Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8004): 671-679, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448585

RESUMEN

DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina , Proteínas Nucleares , Nucleosomas , Proteómica , Humanos , Sitios de Unión , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , Elementos de Facilitación Genéticos , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/análisis , Proteínas Nucleares/metabolismo , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteómica/métodos
2.
Nature ; 631(8019): 189-198, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898278

RESUMEN

The COVID-19 pandemic is an ongoing global health threat, yet our understanding of the dynamics of early cellular responses to this disease remains limited1. Here in our SARS-CoV-2 human challenge study, we used single-cell multi-omics profiling of nasopharyngeal swabs and blood to temporally resolve abortive, transient and sustained infections in seronegative individuals challenged with pre-Alpha SARS-CoV-2. Our analyses revealed rapid changes in cell-type proportions and dozens of highly dynamic cellular response states in epithelial and immune cells associated with specific time points and infection status. We observed that the interferon response in blood preceded the nasopharyngeal response. Moreover, nasopharyngeal immune infiltration occurred early in samples from individuals with only transient infection and later in samples from individuals with sustained infection. High expression of HLA-DQA2 before inoculation was associated with preventing sustained infection. Ciliated cells showed multiple immune responses and were most permissive for viral replication, whereas nasopharyngeal T cells and macrophages were infected non-productively. We resolved 54 T cell states, including acutely activated T cells that clonally expanded while carrying convergent SARS-CoV-2 motifs. Our new computational pipeline Cell2TCR identifies activated antigen-responding T cells based on a gene expression signature and clusters these into clonotype groups and motifs. Overall, our detailed time series data can serve as a Rosetta stone for epithelial and immune cell responses and reveals early dynamic responses associated with protection against infection.


Asunto(s)
COVID-19 , Nasofaringe , SARS-CoV-2 , Análisis de la Célula Individual , Linfocitos T , Humanos , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Nasofaringe/virología , Nasofaringe/inmunología , Linfocitos T/inmunología , Linfocitos T/virología , Interferones/inmunología , Interferones/metabolismo , Masculino , Femenino , Macrófagos/inmunología , Macrófagos/virología , Replicación Viral , Células Epiteliales/virología , Células Epiteliales/inmunología , Factores de Tiempo , Adulto
3.
Nature ; 602(7896): 321-327, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34937051

RESUMEN

It is not fully understood why COVID-19 is typically milder in children1-3. Here, to examine the differences between children and adults in their response to SARS-CoV-2 infection, we analysed paediatric and adult patients with COVID-19 as well as healthy control individuals (total n = 93) using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples. In the airways of healthy paediatric individuals, we observed cells that were already in an interferon-activated state, which after SARS-CoV-2 infection was further induced especially in airway immune cells. We postulate that higher paediatric innate interferon responses restrict viral replication and disease progression. The systemic response in children was characterized by increases in naive lymphocytes and a depletion of natural killer cells, whereas, in adults, cytotoxic T cells and interferon-stimulated subpopulations were significantly increased. We provide evidence that dendritic cells initiate interferon signalling in early infection, and identify epithelial cell states associated with COVID-19 and age. Our matching nasal and blood data show a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were substantially reduced in paediatric patients. Together, we provide several mechanisms that explain the milder clinical syndrome observed in children.


Asunto(s)
COVID-19/sangre , COVID-19/inmunología , Células Dendríticas/inmunología , Interferones/inmunología , Células Asesinas Naturales/inmunología , SARS-CoV-2/inmunología , Linfocitos T Citotóxicos/inmunología , Adulto , Bronquios/inmunología , Bronquios/virología , COVID-19/patología , Chicago , Estudios de Cohortes , Progresión de la Enfermedad , Células Epiteliales/citología , Células Epiteliales/inmunología , Células Epiteliales/virología , Femenino , Humanos , Inmunidad Innata , Londres , Masculino , Mucosa Nasal/inmunología , Mucosa Nasal/virología , SARS-CoV-2/crecimiento & desarrollo , Análisis de la Célula Individual , Tráquea/virología , Adulto Joven
4.
Mol Cell ; 75(2): 324-339.e11, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31155380

RESUMEN

Nonsense-mediated decay (NMD) is a surveillance system that degrades mRNAs containing a premature termination codon (PTC) and plays important roles in protein homeostasis and disease. The efficiency of NMD is variable, impacting the clinical outcome of genetic mutations. However, limited resolution of bulk analyses has hampered the study of NMD efficiency. Here, we develop an assay to visualize NMD of individual mRNA molecules in real time. We find that NMD occurs with equal probability during each round of translation of an mRNA molecule. However, this probability is variable and depends on the exon sequence downstream of the PTC, the PTC-to-intron distance, and the number of introns both upstream and downstream of the PTC. Additionally, a subpopulation of mRNAs can escape NMD, further contributing to variation in NMD efficiency. Our study uncovers real-time dynamics of NMD, reveals key mechanisms that influence NMD efficiency, and provides a powerful method to study NMD.


Asunto(s)
Codón sin Sentido/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Mensajero/genética , Codón sin Sentido/química , Exones/genética , Humanos , Intrones/genética , Mutación/genética , Estabilidad del ARN/genética , ARN Mensajero/química , Imagen Individual de Molécula
6.
Trends Genet ; 37(7): 625-630, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33879355

RESUMEN

Comprehensively characterizing the cellular composition and organization of tissues has been a long-term scientific challenge that has limited our ability to study fundamental and clinical aspects of human physiology. The Human Cell Atlas (HCA) is a global collaborative effort to create a reference map of all human cells as a basis for both understanding human health and diagnosing, monitoring, and treating disease. Many aspects of the HCA are analogous to the Human Genome Project (HGP), whose completion presents a major milestone in modern biology. To commemorate the HGP's 20-year anniversary of completion, we discuss the launch of the HCA in light of the HGP, and highlight recent progress by the HCA consortium.


Asunto(s)
Linaje de la Célula/genética , Fenómenos Fisiológicos Celulares/genética , Células/clasificación , Genoma Humano/genética , Proyecto Genoma Humano , Humanos
7.
Trends Genet ; 37(7): 657-668, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33277042

RESUMEN

The nonsense-mediated mRNA decay (NMD) pathway degrades some but not all mRNAs bearing premature termination codons (PTCs). Decades of work have elucidated the molecular mechanisms of NMD. More recently, statistical analyses of large genomic datasets have allowed the importance of known and novel 'rules of NMD' to be tested and combined into methods that accurately predict whether PTC-containing mRNAs are degraded or not. We discuss these genomic approaches and how they can be applied to identify diseases and individuals that may benefit from inhibition or activation of NMD. We also discuss the importance of NMD for gene editing and tumor evolution, and how inhibiting NMD may be an effective strategy to increase the efficacy of cancer immunotherapy.


Asunto(s)
Empalme Alternativo/genética , Enfermedades Genéticas Congénitas/genética , Neoplasias/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Codón sin Sentido/genética , Humanos , ARN Mensajero/genética
8.
EMBO J ; 39(18): e103932, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32965059

RESUMEN

Wnt/ß-catenin signaling is a primary pathway for stem cell maintenance during tissue renewal and a frequent target for mutations in cancer. Impaired Wnt receptor endocytosis due to loss of the ubiquitin ligase RNF43 gives rise to Wnt-hypersensitive tumors that are susceptible to anti-Wnt-based therapy. Contrary to this paradigm, we identify a class of RNF43 truncating cancer mutations that induce ß-catenin-mediated transcription, despite exhibiting retained Wnt receptor downregulation. These mutations interfere with a ubiquitin-independent suppressor role of the RNF43 cytosolic tail that involves Casein kinase 1 (CK1) binding and phosphorylation. Mechanistically, truncated RNF43 variants trap CK1 at the plasma membrane, thereby preventing ß-catenin turnover and propelling ligand-independent target gene transcription. Gene editing of human colon stem cells shows that RNF43 truncations cooperate with p53 loss to drive a niche-independent program for self-renewal and proliferation. Moreover, these RNF43 variants confer decreased sensitivity to anti-Wnt-based therapy. Our data demonstrate the relevance of studying patient-derived mutations for understanding disease mechanisms and improved applications of precision medicine.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Neoplasias/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt , Quinasa de la Caseína I/genética , Células HEK293 , Humanos , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , beta Catenina/genética , beta Catenina/metabolismo
9.
Am J Respir Crit Care Med ; 207(5): 566-576, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36095143

RESUMEN

Rationale: Obesity affects 40% of U.S. adults, is associated with a proinflammatory state, and presents a significant risk factor for the development of severe coronavirus disease (COVID-19). To date, there is limited information on how obesity might affect immune cell responses in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Objectives: To determine the impact of obesity on respiratory tract immunity in COVID-19 across the human lifespan. Methods: We analyzed single-cell transcriptomes from BAL in three ventilated adult cohorts with (n = 24) or without (n = 9) COVID-19 from nasal immune cells in children with (n = 14) or without (n = 19) COVID-19, and from peripheral blood mononuclear cells in an independent adult COVID-19 cohort (n = 42), comparing obese and nonobese subjects. Measurements and Main Results: Surprisingly, we found that obese adult subjects had attenuated lung immune or inflammatory responses in SARS-CoV-2 infection, with decreased expression of IFN-α, IFN-γ, and TNF-α (tumor necrosis factor α) response gene signatures in almost all lung epithelial and immune cell subsets, and lower expression of IFNG and TNF in specific lung immune cells. Peripheral blood immune cells in an independent adult cohort showed a similar but less marked reduction in type-I IFN and IFNγ response genes, as well as decreased serum IFNα, in obese patients with SARS-CoV-2. Nasal immune cells from obese children with COVID-19 also showed reduced enrichment of IFN-α and IFN-γ response genes. Conclusions: These findings show blunted tissue immune responses in obese patients with COVID-19, with implications for treatment stratification, supporting the specific application of inhaled recombinant type-I IFNs in this vulnerable subset.


Asunto(s)
COVID-19 , Interferón Tipo I , Obesidad Infantil , Adulto , Humanos , Niño , SARS-CoV-2 , Leucocitos Mononucleares , Pulmón/patología
10.
Mol Syst Biol ; 14(6): e8227, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29945941

RESUMEN

Intestinal organoids accurately recapitulate epithelial homeostasis in vivo, thereby representing a powerful in vitro system to investigate lineage specification and cellular differentiation. Here, we applied a multi-omics framework on stem cell-enriched and stem cell-depleted mouse intestinal organoids to obtain a holistic view of the molecular mechanisms that drive differential gene expression during adult intestinal stem cell differentiation. Our data revealed a global rewiring of the transcriptome and proteome between intestinal stem cells and enterocytes, with the majority of dynamic protein expression being transcription-driven. Integrating absolute mRNA and protein copy numbers revealed post-transcriptional regulation of gene expression. Probing the epigenetic landscape identified a large number of cell-type-specific regulatory elements, which revealed Hnf4g as a major driver of enterocyte differentiation. In summary, by applying an integrative systems biology approach, we uncovered multiple layers of gene expression regulation, which contribute to lineage specification and plasticity of the mouse small intestinal epithelium.


Asunto(s)
Biología Computacional , Intestinos/citología , Organogénesis , Organoides/citología , Animales , Regulación de la Expresión Génica , Ratones , Organogénesis/genética , Células Madre
11.
J Biol Chem ; 291(14): 7313-24, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26841866

RESUMEN

Recent work from others and us revealed interactions between the Sin3/HDAC complex, the H3K4me3 demethylase KDM5A, GATAD1, and EMSY. Here, we characterize the EMSY/KDM5A/SIN3B complex in detail by quantitative interaction proteomics and ChIP-sequencing. We identify a novel substoichiometric interactor of the complex, transcription factor ZNF131, which recruits EMSY to a large number of active, H3K4me3 marked promoters. Interestingly, using an EMSY knock-out line and subsequent rescue experiments, we show that EMSY is in most cases positively correlated with transcriptional activity of its target genes and stimulates cell proliferation. Finally, by immunohistochemical staining of primary breast tissue microarrays we find that EMSY/KDM5A/SIN3B complex subunits are frequently overexpressed in primary breast cancer cases in a correlative manner. Taken together, these data open venues for exploring the possibility that sporadic breast cancer patients with EMSY amplification might benefit from epigenetic combination therapy targeting both the KDM5A demethylase and histone deacetylases.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Proteínas de Unión al ADN/genética , Femenino , Técnicas de Inactivación de Genes , Células HeLa , Histonas/genética , Humanos , Complejos Multiproteicos/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Proteína 2 de Unión a Retinoblastoma/genética , Proteína 2 de Unión a Retinoblastoma/metabolismo , Factores de Transcripción/genética
12.
Nucleic Acids Res ; 42(15): 9880-91, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25056316

RESUMEN

While recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells, single cell proteomics has thus far been restricted to targeted studies. Here, we perform global absolute protein quantification of fertilized Xenopus laevis eggs using mass spectrometry-based proteomics, quantifying over 5800 proteins in the largest single cell proteome characterized to date. Absolute protein amounts in single eggs are highly consistent, thus indicating a tight regulation of global protein abundance. Protein copy numbers in single eggs range from tens of thousands to ten trillion copies per cell. Comparison between the single-cell proteome and transcriptome reveal poor expression correlation. Finally, we identify 439 proteins that significantly change in abundance during early embryogenesis. Downregulated proteins include ribosomal proteins and upregulated proteins include basal transcription factors, among others. Many of these proteins do not show regulation at the transcript level. Altogether, our data reveal that the transcriptome is a poor indicator of the proteome and that protein levels are tightly controlled in X. laevis eggs.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Proteoma/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Desarrollo Embrionario/genética , Óvulo/metabolismo , Proteoma/genética , ARN Mensajero/metabolismo , Análisis de la Célula Individual , Transcriptoma , Proteínas de Xenopus/genética , Xenopus laevis
13.
Nat Commun ; 15(1): 5577, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38956082

RESUMEN

Recent advances in single-cell immune profiling have enabled the simultaneous measurement of transcriptome and T cell receptor (TCR) sequences, offering great potential for studying immune responses at the cellular level. However, integrating these diverse modalities across datasets is challenging due to their unique data characteristics and technical variations. Here, to address this, we develop the multimodal generative model mvTCR to fuse modality-specific information across transcriptome and TCR into a shared representation. Our analysis demonstrates the added value of multimodal over unimodal approaches to capture antigen specificity. Notably, we use mvTCR to distinguish T cell subpopulations binding to SARS-CoV-2 antigens from bystander cells. Furthermore, when combined with reference mapping approaches, mvTCR can map newly generated datasets to extensive T cell references, facilitating knowledge transfer. In summary, we envision mvTCR to enable a scalable analysis of multimodal immune profiling data and advance our understanding of immune responses.


Asunto(s)
COVID-19 , Receptores de Antígenos de Linfocitos T , SARS-CoV-2 , Análisis de la Célula Individual , Transcriptoma , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/inmunología , Análisis de la Célula Individual/métodos , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/inmunología , COVID-19/virología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Perfilación de la Expresión Génica/métodos , Antígenos Virales/inmunología , Antígenos Virales/genética
14.
Nat Biotechnol ; 42(1): 40-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37055623

RESUMEN

Assessment of single-cell gene expression (single-cell RNA sequencing) and adaptive immune receptor (AIR) sequencing (scVDJ-seq) has been invaluable in studying lymphocyte biology. Here we introduce Dandelion, a computational pipeline for scVDJ-seq analysis. It enables the application of standard V(D)J analysis workflows to single-cell datasets, delivering improved V(D)J contig annotation and the identification of nonproductive and partially spliced contigs. We devised a strategy to create an AIR feature space that can be used for both differential V(D)J usage analysis and pseudotime trajectory inference. The application of Dandelion improved the alignment of human thymic development trajectories of double-positive T cells to mature single-positive CD4/CD8 T cells, generating predictions of factors regulating lineage commitment. Dandelion analysis of other cell compartments provided insights into the origins of human B1 cells and ILC/NK cell development, illustrating the power of our approach. Dandelion is available at https://www.github.com/zktuong/dandelion .


Asunto(s)
Taraxacum , Humanos , Linfocitos T , Análisis de la Célula Individual
15.
Nat Microbiol ; 9(5): 1293-1311, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38622380

RESUMEN

Children infected with SARS-CoV-2 rarely progress to respiratory failure. However, the risk of mortality in infected people over 85 years of age remains high. Here we investigate differences in the cellular landscape and function of paediatric (<12 years), adult (30-50 years) and older adult (>70 years) ex vivo cultured nasal epithelial cells in response to infection with SARS-CoV-2. We show that cell tropism of SARS-CoV-2, and expression of ACE2 and TMPRSS2 in nasal epithelial cell subtypes, differ between age groups. While ciliated cells are viral replication centres across all age groups, a distinct goblet inflammatory subtype emerges in infected paediatric cultures and shows high expression of interferon-stimulated genes and incomplete viral replication. In contrast, older adult cultures infected with SARS-CoV-2 show a proportional increase in basaloid-like cells, which facilitate viral spread and are associated with altered epithelial repair pathways. We confirm age-specific induction of these cell types by integrating data from in vivo COVID-19 studies and validate that our in vitro model recapitulates early epithelial responses to SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Células Epiteliales , Mucosa Nasal , SARS-CoV-2 , Serina Endopeptidasas , Humanos , COVID-19/virología , SARS-CoV-2/fisiología , SARS-CoV-2/patogenicidad , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Adulto , Persona de Mediana Edad , Anciano , Células Epiteliales/virología , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/genética , Mucosa Nasal/virología , Niño , Factores de Edad , Replicación Viral , Preescolar , Tropismo Viral , Masculino , Femenino , Anciano de 80 o más Años , Células Cultivadas , Adolescente , Lactante
16.
Nat Biotechnol ; 41(12): 1801-1809, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36973556

RESUMEN

Transcription factor binding across the genome is regulated by DNA sequence and chromatin features. However, it is not yet possible to quantify the impact of chromatin context on transcription factor binding affinities. Here, we report a method called binding affinities to native chromatin by sequencing (BANC-seq) to determine absolute apparent binding affinities of transcription factors to native DNA across the genome. In BANC-seq, a concentration range of a tagged transcription factor is added to isolated nuclei. Concentration-dependent binding is then measured per sample to quantify apparent binding affinities across the genome. BANC-seq adds a quantitative dimension to transcription factor biology, which enables stratification of genomic targets based on transcription factor concentration and prediction of transcription factor binding sites under non-physiological conditions, such as disease-associated overexpression of (onco)genes. Notably, whereas consensus DNA binding motifs for transcription factors are important to establish high-affinity binding sites, these motifs are not always strictly required to generate nanomolar-affinity interactions in the genome.


Asunto(s)
Cromatina , Factores de Transcripción , Cromatina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Unión Proteica , ADN/genética , ADN/metabolismo , Regulación de la Expresión Génica , Sitios de Unión/genética , Análisis de Secuencia de ADN
17.
Nat Genet ; 55(1): 66-77, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36543915

RESUMEN

Single-cell transcriptomics has allowed unprecedented resolution of cell types/states in the human lung, but their spatial context is less well defined. To (re)define tissue architecture of lung and airways, we profiled five proximal-to-distal locations of healthy human lungs in depth using multi-omic single cell/nuclei and spatial transcriptomics (queryable at lungcellatlas.org ). Using computational data integration and analysis, we extend beyond the suspension cell paradigm and discover macro and micro-anatomical tissue compartments including previously unannotated cell types in the epithelial, vascular, stromal and nerve bundle micro-environments. We identify and implicate peribronchial fibroblasts in lung disease. Importantly, we discover and validate a survival niche for IgA plasma cells in the airway submucosal glands (SMG). We show that gland epithelial cells recruit B cells and IgA plasma cells, and promote longevity and antibody secretion locally through expression of CCL28, APRIL and IL-6. This new 'gland-associated immune niche' has implications for respiratory health.


Asunto(s)
Pulmón , Mucosa Respiratoria , Humanos , Mucosa Respiratoria/metabolismo , Células Epiteliales/metabolismo , Linfocitos B , Inmunoglobulina A/metabolismo
18.
Cell Rep ; 42(12): 113458, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37995184

RESUMEN

Innate immune memory, also called "trained immunity," is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity. In particular, we reveal that acid ceramidase, an enzyme that converts ceramide to sphingosine, is a potent regulator of trained immunity. We show that acid ceramidase regulates the transcription of histone-modifying enzymes, resulting in profound changes in histone 3 lysine 27 acetylation and histone 3 lysine 4 trimethylation. We confirm our findings by identifying single-nucleotide polymorphisms in the region of ASAH1, the gene encoding acid ceramidase, that are associated with the trained immunity cytokine response. Our findings reveal an immunomodulatory effect of sphingolipids and identify acid ceramidase as a relevant therapeutic target to modulate trained immunity responses in innate immune-driven disorders.


Asunto(s)
Ceramidasa Ácida , Inmunidad Entrenada , Ceramidasa Ácida/genética , Ceramidasa Ácida/metabolismo , Histonas , Lisina , Esfingolípidos/genética , Inmunidad Innata
19.
Sci Immunol ; 8(90): eadf9988, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38100545

RESUMEN

Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1ß drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1ß-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.


Asunto(s)
Inmunidad Innata , Pulmón , Humanos , Diferenciación Celular , Células Asesinas Naturales , Células Epiteliales
20.
Cancer Res ; 82(10): 1953-1968, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35570706

RESUMEN

Micrometastases of colorectal cancer can remain dormant for years prior to the formation of actively growing, clinically detectable lesions (i.e., colonization). A better understanding of this step in the metastatic cascade could help improve metastasis prevention and treatment. Here we analyzed liver specimens of patients with colorectal cancer and monitored real-time metastasis formation in mouse livers using intravital microscopy to reveal that micrometastatic lesions are devoid of cancer stem cells (CSC). However, lesions that grow into overt metastases demonstrated appearance of de novo CSCs through cellular plasticity at a multicellular stage. Clonal outgrowth of patient-derived colorectal cancer organoids phenocopied the cellular and transcriptomic changes observed during in vivo metastasis formation. First, formation of mature CSCs occurred at a multicellular stage and promoted growth. Conversely, failure of immature CSCs to generate more differentiated cells arrested growth, implying that cellular heterogeneity is required for continuous growth. Second, early-stage YAP activity was required for the survival of organoid-forming cells. However, subsequent attenuation of early-stage YAP activity was essential to allow for the formation of cell type heterogeneity, while persistent YAP signaling locked micro-organoids in a cellularly homogenous and growth-stalled state. Analysis of metastasis formation in mouse livers using single-cell RNA sequencing confirmed the transient presence of early-stage YAP activity, followed by emergence of CSC and non-CSC phenotypes, irrespective of the initial phenotype of the metastatic cell of origin. Thus, establishment of cellular heterogeneity after an initial YAP-controlled outgrowth phase marks the transition to continuously growing macrometastases. SIGNIFICANCE: Characterization of the cell type dynamics, composition, and transcriptome of early colorectal cancer liver metastases reveals that failure to establish cellular heterogeneity through YAP-controlled epithelial self-organization prohibits the outgrowth of micrometastases. See related commentary by LeBleu, p. 1870.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Neoplasias Colorrectales/patología , Humanos , Neoplasias Hepáticas/metabolismo , Ratones , Micrometástasis de Neoplasia/patología , Células Madre Neoplásicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA