscle-enriched CIP proteins play important roles in cardiac function. Here, we report that CIP, a striated muscle-specific protein, participates in the regulation of dystrophic cardiomyopathy. Using a mouse model of human DMD, we found that deletion of CIP leads to dilated cardiomyopathy and heart failure in young, non-syndromic mdx mice. Conversely, transgenic overexpression of CIP reduces pathological dystrophic cardiomyopathy in old, syndromic mdx mice. Genome-wide transcriptome analyses reveal that molecular pathways involving fibrogenesis and oxidative stress are affected in CIP-mediated dystrophic cardiomyopathy. Mechanistically, we found that CIP interacts with dystrophin and calcineurin (CnA) to suppress the CnA-Nuclear Factor of Activated T cells (NFAT) pathway, which results in decreased expression of Nox4, a key component of the oxidative stress pathway. Overexpression of Nox4 accelerates the development of dystrophic cardiomyopathy in mdx mice. Our study indicates CIP is a modifier of dystrophic cardiomyopathy and a potential therapeutic target for this devastating disease.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Distrofia Muscular de Duchenne , Animales , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatía Dilatada/genética , Proteínas Co-Represoras , Distrofina/metabolismo , Corazón , Humanos , Ratones , Ratones Endogámicos mdx , Distrofia Muscular de Duchenne/patología , Proteínas Nucleares
12.
Int J Mol Sci ; 24(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298352

RESUMEN

Growing evidence proves that amino acid restriction can reverse obesity by reducing adipose tissue mass. Amino acids are not only the building blocks of proteins but also serve as signaling molecules in multiple biological pathways. The study of adipocytes' response to amino acid level changes is crucial. It has been reported that a low concentration of lysine suppresses lipid accumulation and transcription of several adipogenic genes in 3T3-L1 preadipocytes. However, the detailed lysine-deprivation-induced cellular transcriptomic changes and the altered pathways have yet to be fully studied. Here, using 3T3-L1 cells, we performed RNA sequencing on undifferentiated and differentiated cells, and differentiated cells under a lysine-free environment, and the data were subjected to KEGG enrichment. We found that the differentiation process of 3T3-L1 cells to adipocytes required the large-scale upregulation of metabolic pathways, mainly on the mitochondrial TCA cycle, oxidative phosphorylation, and downregulation of the lysosomal pathway. Single amino acid lysine depletion suppressed differentiation dose dependently. It disrupted the metabolism of cellular amino acids, which could be partially reflected in the changes in amino acid levels in the culture medium. It inhibited the mitochondria respiratory chain and upregulated the lysosomal pathway, which are essential for adipocyte differentiation. We also noticed that cellular interleukin 6 (IL6) expression and medium IL6 level were dramatically increased, which was one of the targets for suppressing adipogenesis induced by lysine depletion. Moreover, we showed that the depletion of some essential amino acids such as methionine and cystine could induce similar phenomena. This suggests that individual amino acid deprivation may share some common pathways. This descriptive study dissects the pathways for adipogenesis and how the cellular transcriptome was altered under lysine depletion.


Asunto(s)
Adipogénesis , Lisina , Ratones , Animales , Adipogénesis/genética , Células 3T3-L1 , Lisina/genética , Interleucina-6/genética , Diferenciación Celular/genética , Perfilación de la Expresión Génica , PPAR gamma/metabolismo
13.
BMC Genomics ; 23(1): 432, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681121

RESUMEN

BACKGROUND: The R2R3-MYB transcription factor is one of the largest gene families in plants and involved in the regulation of plant development, hormone signal transduction, biotic and abiotic stresses. Tobacco is one of the most important model plants. Therefore, it will be of great significance to investigate the R2R3-MYB gene family and their expression patterns under abiotic stress and senescence in tobacco. RESULTS: A total of 174 R2R3-MYB genes were identified from tobacco (Nicotiana tabacum L.) genome and were divided into 24 subgroups based on phylogenetic analysis. Gene structure (exon/intron) and protein motifs were especially conserved among the NtR2R3-MYB genes, especially members within the same subgroup. The NtR2R3-MYB genes were distributed on 24 tobacco chromosomes. Analysis of gene duplication events obtained 3 pairs of tandem duplication genes and 62 pairs of segmental duplication genes, suggesting that segmental duplications is the major pattern for R2R3-MYB gene family expansion in tobacco. Cis-regulatory elements of the NtR2R3-MYB promoters were involved in cellular development, phytohormones, environmental stress and photoresponsive. Expression profile analysis showed that NtR2R3-MYB genes were widely expressed in different maturity tobacco leaves, and however, the expression patterns of different members appeared to be diverse. The qRT-PCR analysis of 15 NtR2R3-MYBs confirmed their differential expression under different abiotic stresses (cold, salt and drought), and notably, NtMYB46 was significantly up-regulated under three treatments. CONCLUSIONS: In summary, a genome-wide identification, evolutionary and expression analysis of R2R3-MYB gene family in tobacco were conducted. Our results provided a solid foundation for further biological functional study of NtR2R3-MYB genes in tobacco.


Asunto(s)
Genes myb , Nicotiana , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
14.
Circ Res ; 126(8): 1024-1039, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32146862

RESUMEN

RATIONALE: Barth syndrome is an X-linked cardiac and skeletal myopathy caused by mutation of the gene Tafazzin (TAZ). Currently, there is no targeted treatment for Barth syndrome. Lack of a proper genetic animal model that recapitulates the features of Barth syndrome has hindered understanding of disease pathogenesis and therapeutic development. OBJECTIVE: We characterized murine germline TAZ knockout mice (TAZ-KO) and cardiomyocyte-specific TAZ knockout mice models and tested the efficacy of adeno-associated virus (AAV)-mediated gene replacement therapy with human TAZ (hTAZ). METHODS AND RESULTS: TAZ-KO caused embryonic and neonatal lethality, impaired growth, dilated cardiomyopathy, and skeletal myopathy. TAZ-KO mice that survived the neonatal period developed progressive, severe cardiac dysfunction, and fibrosis. Cardiomyocyte-specific inactivation of floxed Taz in cardiomyocytes using Myh6-Cre caused progressive dilated cardiomyopathy without fetal or perinatal loss. Using both constitutive and conditional knockout models, we tested the efficacy and durability of Taz replacement by AAV gene therapy. Neonatal AAV-hTAZ rescued neonatal death, cardiac dysfunction, and fibrosis in TAZ-KO mice, and both prevented and reversed established cardiac dysfunction in TAZ-KO and cardiomyocyte-specific TAZ knockout mice models. However, both neonatal and adult therapies required high cardiomyocyte transduction (≈70%) for durable efficacy. CONCLUSIONS: TAZ-KO and cardiomyocyte-specific TAZ knockout mice recapitulate many of the key clinical features of Barth syndrome. AAV-mediated gene replacement is efficacious when a sufficient fraction of cardiomyocytes are transduced.


Asunto(s)
Síndrome de Barth/genética , Síndrome de Barth/terapia , Dependovirus/genética , Terapia Genética/métodos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Animales , Síndrome de Barth/patología , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología
15.
PLoS Genet ; 15(2): e1007977, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30789911

RESUMEN

Heart valve disease is a major clinical problem worldwide. Cardiac valve development and homeostasis need to be precisely controlled. Hippo signaling is essential for organ development and tissue homeostasis, while its role in valve formation and morphology maintenance remains unknown. VGLL4 is a transcription cofactor in vertebrates and we found it was mainly expressed in valve interstitial cells at the post-EMT stage and was maintained till the adult stage. Tissue specific knockout of VGLL4 in different cell lineages revealed that only loss of VGLL4 in endothelial cell lineage led to valve malformation with expanded expression of YAP targets. We further semi-knockout YAP in VGLL4 ablated hearts, and found hyper proliferation of arterial valve interstitial cells was significantly constrained. These findings suggest that VGLL4 is important for valve development and manipulation of Hippo components would be a potential therapy for preventing the progression of congenital valve disease.


Asunto(s)
Células Endoteliales/citología , Válvulas Cardíacas/crecimiento & desarrollo , Hipertrofia Ventricular Izquierda/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Proliferación Celular , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Válvulas Cardíacas/citología , Válvulas Cardíacas/metabolismo , Vía de Señalización Hippo , Homeostasis , Hipertrofia Ventricular Izquierda/veterinaria , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
16.
Eur J Neurol ; 28(11): 3774-3783, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34255403

RESUMEN

BACKGROUND AND PURPOSE: The purpose was to provide an overview of genotype and phenotype distribution in a cohort of patients with Charcot-Marie-Tooth disease (CMT) and related disorders from central south China. METHODS: In all, 435 patients were enrolled and detailed clinical data were collected. Multiplex ligation-dependent probe amplification for PMP22 duplication/deletion and CMT multi-gene panel sequencing were performed. Whole exome sequencing was further applied in the remaining patients who failed to achieve molecular diagnosis. RESULTS: Among the 435 patients, 216 had CMT1, 14 had hereditary neuropathy with pressure palsies (HNPP), 178 had CMT2, 24 had distal hereditary motor neuropathy (dHMN) and three had hereditary sensory and autonomic neuropathy (HSAN). The overall molecular diagnosis rate was 70%: 75.7% in CMT1, 100% in HNPP, 64.6% in CMT2, 41.7% in dHMN and 33.3% in HSAN. The most common four genotypes accounted for 68.9% of molecular diagnosed patients. Relatively frequent causes were missense changes in PMP22 (4.6%) and SH3TC2 (2.3%) in CMT1; and GDAP1 (5.1%), IGHMBP2 (4.5%) and MORC2 (3.9%) in CMT2. Twenty of 160 detected pathogenic variants and the associated phenotypes have not been previously reported. Broad phenotype spectra were observed in six genes, amongst which the pathogenic variants in BAG3 and SPTLC1 were detected in two sporadic patients presenting with the CMT2 phenotype. CONCLUSIONS: Our results provided a unique genotypic and phenotypic landscape of patients with CMT and related disorders from central south China, including a relatively high proportion of CMT2 and lower occurrence of PMP22 duplication. The broad phenotype spectra in certain genes have advanced our understanding of CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Enfermedad de Charcot-Marie-Tooth/epidemiología , Enfermedad de Charcot-Marie-Tooth/genética , China/epidemiología , Proteínas de Unión al ADN , Genotipo , Humanos , Fenotipo , Factores de Transcripción
17.
Bioorg Chem ; 108: 104653, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33517002

RESUMEN

Pyruvate kinase M2 isoform (PKM2) plays a key role in cancer progression through both metabolic and non-metabolic functions, thus it is recognized as a potential target for cancer diagnosis and treatment. In this study, we discovered a sulfonamide-dithiocarbamate compound 8a as a novel PKM2 activator from a random screening of an in-house compound library. Then, a series of lead compound 8a analogs were designed and synthesized for screening as potent PKM2 activators. Among them, compound 8b (AC50 = 0.136 µM) and 8k (AC50 = 0.056 µM) showed higher PKM2 activation activities than positive control NZT (AC50 = 0.228 µM), and they (IC50 < 1 µM) exhibited more significant anti-proliferative activities against human tumor cell lines than NZT (IC50 > 10 µM). Especially, compound 8k inhibited the proliferation of multiple cancer cells, but showed little toxicity on normal cells. In addition, we found that compound 8k inhibit the colony formation of MCF7 cells. Western blot analysis demonstrated that 8k could reduce PKM2 nuclear localization and block the downstream signaling pathway of PKM2, resulting in suppression of tumor cell proliferation. Overall, compound 8k may be a promising candidate for further mechanistic investigation of PKM2 and cancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Portadoras/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Piperazina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Sulfonamidas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proteínas Portadoras/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Proteínas de la Membrana/metabolismo , Estructura Molecular , Piperazina/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
18.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206257

RESUMEN

Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that modulate innate immune responses and play essential roles in the pathogenesis of heart diseases. Although important, the molecular mechanisms controlling cardiac TLR genes expression have not been clearly addressed. This study examined the expression pattern of Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, Tlr8, and Tlr9 in normal and disease-stressed mouse hearts. Our results demonstrated that the expression levels of cardiac Tlr3, Tlr7, Tlr8, and Tlr9 increased with age between neonatal and adult developmental stages, whereas the expression of Tlr5 decreased with age. Furthermore, pathological stress increased the expression levels of Tlr2, Tlr4, Tlr5, Tlr7, Tlr8, and Tlr9. Hippo-YAP signaling is essential for heart development and homeostasis maintenance, and YAP/TEAD1 complex is the terminal effector of this pathway. Here we found that TEAD1 directly bound genomic regions adjacent to Tlr1, Tlr2, Tlr3, Tlr4, Tlr5, Tlr6, Tlr7, and Tlr9. In vitro, luciferase reporter data suggest that YAP/TEAD1 repression of Tlr4 depends on a conserved TEAD1 binding motif near Tlr4 transcription start site. In vivo, cardiomyocyte-specific YAP depletion increased the expression of most examined TLR genes, activated the synthesis of pro-inflammatory cytokines, and predisposed the heart to lipopolysaccharide stress. In conclusion, our data indicate that the expression of cardiac TLR genes is associated with age and activated by pathological stress and suggest that YAP/TEAD1 complex is a default repressor of cardiac TLR genes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al ADN/metabolismo , Inmunidad Innata , Miocitos Cardíacos/metabolismo , Receptores Toll-Like/genética , Factores de Transcripción/metabolismo , Factores de Edad , Animales , Citocinas/metabolismo , Regulación de la Expresión Génica , Lipopolisacáridos , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Factores de Transcripción de Dominio TEA , Proteínas Señalizadoras YAP
19.
Circ Res ; 122(1): 74-87, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29021295

RESUMEN

RATIONALE: Although mitochondrial diseases often cause abnormal myocardial development, the mechanisms by which mitochondria influence heart growth and function are poorly understood. OBJECTIVE: To investigate these disease mechanisms, we studied a genetic model of mitochondrial dysfunction caused by inactivation of Tfam (transcription factor A, mitochondrial), a nuclear-encoded gene that is essential for mitochondrial gene transcription and mitochondrial DNA replication. METHODS AND RESULTS: Tfam inactivation by Nkx2.5Cre caused mitochondrial dysfunction and embryonic lethal myocardial hypoplasia. Tfam inactivation was accompanied by elevated production of reactive oxygen species (ROS) and reduced cardiomyocyte proliferation. Mosaic embryonic Tfam inactivation confirmed that the block to cardiomyocyte proliferation was cell autonomous. Transcriptional profiling by RNA-seq demonstrated the activation of the DNA damage pathway. Pharmacological inhibition of ROS or the DNA damage response pathway restored cardiomyocyte proliferation in cultured fetal cardiomyocytes. Neonatal Tfam inactivation by AAV9-cTnT-Cre caused progressive, lethal dilated cardiomyopathy. Remarkably, postnatal Tfam inactivation and disruption of mitochondrial function did not impair cardiomyocyte maturation. Rather, it elevated ROS production, activated the DNA damage response pathway, and decreased cardiomyocyte proliferation. We identified a transient window during the first postnatal week when inhibition of ROS or the DNA damage response pathway ameliorated the detrimental effect of Tfam inactivation. CONCLUSIONS: Mitochondrial dysfunction caused by Tfam inactivation induced ROS production, activated the DNA damage response, and caused cardiomyocyte cell cycle arrest, ultimately resulting in lethal cardiomyopathy. Normal mitochondrial function was not required for cardiomyocyte maturation. Pharmacological inhibition of ROS or DNA damage response pathways is a potential strategy to prevent cardiac dysfunction caused by some forms of mitochondrial dysfunction.


Asunto(s)
Cardiomiopatías/metabolismo , Proliferación Celular/fisiología , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Cardiomiopatías/patología , Células Cultivadas , Daño del ADN/fisiología , Ratones , Ratones Transgénicos , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología
20.
Pharmacol Res ; 161: 105099, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32739427

RESUMEN

As a type of fear relapse, fear renewal compromises the efficacy of fear extinction, which serves as the laboratory analog of exposure therapy (a therapeutic strategy for anxiety disorders). Interventions aiming to prevent fear renewal would thus benefit exposure therapy. To date, it remains unknown whether central adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation could produce inhibitory effects on fear renewal. Here, using pharmacological approach and virus-mediated gene overexpression technique, we demonstrated that activation of AMPK in dorsal hippocampus shortly before fear extinction training completely abolished subsequent fear renewal in male mice without affecting other types of fear relapse, including spontaneous recovery of fear and fear reinstatement. Furthermore, we also found that metformin, a first-line antidiabetic drug, was capable of preventing fear renewal in male mice by stimulating AMPK in dorsal hippocampus. Collectively, our study provides insight into the role of hippocampal AMPK in regulation of fear renewal and indicates that increasing activity of hippocampal AMPK can prevent fear renewal, thus enhancing the potency of exposure therapy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Conducta Animal/efectos de los fármacos , Activadores de Enzimas/farmacología , Extinción Psicológica , Miedo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Terapia Implosiva , Metformina/farmacología , Proteínas Quinasas Activadas por AMP/genética , Animales , Activación Enzimática , Hipocampo/enzimología , Masculino , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA