Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plant Physiol ; 195(1): 598-616, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38319742

RESUMEN

Chinese bayberry (Morella rubra) is a fruit tree with a remarkable variation in fruit color, ranging from white to dark red as determined by anthocyanin content. In dark red "Biqi" (BQ), red "Dongkui" (DK), pink "Fenhong" (FH), and white "Shuijing" (SJ), we identified an anthocyanin-related MYB transcription factor-encoding gene cluster of four members, i.e. MrMYB1.1, MrMYB1.2, MrMYB1.3, and MrMYB2. Collinear analysis revealed that the MYB tandem cluster may have occurred in a highly conserved region of many eudicot genomes. Two alleles of MrMYB1.1 were observed; MrMYB1.1-1 (MrMYB1.1n) was a full-length allele and homozygous in "BQ", MrMYB1.1-2 (MrMYB1.1d) was a nonfunctional allele with a single base deletion and homozygous in "SJ", and MrMYB1.1n/MrMYB1.1d were heterozygous in "DK" and "FH". In these four cultivars, expression of MrMYB1.1, MrMYB1.2, and MrMYB2 was enhanced during ripening. Both alleles were equally expressed in MrMYB1.1n/MrMYB1.1d heterozygous cultivars as revealed by a cleaved amplified polymorphic sequence marker. Expression of MrMYB1.3 was restricted to some dark red cultivars only. Functional characterization revealed that MrMYB1.1n and MrMYB1.3 can induce anthocyanin accumulation while MrMYB1.1d, MrMYB1.2, and MrMYB2 cannot. DNA-protein interaction assays indicated that MrMYB1.1n and MrMYB1.3 can directly bind to and activate the promoters of anthocyanin-related genes via interaction with a MYC-like basic helix-loop-helix protein MrbHLH1. We concluded that the specific genotype of MrMYB1.1 alleles, as well as the exclusive expression of MrMYB1.3 in some dark red cultivars, contributes to fruit color variation. The study provides insights into the mechanisms for regulation of plant anthocyanin accumulation by MYB tandem clusters.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Pigmentación , Proteínas de Plantas , Factores de Transcripción , Frutas/genética , Frutas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentación/genética , Antocianinas/metabolismo , Filogenia , Alelos , Genes de Plantas , Datos de Secuencia Molecular , Secuencia de Aminoácidos , Color
2.
Plant Biotechnol J ; 22(6): 1468-1490, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38169146

RESUMEN

Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24ΔN14. PyBBX24ΔN14 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not. PyBBX24ΔN14 directly activates the transcription of PyUFGT and PyMYB10 through interaction with PyHY5. Moreover, stable overexpression of PyBBX24ΔN14 exhibits a dwarfing phenotype in Arabidopsis, tobacco, and tomato plants. PyBBX24ΔN14 can activate the expression of PyGA2ox8 via directly binding to its promoter, thereby deactivating bioactive GAs and reducing the plant height. However, the nuclear localization signal (NLS) and Valine-Proline (VP) motifs in the C-terminus of PyBBX24 reverse these effects. Interestingly, mutations leading to premature termination of PyBBX24 were also identified in red sports of un-related European pear varieties. We conclude that mutations in PyBBX24 gene link both an increase in pigmentation and a decrease in plant height.


Asunto(s)
Proteínas de Plantas , Pyrus , Pyrus/genética , Pyrus/metabolismo , Pyrus/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Antocianinas/metabolismo , Pigmentación/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Sitios de Carácter Cuantitativo/genética , Plantas Modificadas Genéticamente/genética , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Nicotiana/genética , Nicotiana/metabolismo , Fenotipo
3.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542498

RESUMEN

Tea grey blight disease is one of the most destructive diseases that infects tea and is caused by the pathogen Pestalotiopsis theae (Sawada) Steyaert. L-theanine is a unique non-protein amino acid of the tea plant. Different concentrations of L-theanine exhibit significant inhibitory effects on the growth and sporulation ability of the pathogen causing tea grey blight disease. To understand the effect mechanism of L-theanine on P. theae, transcriptome profiling was performed on the pathogenic mycelium treated with three different concentrations of L-theanine: no L-theanine treatment (TH0), 20 mg/mL theanine treatment (TH2), and 40 mg/mL theanine treatment (TH4). The colony growths were significantly lower in the treatment with L-theanine than those without L-theanine. The strain cultured with a high concentration of L-theanine produced no spores or only a few spores. In total, 2344, 3263, and 1158 differentially expressed genes (DEGs) were detected by RNA-sequencing in the three comparisons, Th2 vs. Th0, Th4 vs. Th0, and Th4 vs. Th2, respectively. All DEGs were categorized into 24 distinct clusters. According to GO analysis, low concentrations of L-theanine primarily affected molecular functions, while high concentrations of L-theanine predominantly affected biological processes including external encapsulating structure organization, cell wall organization or biogenesis, and cellular amino acid metabolic process. Based on KEGG, the DEGs of Th2 vs. Th0 were primarily involved in pentose and glucuronate interconversions, histidine metabolism, and tryptophan metabolism. The DEGs of Th4 vs. Th0 were mainly involved in starch and sucrose metabolism, amino sugar, and nucleotide sugar metabolism. This study indicated that L-theanine has a significant impact on the growth and sporulation of the pathogen of tea grey blight disease and mainly affects amino acid metabolism, carbohydrate metabolism, and cellular structure-related biosynthesis processes of pathogenic fungi. This work provides insights into the direct control effect of L-theanine on pathogenic growth and also reveals the molecular mechanisms of inhibition of L-theanine to P. theae.


Asunto(s)
Ascomicetos , Camellia sinensis , Transcriptoma , Glutamatos/farmacología , Camellia sinensis/metabolismo , Hojas de la Planta/metabolismo , Té/química
4.
Plant Physiol ; 190(1): 305-318, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35674376

RESUMEN

The ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) plays a central role in light-induced anthocyanin biosynthesis. However, the upstream regulatory factors of COP1 remain poorly understood, particularly in horticultural plants. Here, we identified an MdCOP1-interacting protein, BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC2 (MdBT2), in apple (Malus domestica). MdBT2 is a BTB protein that directly interacts with and stabilizes MdCOP1 by inhibiting self-ubiquitination. Fluorescence observation and cell fractionation assays showed that MdBT2 increased the abundance of MdCOP1 in the nucleus. Moreover, a series of phenotypic analyses indicated that MdBT2 promoted MdCOP1-mediated ubiquitination and degradation of the MdMYB1 transcription factor, inhibiting the expression of anthocyanin biosynthesis genes and anthocyanin accumulation. Overall, our findings reveal a molecular mechanism by which MdBT2 positively regulates MdCOP1, providing insight into MdCOP1-mediated anthocyanin biosynthesis.


Asunto(s)
Malus , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinación
5.
New Phytol ; 235(2): 630-645, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35348217

RESUMEN

Anthocyanins are visual cues for pollination and seed dispersal. Fruit containing anthocyanins also appeals to consumers due to its appearance and health benefits. In kiwifruit (Actinidia spp.) studies have identified at least two MYB activators of anthocyanin, but their functions in fruit and the mechanisms by which they act are not fully understood. Here, transcriptome and small RNA high-throughput sequencing were used to comprehensively identify contributors to anthocyanin accumulation in kiwifruit. Stable overexpression in vines showed that both 35S::MYB10 and MYB110 can upregulate anthocyanin biosynthesis in Actinidia chinensis fruit, and that MYB10 overexpression resulted in anthocyanin accumulation which was limited to the inner pericarp, suggesting that repressive mechanisms underlie anthocyanin biosynthesis in this species. Furthermore, motifs in the C-terminal region of MYB10/110 were shown to be responsible for the strength of activation of the anthocyanic response. Transient assays showed that both MYB10 and MYB110 were not directly cleaved by miRNAs, but that miR828 and its phased small RNA AcTAS4-D4(-) efficiently targeted MYB110. Other miRNAs were identified, which were differentially expressed between the inner and outer pericarp, and cleavage of SPL13, ARF16, SCL6 and F-box1, all of which are repressors of MYB10, was observed. We conclude that it is the differential expression and subsequent repression of MYB activators that is responsible for variation in anthocyanin accumulation in kiwifruit species.


Asunto(s)
Actinidia , MicroARNs , Actinidia/genética , Actinidia/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo
6.
Plant J ; 102(5): 965-976, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31923329

RESUMEN

Anthocyanin biosynthesis is induced by low temperatures in a number of plants. However, in peach (cv Zhonghuashoutao), anthocyanin accumulation was observed in fruit stored at 16°C but not at or below 12°C. Fruit stored at 16°C showed elevated transcript levels of genes encoding anthocyanin biosynthetic enzymes, the transport protein glutathione S-transferase and key transcription factors. Higher transcript levels of PpPAL1/2, PpC4H, Pp4CL4/5/8, PpF3H, PpF3'H, PpDFR1/2/3 and PpANS, as well as transcription factor gene PpbHLH3, were associated with lower methylation levels in the promoter of these genes. The DNA methylation level was further highly correlated with the expression of the DNA methyltransferase genes and DNA demethylase genes. The application of DNA methylation inhibitor 5-azacytidine induced anthocyanin accumulation in peach flesh, further implicating a critical role for DNA demethylation in regulating anthocyanin accumulation in peach flesh. Our data reveal that temperature-dependent DNA demethylation is a key factor to the post-harvest temperature-dependent anthocyanin accumulation in peach flesh.


Asunto(s)
Antocianinas/metabolismo , Proteínas de Plantas/metabolismo , Prunus persica/metabolismo , Desmetilación del ADN , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Prunus persica/genética , Temperatura
7.
Plant Cell Physiol ; 61(1): 130-143, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31550006

RESUMEN

As an important environment factor, light affects plant growth and development throughout life. B-BOX (BBX) proteins play key roles in the regulation of light signaling. Although the multiple roles of BBX proteins have been extensively studied in Arabidopsis, the research in apple is much less extensive. In this study, we systematically characterized the negative role of an apple BBX protein MdBBX37 in light signaling, including inhibiting anthocyanin biosynthesis and promoting hypocotyl elongation. We found that MdBBX37 interacted with MdMYB1 and MdMYB9, two key positive regulators of anthocyanin biosynthesis, and inhibited the binding of those two proteins to their target genes and, therefore, negatively regulated anthocyanin biosynthesis. In addition, MdBBX37 directly bound to the promoter of MdHY5, a positive regulator of light signaling, and suppressed its expression, and thus relieved MdHY5-mediated hypocotyl inhibition. Taken together, our investigations suggest that MdBBX37 is a negative regulator of light signaling in apple. Our study will provide reference for further study on the functions of BBX proteins in apple.


Asunto(s)
Antocianinas/biosíntesis , Genes de Plantas , Hipocótilo/metabolismo , Malus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras , Ritmo Circadiano , Regulación de la Expresión Génica de las Plantas , Luz , Malus/crecimiento & desarrollo , Malus/metabolismo , Morfogénesis/fisiología , Desarrollo de la Planta/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas , Alineación de Secuencia , Factores de Transcripción/metabolismo
8.
Plant Biotechnol J ; 18(5): 1284-1295, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31693790

RESUMEN

Anthocyanins have crucial biological functions and affect quality of horticultural produce. Anthocyanins accumulate in ripe peach fruit; differential accumulation is observed in deep coloured cultivar 'Hujingmilu' and lightly pigmented cultivar 'Yulu'. The difference was not fully explained by accumulation of total flavonoids and expression of anthocyanin biosynthetic genes. Expression analysis was conducted on a glutathione S-transferase gene (PpGST1), and it was found that the expression correlated well with anthocyanin accumulation in peach fruit tissues. Functional complementation of the Arabidopsis tt19 mutant indicated that PpGST1 was responsible for transport of anthocyanins but not proanthocyanidins. PpGST1 was localized in nuclei and the tonoplast, including the sites at which anthocyanin vacuolar sequestration occurred. Transient overexpression of PpGST1 together with PpMYB10.1 in tobacco leaves and peach fruit significantly increased anthocyanin accumulation as compared with PpMYB10.1 alone. Furthermore, virus-induced gene silencing of PpGST1 in a blood-fleshed peach not only resulted in a reduction in anthocyanin accumulation but also a decline in expression of anthocyanin biosynthetic and regulatory genes. Cis-element analysis of the PpGST1 promoter revealed the presence of four MYB binding sites (MBSs). Dual-luciferase assays indicated that PpMYB10.1 bound to the promoter and activated the transcription of PpGST1 by recognizing MBS1, the one closest to the ATG start codon, with this trans-activation being stronger against the promoter of deep coloured 'Hujingmilu' compared with lightly coloured cultivar 'Yulu'. Altogether, our data provided molecular evidence supporting coordinative regulatory roles of PpGST1 and PpMYB10.1 in anthocyanin accumulation in peach.


Asunto(s)
Prunus persica , Antocianinas , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
New Phytol ; 221(4): 1919-1934, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30222199

RESUMEN

Anthocyanin and proanthocyanidin (PA) accumulation is regulated by both myeloblastosis (MYB) activators and repressors, but little information is available on hierarchical interactions between the positive and negative regulators. Here, we report on a R2R3-MYB repressor in peach, designated PpMYB18, which acts as a negative regulator of anthocyanin and PA accumulation. PpMYB18 can be activated by both anthocyanin- and PA-related MYB activators, and is expressed both at fruit ripening and juvenile stages when anthocyanins or PAs, respectively, are being synthesized. The PpMYB18 protein competes with MYB activators for binding to basic Helix Loop Helixes (bHLHs), which develops a fine-tuning regulatory loop to balance PA and anthocyanin accumulation. In addition, the bHLH binding motif in the R3 domain and the C1 and C2 repression motifs in the C-terminus of PpMYB18 both confer repressive activity of PpMYB18. Our study also demonstrates a modifying negative feedback loop, which prevents cells from excess accumulation of anthocyanin and PAs, and serves as a model for balancing secondary metabolite accumulation at the transcriptional level.


Asunto(s)
Antocianinas/metabolismo , Genes de Plantas , Genes myb , Proteínas de Plantas/genética , Proantocianidinas/metabolismo , Prunus persica/genética , Proteínas Represoras/genética , Secuencia de Aminoácidos , Vías Biosintéticas/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Prunus persica/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Transcripción Genética
10.
J Exp Bot ; 70(15): 3809-3824, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31020330

RESUMEN

High temperatures are known to reduce anthocyanin accumulation in a number of diverse plant species. In potato (Solanum tuberosum L.), high temperature significantly reduces tuber anthocyanin pigment content. However, the mechanism of anthocyanin biosynthesis in potato tuber under heat stress remains unknown. Here we show that high temperature causes reduction of anthocyanin biosynthesis in both potato tuber skin and flesh, with white areas forming between the vasculature and periderm. Heat stress reduced the expression of the R2R3 MYB transcription factors (TFs) StAN1 and StbHLH1, members of the transcriptional complex responsible for coordinated regulation of the skin and flesh pigmentation, as well as anthocyanin biosynthetic pathway genes in white regions. However, the core phenylpropanoid pathway, lignin, and chlorogenic acid (CGA) pathway genes were up-regulated in white areas, suggesting that suppression of the anthocyanin branch may result in re-routing phenylpropanoid flux into the CGA or lignin biosynthesis branches. Two R2R3 MYB TFs, StMYB44-1 and StMYB44-2, were highly expressed in white regions under high temperature. In transient assays, StMYB44 represses anthocyanin accumulation in leaves of Nicotiana tabacum and N. benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter. StMYB44-1 showed stronger repressive capacity than StMYB44-2, with both predicted proteins containing the repression-associated EAR motif with some variation. StMYB44-1 conferred repression without a requirement for a basic helix-loop-helix (bHLH) partner, suggesting a different repression mechanism from that of reported anthocyanin repressors. We propose that temperature-induced reduction of anthocyanin accumulation in potato flesh is caused by down-regulation of the activating anthocyanin regulatory complex, by enhancing the expression of flesh-specific StMYB44 and alteration of phenylpropanoid flux.


Asunto(s)
Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Temperatura , Nicotiana/genética , Nicotiana/metabolismo
11.
Plant J ; 82(1): 105-21, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25688923

RESUMEN

Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors.


Asunto(s)
Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucósidos/metabolismo , Prunus persica/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Frutas/genética , Frutas/metabolismo , Fenotipo , Pigmentación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Prunus persica/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Técnicas del Sistema de Dos Híbridos
12.
J Exp Bot ; 67(8): 2159-76, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26884602

RESUMEN

In potato (Solanum tuberosum L.), R2R3 MYBs are involved in the regulation of anthocyanin biosynthesis. We examined sequences of these MYBs in cultivated potatoes, which are more complex than diploid potato due to ploidy and heterozygosity. We found amino acid variants in the C-terminus of the MYB StAN1, termed R0, R1, and R3, due to the presence of a repeated 10-amino acid motif. These variant MYBs showed some expression in both white and pigmented tubers. We found several new alleles or gene family members of R2R3 MYBs,StMYBA1 and StMYB113, which were also expressed in white potato tubers. From functional analysis in tobacco, we showed that the presence of a C-terminal 10-amino acid motif is optimal for activating anthocyanin accumulation. Engineering a motif back into a MYB lacking this sequence enhanced its activating ability. Versions of StMYBA1 and StMYB113 can also activate anthocyanin accumulation in tobacco leaves, with the exception of StMYB113-3, which has a partial R2R3 domain. We isolated five family members of potato StbHLH1, and one StJAF13, to test their ability to interact with MYB variants. The results showed that two alleles of StbHLH1 from white skin and red skin are non-functional, while three other StbHLH1s have different co-regulating abilities, and need to be activated by StJAF13. Combined with expression analysis in potato tuber, results suggest that StbHLH1 and StJAF13a re key co-regulators of anthocyanin biosynthesis, while the transcripts of MYB variants StAN1,StMYBA1, and StMYB113 are well expressed, even in the absence of pigmentation.


Asunto(s)
Antocianinas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Solanum tuberosum/metabolismo , Secuencia de Aminoácidos , Regulación de la Expresión Génica de las Plantas , Genotipo , Filogenia , Pigmentación/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Solanum tuberosum/genética , Nicotiana/genética
13.
J Exp Bot ; 66(5): 1427-36, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25628328

RESUMEN

The anthocyanin biosynthetic pathway is regulated by a transcription factor complex consisting of an R2R3 MYB, a bHLH, and a WD40. Although R2R3 MYBs belonging to the anthocyanin-activating class have been identified in many plants, and their role well elucidated, the subgroups of bHLH implicated in anthocyanin regulation seem to be more complex. It is not clear whether these potential bHLH partners are biologically interchangeable with redundant functions, or even if heterodimers are involved. In this study, AcMYB110, an R2R3 MYB isolated from kiwifruit (Actinidia sp.) showing a strong activation of the anthocyanin pathway in tobacco (Nicotiana tabacum) was used to examine the function of interacting endogenous bHLH partners. Constitutive expression of AcMYB110 in tobacco leaves revealed different roles for two bHLHs, NtAN1 and NtJAF13. A hierarchical mechanism is shown to control the regulation of transcription factors and consequently of the anthocyanin biosynthetic pathway. Here, a model is proposed for the regulation of the anthocyanin pathway in Solanaceous plants in which AN1 is directly involved in the activation of the biosynthetic genes, whereas JAF13 is involved in the regulation of AN1 transcription.


Asunto(s)
Antocianinas/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Actinidia/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Nicotiana/genética , Factores de Transcripción/metabolismo
14.
BMC Plant Biol ; 14: 388, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25551393

RESUMEN

BACKGROUND: Leaf red coloration is an important characteristic in many plant species, including cultivars of ornamental peach (Prunus persica). Peach leaf color is controlled by a single Gr gene on linkage group 6, with a red allele dominant over the green allele. Here, we report the identification of a candidate gene of Gr in peach. RESULTS: The red coloration of peach leaves is due to accumulation of anthocyanin pigments, which is regulated at the transcriptional level. Based on transcriptome comparison between red- and green-colored leaves, an MYB transcription regulator PpMYB10.4 in the Gr interval was identified to regulate anthocyanin pigmentation in peach leaf. Transient expression of PpMYB10.4 in tobacco and peach leaves can induce anthocyain accumulation. Moreover, a functional MYB gene PpMYB10.2 on linkage group 3, which is homologous to PpMYB10.4, is also expressed in both red- and green-colored leaves, but plays no role in leaf red coloration. This suggests a complex mechanism underlying anthocyanin accumulation in peach leaf. In addition, PpMYB10.4 and other anthocyanin-activating MYB genes in Rosaceae responsible for anthocyanin accumulation in fruit are dated to a common ancestor about 70 million years ago (MYA). However, PpMYB10.4 has diverged from these anthocyanin-activating MYBs to generate a new gene family, which regulates anthocyanin accumulation in vegetative organs such as leaves. CONCLUSIONS: Activation of an ancient duplicated MYB gene PpMYB10.4 in the Gr interval on LG 6, which represents a novel branch of anthocyanin-activating MYB genes in Rosaceae, is able to activate leaf red coloration in peach.


Asunto(s)
Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Prunus/fisiología , Factores de Transcripción/genética , Antocianinas/biosíntesis , Antocianinas/genética , Secuencia de Bases , Flores/genética , Flores/fisiología , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Filogenia , Pigmentación , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Prunus/genética , Nicotiana/genética , Nicotiana/fisiología , Factores de Transcripción/metabolismo
15.
Plant Physiol ; 161(1): 225-39, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23096157

RESUMEN

Anthocyanin accumulation is coordinated in plants by a number of conserved transcription factors. In apple (Malus × domestica), an R2R3 MYB transcription factor has been shown to control fruit flesh and foliage anthocyanin pigmentation (MYB10) and fruit skin color (MYB1). However, the pattern of expression and allelic variation at these loci does not explain all anthocyanin-related apple phenotypes. One such example is an open-pollinated seedling of cv Sangrado that has green foliage and develops red flesh in the fruit cortex late in maturity. We used methods that combine plant breeding, molecular biology, and genomics to identify duplicated MYB transcription factors that could control this phenotype. We then demonstrated that the red-flesh cortex phenotype is associated with enhanced expression of MYB110a, a paralog of MYB10. Functional characterization of MYB110a showed that it was able to up-regulate anthocyanin biosynthesis in tobacco (Nicotiana tabacum). The chromosomal location of MYB110a is consistent with a whole-genome duplication event that occurred during the evolution of apple within the Maloideae family. Both MYB10 and MYB110a have conserved function in some cultivars, but they differ in their expression pattern and response to fruit maturity.


Asunto(s)
Frutas/metabolismo , Duplicación de Gen , Malus/metabolismo , Fenotipo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Antocianinas/biosíntesis , Secuencia de Bases , Cruzamiento , Cromatografía Líquida de Alta Presión , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Evolución Molecular , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Malus/genética , Malus/crecimiento & desarrollo , Datos de Secuencia Molecular , Filogenia , Pigmentación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Alineación de Secuencia , Especificidad de la Especie , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Transcripción Genética
16.
Mol Hortic ; 4(1): 26, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38945997

RESUMEN

The color of red-skinned pear (Pyrus spp.) is primarily attributed to accumulation of anthocyanins, which provide nutritional benefits for human health and are closely associated with the commercial value of fruits. Here, we reported the functional characterization of a R2R3-MYB repressor PyMYB107, which forms an 'activator-repressor' loop to control anthocyanin accumulation in the red-skinned pear. PyMYB107 overexpression inhibited anthocyanin biosynthesis in both pear calli and fruits, while virus-induced gene silencing of PyMYB107 increased anthocyanin accumulation in pear fruits. Furthermore, ectopic expression of PyMYB107 decreased anthocyanin accumulation in tomato, strawberry and tobacco. PyMYB107 can competitively bind to PybHLH3 with PyMYB10/MYB114, thereby suppressing the transcriptional activation of key anthocyanin biosynthesis genes, PyANS and PyUFGT. Site-directed mutagenesis showed that mutations within the R3 domain and EAR motif of PyMYB107 eliminated its repressive activity. Additionally, PyMYB107 exhibited a comparable expression pattern to PyMYB10/MYB114 and was transcriptionally activated by them. Our finding advanced comprehension of the repression mechanism underlying anthocyanin accumulation, providing valuable molecular insights into improving quality of pear fruits.

17.
Plant Sci ; 326: 111499, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36265764

RESUMEN

DNA methylation, an epigenetic mark, is proposed to regulate plant anthocyanin biosynthesis. It well known that light induces anthocyanin accumulation, with bagging treatments commonly used to investigate light-controlled anthocyanin biosynthesis. We studied the DNA methylome landscape during pear skin coloration under various conditions (fruits re-exposed to sunlight after bag removal). The DNA methylation level in gene body/TE and its flanking sequence was generally similar between debagged and bagged treatments, however differentially methylated regions (DMRs) were re-modelled after light-exposure. Both DNA demethylase homologs and the RNA-directed DNA methylation (RdDM) pathways contributed to this re-distribution. A total of 310 DEGs were DMR-associated during light-induced anthocyanin biosynthesis between debagged and bagged treatments. The hypomethylated mCHH context was seen within the promoter of PyUFGT, together with other anthocyanin biosynthesis genes (PyPAL, PyDFR and PyANS). This enhanced transcriptional activation and promoted anthocyanin accumulation after light re-exposure. Unlike previous reports on bud sports, we did not detect DMRs within the MYB10 promoter. Instead, we observed the genome-wide re-distribution of methylation patterns, suggesting different mechanisms underlying methylation patterns of differentially accumulated anthocyanins caused by either bud mutation or environment change. We investigate the dynamic landscape of genome-scale DNA methylation, which is the combined effect of DNA demethylation and RdDM pathway, in the process of light-induced fruit colour formation in pear. This process is regulated by methylation changes on promoter regions of several DEGs. These results provide a DMR-associated DEGs set and new insight into the mechanism of DNA methylation involved in light-induced anthocyanin biosynthesis.


Asunto(s)
Pyrus , Pyrus/genética , Pyrus/metabolismo , Antocianinas/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo
18.
iScience ; 26(2): 105903, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36818280

RESUMEN

Potatoes consist of flavonoids that provide health benefits for human consumers. To learn more about how potato tuber flavonoid accumulation and flesh pigmentation are controlled, we analyzed the transcriptomic and metabolomic profile of potato tubers from three colored potato clones at three developmental phases using an integrated approach. From the 72 flavonoids identified in pigmented flesh, differential abundance was noted for anthocyanins, flavonols, and flavones. Weighted gene co-expression network analysis further allowed modules and candidate genes that positively or negatively regulate flavonoid biosynthesis to be identified. Furthermore, an R2R3-MYB repressor StMYB3 and an R3-MYB repressor StMYBATV involved in the modulation of anthocyanin biosynthesis during tuber development were identified. Both StMYB3 and StMYBATV could interact with the cofactor StbHLH1 and repress anthocyanin biosynthesis. Our results indicate a feedback regulatory mechanism of a coordinated MYB activator-repressor network on fine-tuning of potato tuber pigmentation during tuber development.

19.
Front Plant Sci ; 14: 1324675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38186606

RESUMEN

Fruit quality is dependent on various factors including flavour, texture and colour. These factors are determined by the ripening process, either climacteric or non-climacteric. In grape berry, which is non-climacteric, the process is signalled by a complex set of hormone changes. Abscisic acid (ABA) is one of the key hormones involved in ripening, while sugar availability also plays a significant role in certain ripening aspects such as anthocyanin production. To understand the relative influence of hormone and sugar signalling in situ can prove problematic due to the physiological and environmental (abiotic and biotic) factors at play in vineyards. Here we report on the use of in vitro detached berry culture to investigate the comparative significance of ABA and sugar in the regulation of Pinot noir berry anthocyanin production under controlled conditions. Using a factorial experimental design, pre-véraison berries were cultured on media with various concentrations of sucrose and ABA. After 15 days of in vitro culture, the berries were analysed for changes in metabolites, hormones and gene expression. Results illustrated a stimulatory effect of sucrose and ABA on enhancing berry colour and a corresponding increase in anthocyanins. Increased ABA concentration was able to boost anthocyanin production in berries when sucrose supply was low. The sucrose and ABA effects on berry anthocyanins were primarily manifested through the up-regulation of transcription factors and other genes in the phenylpropanoid pathway, while in other parts of the pathway a down-regulation of key proanthocyanindin transcription factors and genes corresponded to sharp reduction in berry proanthocyanidins, irrespective of sucrose supply. Similarly, increased ABA was correlated with a significant reduction in berry malic acid and associated regulatory genes. These findings suggest a predominance of berry ABA over berry sugar in coordinating the physiological and genetic regulation of anthocyanins and proanthocyanins in Pinot noir grape berries.

20.
Plant Biotechnol J ; 10(4): 390-7, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22129455

RESUMEN

Ascorbate, or vitamin C, is obtained by humans mostly from plant sources. Various approaches have been made to increase ascorbate in plants by transgenic means. Most of these attempts have involved leaf material from model plants, with little success reported using genes from the generally accepted l-galactose pathway of ascorbate biosynthesis. We focused on increasing ascorbate in commercially significant edible plant organs using a gene, GDP-l-galactose phosphorylase (GGP or VTC2), that we had previously shown to increase ascorbate concentration in tobacco and Arabidopsis thaliana. The coding sequence of Actinidia chinensis GGP, under the control of the 35S promoter, was expressed in tomato and strawberry. Potato was transformed with potato or Arabidopsis GGP genes under the control of the 35S promoter or a polyubiquitin promoter (potato only). Five lines of tomato, up to nine lines of potato, and eight lines of strawberry were regenerated for each construct. Three lines of tomato had a threefold to sixfold increase in fruit ascorbate, and all lines of strawberry showed a twofold increase. All but one line of each potato construct also showed an increase in tuber ascorbate of up to threefold. Interestingly, in tomato fruit, increased ascorbate was associated with loss of seed and the jelly of locular tissue surrounding the seed which was not seen in strawberry. In both strawberry and tomato, an increase in polyphenolic content was associated with increased ascorbate. These results show that GGP can be used to raise significantly ascorbate concentration in commercially significant edible crops.


Asunto(s)
Ácido Ascórbico/metabolismo , Vías Biosintéticas/genética , Frutas/metabolismo , Galactosa/metabolismo , Guanosina Difosfato/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Tubérculos de la Planta/metabolismo , Actinidia/enzimología , Secuencia de Aminoácidos , Fragaria/genética , Frutas/anatomía & histología , Frutas/enzimología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Solanum lycopersicum/genética , Datos de Secuencia Molecular , Tamaño de los Órganos , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/enzimología , Plantas Modificadas Genéticamente , Alineación de Secuencia , Solanum tuberosum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA